Abstract:
An apparatus for An apparatus for generating excimer radiation is provided. The apparatus includes a housing having a housing wall. An electrode is configured within the housing. A tubular body is around the electrode. The tubular body includes an outer wall and an inner wall. At least one inert gas is between the outer wall and the inner wall, wherein the housing wall and the electrode are configured to excite the inert gas to illuminate an excimer light for curing.
Abstract:
A substrate processing system has a housing that defines a process chamber, a gas-delivery system, a high-density plasma generating system, a substrate holder, and a controller. The housing includes a sidewall and a dome positioned above the sidewall. The dome has physically separated and noncontiguous pieces. The gas-delivery system introduces e a gas into the process chamber through side nozzles positioned between two of the physically separated and noncontiguous pieces of the dome. The high-density plasma generating system is operatively coupled with the process chamber. The substrate holder is disposed within the process chamber and supports a substrate during substrate processing. The controller controls the gas-delivery system and the high-density plasma generating system.
Abstract:
An apparatus for An apparatus for generating excimer radiation is provided. The apparatus includes a housing having a housing wall. An electrode is configured within the housing. A tubular body is around the electrode. The tubular body includes an outer wall and an inner wall. At least one inert gas is between the outer wall and the inner wall, wherein the housing wall and the electrode are configured to excite the inert gas to illuminate an excimer light for curing.
Abstract:
Methods are provided for depositing a dielectric material for use as an anti-reflective coating and sacrificial dielectric material in damascene formation. In one aspect, a process is provided for processing a substrate including depositing an acidic dielectric layer on the substrate by reacting an oxygen-containing organosilicon compound and an acidic compound, depositing a photoresist material on the acidic dielectric layer, and patterning the photoresist layer. The acidic dielectric layer may be used as a sacrificial layer in forming a feature definition by etching a partial feature definition, depositing the acidic dielectric material, etching the remainder of the feature definition, and then removing the acidic dielectric material to form a feature definition.
Abstract:
A method, a system and a computer readable medium for integrated in- vacuo repair of low-k dielectric thin films damaged by etch and/or strip processing. A repair chamber is integrated onto a same platform as a plasma etch and/or strip chamber to repair a low-k dielectric thin film without breaking vacuum between the damage event and the repair event. UV radiation may be provided on the integrated etch/repair platform in any combination of before, after, or during the low-k repair treatment to increase efficacy of the repair treatment and/or stability of repair.
Abstract:
A remote plasma process for removing unwanted deposition build-up from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber. In one embodiment, the substrate is transferred out of the substrate processing chamber and a flow of a fluorine-containing etchant gas is introduced into a remote plasma source where reactive species are formed. A continuous flow of the reactive species from the remote plasmas source to the substrate processing chamber is generated while a cycle of high and low pressure clean steps is repeated. During the high pressure clean step, reactive species are flown into the substrate processing chamber while pressure within the substrate processing chamber is maintained between 4-15 Torr. During the low pressure clean step, reactive species are flown into the substrate processing chamber while reducing the pressure of the substrate processing chamber by at least 50 percent of a high pressure reached in the high pressure clean step.
Abstract:
Method and systems for patterning a hardmask film using ultraviolet light is disclosed according to one embodiment of the invention. Embodiments of the present invention alleviate the processing problem of depositing and etching photoresist in order to produce a hardmask pattern. A hardmask layer, such as, silicon oxide, is first deposited on a substrate within a deposition chamber. In some cases, the hardmask layer is baked or annealed following deposition. After which, portions of the hardmask layer are exposed with ultraviolet light. The ultraviolet light produces a pattern of exposed and unexposed portions of hardmask material. Following the exposure, an etching process, such as a wet etch, may occur that removes the unexposed portions of the hardmask. Following the etch, the hardmask may be annealed, baked or subjected to a plasma treatment.
Abstract:
Method and systems for patterning a hardmask film using ultraviolet light is disclosed according to one embodiment of the invention. Embodiments of the present invention alleviate the processing problem of depositing and etching photoresist in order to produce a hardmask pattern. A hardmask layer, such as, silicon oxide, is first deposited on a substrate within a deposition chamber. In some cases, the hardmask layer is baked or annealed following deposition. After which, portions of the hardmask layer are exposed with ultraviolet light. The ultraviolet light produces a pattern of exposed and unexposed portions of hardmask material. Following the exposure, an etching process, such as a wet etch, may occur that removes the unexposed portions of the hardmask. Following the etch, the hardmask may be annealed, baked or subjected to a plasma treatment.
Abstract:
Methods are provided for depositing a dielectric material for use as an anti-reflective coating and sacrificial dielectric material in damascene formation. In one aspect, a process is provided for processing a substrate including depositing an acidic dielectric layer on the substrate by reacting an oxygen-containing organosilicon compound and an acidic compound, depositing a photoresist material on the acidic dielectric layer, and patterning the photoresist layer. The acidic dielectric layer may be used as a sacrificial layer in forming a feature definition by etching a partial feature definition, depositing the acidic dielectric material, etching the remainder of the feature definition, and then removing the acidic dielectric material to form a feature definition.
Abstract:
Methods for fabricating a semiconductor device having a lanthanum-family- based oxide layer are described. A gate stack having a lanthanum-family-based oxide layer is provided above a substrate. At least a portion of the lanthanum-family-based oxide layer is modified to form a lanthanum-family-based halide portion. The lanthanum-family-based halide portion is removed with a water vapor treatment.