Abstract:
A system for generating cold plasma is presented, suitable for use in in-vivo treatment of biological tissue. The system comprising: a control unit connectable to an elongated member at a first proximal end of the elongated member. The elongated member comprises a plasma generating unit at a second distal end thereof and gas and electricity transmission channels extending from said first proximal end towards said plasma generating unit. The control unit comprises a gas supply unit configured to provide predetermined flow rate of selected gas composition through said gas transmission channel and a power supply unit configured to generate selected sequence of high-frequency electrical pulses, typically in mega Hertz range, directed through said electricity transmission channel, thereby providing power and gas of said selected composition to the plasma generating unit for generating cold plasma.
Abstract:
The present invention relates to non-thermal plasma for use in the treatment of an infected nail or infected skin, wherein the plasma is used in a method comprising: (a) applying the plasma to the infected nail or skin; (b) rehydrating the infected nail or skin; (c) applying the plasma to the infected nail or skin; and (d) optionally rehydrating the infected nail or skin. wherein the plasma is applied to a portion of the nail or skin in each of steps (a) and (c) until a hydration level of the plasma-treated portion drops by at most 30wt% based on the initial moisture content of the plasma-treated portion, preferably by at most 20wt%.
Abstract:
Gezeigt wird eine Plasma-Ionisationskammer (1) für die bipolare, partielle Ionisation von gasförmigem Sauerstoff umfassend - eine Zuströmöffnung (6) für Sauerstoff und eine Abströmöffnung (7) für ionisierten Sauerstoff, - je eine im Inneren der Plasma-Ionisationskammer angeordnete Kathode (4) und Anode (3), wobei diese beiden Elektroden als quer zur Strömungsrichtung (5) des Sauerstoffs gespannte, in Strömungsrichtung des Sauerstoffs hintereinander angeordnete Elektrodendrähte ausgebildet sind, - wobei die Zuströmöffnung (6) fluchtend zur Abströmöffnung (7) zentral in der Plasma- Ionisationskammer (1) angeordnet ist. Um die Entstehung von Ozon in der Plasma-Ionisationskammer (1) zu reduzieren, ist vorgesehen, dass die Gleichspannungsversorgung (2) für Anode (3) und Kathode (4) so ausgelegt ist, dass die Stromstärke in Anode (3) und Kathode (4) den Bereich von 10 m A, insbesondere von 8 m A, nicht übersteigt und die Spannung zwischen Anode (3) und Kathode (4) bei kleiner oder gleich 6 k V liegt, und - dass die Elektroden (3, 4) als Drähte ausgebildet sind, deren gegenseitiger Abstand (8) in der Mitte der Plasma-Ionisationskammer (1) kleiner ist als am Rand der Plasma- Ionisationskammer.
Abstract:
A method of plasma treatment of an internal and/or external surface of a hollow electrically non-conductive body (1), the principle of which consists in that on the internal surface (2) of a hollow electrically non-conductive body (1) and/or on the external surface (3) of a hollow electrically non-conductive body (1) there acts a layer of electrical plasma of a surface dielectric barrier discharge generated in a volume (7, 9) of gas by alternating or pulse voltage (10) with an amplitude higher than 100 V from a pair of liquid electrodes formed by an internal electrically conductive liquid (4) situated inside the hollow electrically non-conductive body (1) and by an external electrically conductive liquid (5) situated outside the hollow electrically conductive body (1). The electrical plasma is generated above the surface (6, 8) of the electrically conductive liquid (4, 5), where in the volume (7, 9) of the gas, there forms a layer of electrical plasma forming a ring (11) copying the shape of the surface (2, 3) of the hollow electrically non-conductive body (1), wherein the electrical resistance between the liquid electrodes is greater than 10 kΩ. The invention also is a device for carrying out the aforementioned method of plasma treatment of the internal and/or external surface of a hollow electrically non-conductive body (1).
Abstract:
고전압 방전 발생 장치가 개시된다. 본 발명의 일 실시예에 따른 고전압 방전 발생 장치는, 원통 또는 다각형 통 형태로 구성되는 방전관; 상기 방전관의 내벽과 일정 거리 이격되어 형성되는 내부전극; 상기 내부전극과 대향하도록 상기 방전관 외부를 둘러싸며, 외부 전압 인가에 따라 상기 내부전극 및 상기 방전관 사이의 방전 공간에 고전압 방전을 발생시키는 외부전극; 및 상기 고전압 방전이 상기 내부전극에서 상기 외부전극의 방향으로 발생할 수 있도록 상기 내부전극의 내부에서 중실(solid) 형태로 이루어지는 애자를 포함한다.
Abstract:
L'invention concerne un procédé et un dispositif permettant de contrôler le débit massique d'un écoulement de gaz (4) sonique dans un conduit (3). Pour cela, une décharge électrique est appliquée dans le conduit de façon à créer un plasma dans le conduit. Cette décharge électrique permet une augmentation de la température de l'écoulement de gaz et donc une variation du débit massique ou de la pression de l'écoulement de gaz. En émettant la décharge électrique de façon périodique, on obtient en sortie du dispositif un jet de gaz pulsé (18) ou modulable. Ce jet de gaz peut ensuite être utilisé pour contrôler un écoulement principal.
Abstract:
The invention relates to a method and device for treating living cells by means of a plasma (plasmaporation). In addition to conventional devices for generating plasma and generating a field, such as by electroporation, the device comprises devices for mixing and transporting active substances, predominantly in the form of nano and microparticles, for affecting the metabolism of the cells.
Abstract:
An apparatus for An apparatus for generating excimer radiation is provided. The apparatus includes a housing having a housing wall. An electrode is configured within the housing. A tubular body is around the electrode. The tubular body includes an outer wall and an inner wall. At least one inert gas is between the outer wall and the inner wall, wherein the housing wall and the electrode are configured to excite the inert gas to illuminate an excimer light for curing.
Abstract:
A plasma generator, comprising a dielectric tube having a first end and a second end, wherein the first end is sealed, but for a gas inlet; at least one first dielectric disk located within the dielectric tube, wherein the first dielectric disk includes at least one first dielectric aperture formed therein; a first ring electrode that at least partially surrounds the at least one first dielectric aperture and is electrically coupled to a power supply; at least one second dielectric disk located proximate the second end of the dielectric tube, wherein the second dielectric disk includes at least one second dielectric aperture formed therein; and a second ring electrode that at least partially surrounds the at least one second dielectric aperture and is electrically coupled to the power supply. During use, the plasma generator produces at least one plasma plume that is launched into open air.