Abstract:
The invention relates to a turbojet engine nacelle that includes a power supply source (113) for a system for actuating and controlling a thrust reverser device (121), and for a system for actuating and controlling a variable nozzle device (120), the power supply being switchable between a first position in which it powers the system for actuating and controlling the thrust reverser device, and a second position in which it powers the system for actuating and controlling the variable nozzle device, wherein the switching is carried out under the action of a control output from a computer (103) capable of receiving a thrust reverser opening control (100).
Abstract:
La présente invention se rapporte à une nacelle de turboréacteur comprenant une source d'alimentation électrique (113) d'un système d'actionnement et de commande d'un dispositif d'inversion de poussée (121) et d'un système d'actionnement et de commande d'un dispositif de tuyère variable (120), caractérisé en ce que l'alimentation électrique est commutable entre une première position dans laquelle elle alimente le système d'actionnement et de commande de l'inverseur et un deuxième position dans laquelle elle alimente le système d'actionnement et de commande de la tuyère variable, la commutation s'effectuant sous l'action d'une sortie de commande d'un calculateur (103) apte à recevoir une commande d'ouverture (100) de l'inverseur de poussée.
Abstract:
A disclosed turbofan engine includes a gas generator section for generating a gas stream flow. A speed reduction device is driven by the power turbine. A propulsor section includes a fan driven by the power turbine through the speed reduction device at a second speed lower than the first speed for generating propulsive thrust as a mass flow rate of air through a bypass flow path. The fan includes a tip diameter greater than about fifty (50) inches and an Engine Unit Thrust Parameter ("EUTP") defined as net engine thrust divided by a product of the mass flow rate of air through the bypass flow path, a tip diameter of the fan and the first rotational speed of the power turbine is less than about 0.30 at a take-off condition.
Abstract:
A disclosed turbofan engine includes a gas generator section for generating a gas stream flow. A speed reduction device is driven by the power turbine. A propulsor section includes a fan driven by the power turbine through the speed reduction device at a second speed lower than the first speed for generating propulsive thrust as a mass flow rate of air through a bypass flow path. The fan includes a tip diameter greater than about fifty (50) inches and an Engine Unit Thrust Parameter ("EUTP") defined as net engine thrust divided by a product of the mass flow rate of air through the bypass flow path, a tip diameter of the fan and the first rotational speed of the power turbine is less than about 0.30 at a take-off condition.
Abstract:
La présente invention se rapporte à un système de commande de type hydraulique pour dispositif d'inversion de poussée équipant une nacelle de turboréacteur et associé à un dispositif de variation de tuyère, comprenant au moins un capot mobile entraîné en translation par une pluralité d'actionneurs simple action (1d, 1g) synchronisés entre eux, ledit système de commande hydraulique comprenant au moins une unité de pilotage (100d, 100g) des vérins selon un mode de tuyère variable, et au moins une unité de pilotage (200) des vérins selon un mode d'inverseur de poussée, caractérisé en ce que le système de commande comprend au moins une unité additionnelle de contrôle (400) reliant hydrauliquement les vérins entre eux et comprenant une pluralité de valves de commande(401, 402).
Abstract:
An exhaust section for an aircraft gas turbine engine includes an exhaust nozzle in a downstream serial flow relationship with the gas turbine engine having a fan section, a compressor section, a combustion section, a turbine section, and an exhaust section. The compressor section compresses intake air from the fan section, which is mixed with fuel and combusted into hot gases in the combustion section. The hot gases drive the turbines of the turbine section, and are expelled from the gas turbine engine at the exhaust section.
Abstract:
In accordance with one aspect of the disclosure, a gas turbine engine, method of using and designing such is disclosed. The gas turbine engine may comprise a fan including a plurality of blades, and a variable area fan nozzle. The fan may be configured to have a design point fan tip leading edge relative flow angle PADP, and may be further configured to have an off-design point fan tip leading edge relative flow angle β at an off-design fan operating point. The variable area fan nozzle may be configured to manipulate the amount of air flowing through the fan so that the absolute value of a difference between the design point fan tip leading edge relative flow angle PADP and the off-design point fan tip leading edge relative flow angle β is in a specified range.
Abstract:
A gas turbine engine system includes a fan (14) and a fan bypass passage (30) downstream of the fan (14) for conveying a bypass airflow from the fan. A nozzle (40) associated with the fan bypass passage (30) includes a plurality of different positions that influence the bypass air flow. One or more sensors (54) near the fan (14) produce a signal representative of a foreign object F near the fan (14). A controller (44) commands the nozzle (40) to move to a desired one of the plurality of different positions in response to the signal from the sensor (54) to change a pressure ratio across the fan (14) to thereby reduce a mechanical stress on the fan (14).
Abstract:
A turbofan engine control system is provided for managing a low pressure compressor operating line. The engine includes a low spool having a low pressure compressor housed in a core nacelle. A turbofan is coupled to the low spool. A fan nacelle surrounds the turbofan and core nacelle and provides a bypass flow path having a nozzle exit area. A controller is programmed to effectively change the nozzle exit area in response to an undesired low pressure compressor stability margin which can result in a stall or surge condition. In one example, the physical nozzle exit area is decreased at the undesired stability condition occurring during engine deceleration. A low pressure compressor pressure ratio, low spool speed and throttle position are monitored to determine the undesired stability margin.