Abstract:
Disclosed herein are a variety of systems and methods for estimating a source impedance value. One embodiment may include an intelligent electronic device (IED) configured to interface with an electric power distribution system. The IED may include a communications interface, a processor, and a non-transitory computer-readable storage medium. The computer-readable storage medium may include software instructions executable on the processor that enable the IED to identify a source impedance modeling event at a node in the power distribution system. The software instructions may further enable the IED to receive a plurality of measurements representing an electrical condition at the node prior to the source impedance modeling event and subsequent to the source impedance modeling event. The IED may calculate a source impedance value based on the first plurality of measurements at the node. Based on the source impedance value, a control action may be generated.
Abstract:
Systems and methods for governing a signal waveform of a signal flowing through a component of a power transmission system that includes a plurality of switch-mode power processors and may be a polyphase system. At least one of current and voltage is integrally monitored at each of a plurality of locations on the power system and is characterized relative to specified constraints. When a monitored voltage or current is outside of the specified constraints, the voltage or current is modified by changing at least one of the time delay or phase characteristics of at least one of the source, load and transmission elements on the power transmission system.
Abstract:
The disclosed system includes a metering device for monitoring electrical power grid conditions, a controller for determining if the metering device is detecting a condition on an electrical grid that is indicative of a delayed voltage recovery event, and a communication device for communicating with one or more remotely located bi-directional power source modules connected to the electrical power grid, wherein the controller is programmed to send a notification via the communication device to the one or more remotely located bi-directional power source modules if the controller detects a condition indicative of delayed voltage recovery event. In some embodiments, the metering device includes a grid metering device. In some embodiments, the metering device measures power factor, and a change in the voltage and ratio of VARs to Watts.
Abstract:
A system uses an intelligent load controller for managing use of a consumable resource at an associated load. The controller has a resource measuring component for measuring the rate of use of the resource by the associated load, including measuring at least one of an instantaneous usage rate and a usage rate over an integration period and a load status component for receiving load status data for the associated load. The controller also has a communication component for receiving control messages from and sending load status messages to other associated controllers; a memory for storing a load control goal set; and a load control computer program responsive to the resource measuring component, the load status component, the control messages from other associated controllers and the load control goal set, to determine a load operating level for, and provide control commands to, the associated load.
Abstract:
L'invention concerne un procédé pour optimiser la consommation de l'énergie réactive dans un réseau électrique comportant un système de surveillance et de réglage d'alimentation électrique, ledit système comprenant un générateur d'électricité, des charges électriques, un système de compensation de puissance, une ligne de transport d'électricité, un processeur électro-numérique et un compteur possédant les télé-relevés. Le procédé comprend les étapes consistant à : mesurer l'ensemble de données des charges électriques par au moins un compteur possédant des télé-relevés, collecter l'ensemble de données des charges électriques et les transmettre au processeur électro-numérique pour l'établissement de courbes de données, calculer un facteur de puissance des charges électriques, - permettre une compensation de l'énergie réactive en fixant le type et la configuration des systèmes de compensation à installer, lorsque le facteur de puissance calculé présente une valeur inférieure ou égale à une valeur seuil prédéfinie : - compenser l'énergie réactive par un actionnement des systèmes de compensation installés.
Abstract:
Die Erfindung betrifft ein System und ein Verfahren zur Regelung der Spannungshaltung und/oder der Frequenzhaltung in einem Energieversorgungssystem (1 ), das ein Übertragungsnetz (2) einer ersten Spannungsebene und zumindest ein damit über eine Umspanneinrichtung (4) gekoppeltes Verteilnetz (3) einer zweiten, gegenüber der ersten Spannungsebene niedrigeren Spannungsebene aufweist, wobei das Verteilnetz (3) mit einer Anzahl regelbarer Netzteilnehmer (5, 6, 7) verbunden ist. Es werden die Frequenz oder Wirkleistung und/oder die Spannung oder Blindleistung an einem Knoten des Übertragungsnetzes (2), Werte elektrischer Netzzustandsgroßen an wenigstens einem Knoten des Verteilnetzes (3) sowie Werte elektrischer Teilnehmerzustandsgrößen der Netzteilnehmer (5, 6, 7) erfasst. Anschließend erfolgt eine Netzzustandsbewertung, bei der die Verfügbarkeit eines jeden Netzteilnehmer (5, 6, 7) für eine zusätzliche Leistungsaufnahme und/ oder Leistungsabgabe ermittelt wird. Es wird ferner eine Sollwertabweichung der erfassten Größe im Übertragungsnetz ermittelt und einem Regelmodul zugeleitet, welches von den verfügbaren Netzteilnehmern (5, 6, 7) diejenigen identifiziert, die eine Maßnahme zur Kompensation der Sollwertabweichung (Δf, ΔU) ausführen können. Anschließend wird für zumindest einen dieser Netzteilnehmer (5, 6, 7) eine Leistungsvorgabe, insbesondere eine Leistungsänderungsvorgabe, derart festgelegt und diesem Netzteilnehmern (5, 6, 7) zur Verfügung gestellt, dass die Sollwertabweichung (Δf, ΔU) zu Null kompensierbar ist.
Abstract:
A system and method for measurement of one or more parameters of a power grid (10) is disclosed. This comprises determining a plurality of events in at least one power waveform on the power grid using at least two sensors (30, 50) and recording timings of the plurality of events in at least two different locations in the power grid. The data gathered is used to determine differences between the timings recorded in the at least two locations. A processing unit (40) is used to analyse the differences of the timings to determine the one or more parameters. These parameters include power flow, short circuits, and breaks in the power grid (10).
Abstract:
A power delivery system includes at least one conductor having a first end and a second end and a phasor measurement unit (PMU) coupled to the first end of the conductor. The PMU is configured to obtain phasor data at the first end and generate a phasor signal that includes the phasor data. The power delivery system also includes a power generation system coupled to the second end of the conductor and configured to provide power to the conductor. The power generation system includes a power source, a power converter, and a controller. The controller is communicatively coupled to the PMU and is configured to receive the phasor signal and control the power converter based at least partially on the phasor data.
Abstract:
A system for controlling and automating an electric power delivery system by executing time coordinated instruction sets to achieve a desired result. A communication master may implement the execution of time coordinated instruction sets in a variety of circumstances. The communication may be embodied as an automation controller in communication with intelligent electronic devices (IEDs). The communication master may also be embodied as an IED that is configured to coordinate the actions of other IEDs. The time coordinated instruction sets may include steps for checking status of power system equipment before executing. The time coordinated instruction sets may include reactionary steps to execute if one of the steps fails. The time coordinated instruction sets may also be implemented based on a condition detected in the electric power delivery system, or may be implemented through high level systems, such as a SCADA system or a wide area control and situational awareness system.