Abstract:
본 발명은 절대연대측정법을 이용한 고대 토기 및 도자기의 진위감정 방법 및 시스템에 관한 것이다. 본 발명의 제 1 측면은, 절대연대측정법을 이용한 고대 토기 및 도자기의 진위감정 방법은, 일체형 TL/OSL 측정장비(1)의 TL/OSL 신호 측정부(400)이 고대 토기 및 도자기로부터 추출된 코아 시료로 만든 시료디스크(2) 중 하나를 대상으로 TL/OSL 연대측정을 수행하는 제 1 단계; 일체형 TL/OSL 측정장비(1)의 알파되튐흔적 측정부(500)가 고대 토기 및 도자기로부터 추출된 코아 시료의 알파되튐흔적 연대측정을 수행하는 제 2 단계; 및 일체형 TL/OSL 측정장비(1)의 제어부(600)는 제어 프로그램 모듈(600a)을 통해 측정된 TL/OSL 연대(Age TL/OSL )와 측정된 알파되튐흔적 연대(Age ART )의 비교를 통한 진품 여부를 분석하는 제 3 단계; 를 포함하는 절대연대측정법을 이용한 고대 토기 및 도자기의 진위감정 방법을 제공함에 있다. 본 발명의 제 2 측면은, 일체형 TL(thermoluminescence)/OSL(optically stimulated luminescence) 측정장비(1)와 하나의 시료디스크(2)를 포함하는 절대연대측정법을 이용한 고대 토기 및 도자기의 진위감정 시스템에 있어서, 일체형 TL/OSL 측정장비(1)는, 고대 토기 및 도자기로부터 추출된 코아 시료로 만든 시료디스크(2) 중 하나를 대상으로 TL/OSL 연대측정을 수행하는 TL/OSL 신호 측정부(400); 고대 토기 및 도자기로부터 추출된 코아 시료의 알파되튐흔적 연대측정을 수행하는 알파되튐흔적 측정부(500); 및 제어 프로그램 모듈(600a)을 통해 측정된 TL/OSL 연대(Age TL/OSL )와 측정된 알파되튐흔적 연대(Age ART )의 비교를 통한 위조품 여부를 분석하는 제어부(600); 를 포함하는 절대연대측정법을 이용한 고대 토기 및 도자기의 진위감정 시스템을 제공함에 있다. 이에 의해, 고대 토기 및 도자기의 보존 환경에 대한 자세한 정보를 확인할 수 없는 경우에도 연대측정의 신뢰도를 향상시킬 수 있는 효과를 제공한다. 또한, 모조품을 제작한 후 진품과 동일한 고고선량이 나오도록 인위적인 방사선 조사가 수행된 경우에도 진품인지 모조품인지를 구별할 수 있는 효과를 제공한다. 뿐만 아니라, 종래의 TL/OSL 연대측정법을 적용할 경우 연대측정에 사용되는 시료의 양이 많이 요구되는 한계점을 극복하여 적은 시료만으로도 토기 및 도자기에 대한 정확한 제작연대 산출 및 진위감정이 가능한 효과를 제공한다.
Abstract:
A quadrupole is filled with ions and the ions are cooled by applying a pressure and gas flow within the quadrupole. Ions are trapped in the quadrupole by applying a DC voltage and an RF voltage to quadrupole rods of the quadrupole, one or more DC voltages to a plurality of auxiliary electrodes of the quadrupole, and a DC voltage and an RF voltage to an exit lens at the end of the quadrupole. The ions are coherently oscillated after the filling and cooling by applying a coherent excitation between at least two rods of the quadrupole rods. The coherently oscillating ions are axially ejected through the exit lens and to a destructive detector for detection by changing one or more voltages of the one or more DC voltages of the plurality of auxiliary electrodes and changing the DC voltage of the exit lens.
Abstract:
An electron capture dissociation apparatus comprises ion guide electrodes, an electron emitter, and an electron control device. The ion guide electrodes are arranged along a central axis and spaced circumferentially to circumscribe an interior space extending along the central axis. The electron emitter is disposed outside the interior space. The electron control device is configured for focusing an electron beam from the electron emitter toward the central axis, along a radial electron beam direction between two of the ion guide electrodes, and for decelerating the electron beam in a DC decelerating field of adjustable voltage potential directed along the electron beam direction.
Abstract:
An angle-resolving photoelectron spectrometer and a method for such a spectrometer is described. The spectrometer comprises an electrostatic lens system (101) having a first end (1) and a second end (2), and being arranged to form a beam of electrons emitted from a measurement area (A) on a sample surface (Ss) of a solid sample (3), and to transport the electrons to the second end (2), and wherein the first lens element (4) is configured to be arranged at a positive voltage in relation to the sample (3). The spectrometer comprises at least a first shielding electrode (17) with a limiting aperture (18), arranged such that the angle between the optical axis (6) and any point on the limiting aperture (18) is larger than 45° and smaller than 70°, seen from a point on the sample surface (Ss) at the optical axis (6), and at least one compensation electrode (7) which is arranged around the optical axis (6) at a larger distance from the measurement area (A) than the first lens element (4). According to the method, the compensation electrode (7) is configured to be arranged at a negative voltage in relation to the sample (3).
Abstract:
Certain configurations of a mass analyzer comprising two chambers for ionizing species to form ions and/or introduce a reaction gas to assist in ionization are described. In some instances, a first chamber may receive electrons to permit electron bombardment of a first gas. A second chamber can receive a second gas and the ions from the first chamber to permit the ions and second gas to interact. The first gas or the second gas or both may include analyte.
Abstract:
An electron source for electron-induced dissociation in an RF-free electromagnetostatic cell for use installation in a tandem mass spectrometer is provided. An electromagnetostatic electron-induced dissociation cell may include at least one magnet having an opening disposed therein and having a longitudinal axis extending through the opening, the magnet having magnetic flux lines associated therewith, and an electron emitter having an electron emissive surface comprising a sheet, the emitter disposed about the axis at a location relative to the magnet where the electron emissive surface is substantially perpendicular to the magnetic flux lines at the electron emissive surface.
Abstract:
The present relates to a high brightness electron gun for mass spectrometry and spectroscopy. The electron gun comprises a nano emission ionization (NEI) electron source, an electrostatic lens system and a control system. The nano emission ionization (NEI) electron source comprises a cathode having a substrate on which are mounted nano-components and an anode. The control system controls the high brightness electron gun, the beam regime and the beam physical proprieties.
Abstract:
An ion source includes structure having separate first and second ion volumes therein, and electron source structure having first and second portions that selectively supply electrons to the first and second ion volumes, respectively. The electron source structure has a first operational mode in which the second portion substantially prevents a supply of electrons to the second ion volume and in which electrons are supplied to the first ion volume under control of the first portion, and has a second operational mode in which the first portion substantially prevents a supply of electrons to the first ion volume and in which electrons are supplied to the second ion volume under control of the second portion.
Abstract:
An electron source includes a first electrode, a second electrode, a thermionic element interposed between and electrically isolated from the first electrode and the second electrode, and a guard electrode interposed between and electrically isolated from the first electrode and the second electrode. The thermionic element and the guard electrode may be at substantially the same voltage. Another electron source includes a first electrode, a second electrode, a thermionic element interposed between and electrically isolated from the first electrode and the second electrode, and a thermal expansion component interposed between and electrically isolated from the first electrode and the second electrode. The thermal expansion component may be heated to cause expansion. The heating may be cycled to cause alternating expansion and contraction.