Abstract:
The invention relates to a system and process for hydrogen combustion for industrial or steam generation applications, and more particularly to a hydrogen combustion burner or retrofit kit combustion system and process using a primary pure hydrogen fuel source. The burner or retrofit kit combustion system and process may also use one or more secondary fuels, such as natural gas, methane, propane, or the like, to reduce emissions of CO2. Additionally, the inventive burner, system and process can use a flame temperature reducing fluid for lowering the bulk flame temperature of the burner to increase equipment life and decrease equipment failure. The flame temperature reducing fluid can include flue gas recirculation (FGR), water injection, steam injection, and a combination thereof.
Abstract:
Un brûleur combustibles gazeux, fluides ou pulvérulents, dans lequel on introduit trois composantes : un combustible (40); un gaz comburant (10), par exemple de l'air et; un gaz inerte (20) par exemple des gaz issus de la combustion, de l'azote, ou de la vapeur d'eau. Deux composantes, par exemple l'air et le gaz inerte, sont mélangées entre elles (30) et propulsés par un ou plusieurs étages d'injection (95) disposés à des positions différentes relativement au mouvement du combustible.
Abstract:
L'invention porte sur un procédé CLC, et son installation, produisant du diazote de haute pureté, comprenant : (a) la combustion d'une charge hydrocarbonée par réduction d'une masse active oxydo-réductrice mise en contact avec la charge, (b) une première étape d'oxydation de la masse active réduite (25) issue de l'étape (a) au contact d'une fraction d'un flux d'air appauvri (21b), pour produire un flux de diazote (28) de haute pureté et un flux de masse active partiellement ré-oxydée (26); (c) une deuxième étape d'oxydation du flux de masse active (26) au contact d'air (20) pour produire le flux d'air appauvri et un flux de masse active ré-oxydée (24) destiné à être utilisé à l'étape (a). (d) une division du flux d'air appauvri issu de l'étape (c) pour former la fraction d'air appauvri utilisée à l'étape (b) et une fraction complémentaire d'air appauvri extrait du CLC.
Abstract:
The burner (100) comprises a cylindrical porous substrate (110); and an end cap (130) at a first end of the cylindrical porous substrate (110). The cylindrical porous substrate (110) is provided for flow of a premix of combustible gas and air from the outside of the cylindrical porous substrate (110) through the pores of the cylindrical porous substrate (110) to an interior cavity (140), for the combustible gas to be combusted on the inner surface of the cylindrical porous substrate (110) thereby generating hot gas. The burner has an opening (182) at the second end of the cylindrical porous substrate (110) to exit the hot flue gas out of the interior cavity (140). The cylindrical porous substrate (110) has a higher permeability section (170), located at the opening (182) at the second end. The higher permeability section (170) has a lower resistance to gas flow than other sections of the cylindrical porous substrate (110).
Abstract:
The invention relates to a burner, particularly Low-NOx-burner, for generating a flame by combustion of a fuel, comprising: a tile (15, 15a, 15b) surrounding an opening (2, 2a, 2b) of the tile (15, 15a, 15b) extending along a burner axis (12), the tile (15, 15a, 15b) further comprising a front side (20) and a rear side (21) facing away from the front side (20), wherein the rear side (21) comprises an air inlet (10, 10a, 10b) connected to said opening for feeding air (A, A', A") into said opening (2, 2a, 2b), and wherein said front side (20) comprises a discharge outlet (9, 9a, 9b) connected to said opening (2, 2a, 2b) for discharging a flame (30) generated by the burner (1) into a surrounding area (S), and wherein the tile (15, 15a, 15b) further comprises an inside (22) facing said opening (2, 2a, 2b) as well as an outside (23) facing away from said opening (2, 2a, 2b). According to the invention the burner (1) further comprises at least one oxygen lance (5) extending along the burner axis (12) in a first recess (17) of said tile (15, 15a, 15b), the at least one oxygen lance (5) having an ejection nozzle (6) at an end region of the at least one oxygen lance (5) for ejecting oxygen (O), particularly such that the oxygen (0) is at first ejected into a colder flue gas region (31) surrounding the relatively hotter flame (30) generated by the burner (1). Further, the invention relates to a method for generating a flame (30).
Abstract:
An oxy-gaseous fuel burner (400, 500) or a solid fuel burner (700) having an annular cavity (404, 504, 704) upstream from and proximate to an outlet plane (416, 516, 716) and a converging (434, 734) or converging-diverging nozzle (537) located upstream from and proximal to the cavity (404, 504, 704). The solid fuel burner (700) also is preferably operated so that the velocity of gas exiting a second annulus (730) is less than the velocity of gas exiting a central conduit (710).
Abstract:
Brûleur de gaz pour brûler un gaz à faible pouvoir calorifique, tel que du gaz de synthèse issu de la gazéification de biomasse, le brûleur comprenant une première zone annulaire (5) formée entre la paroi externe (16) et une paroi interne (17) du brûleur sensiblement parallèle à la paroi externe, une seconde zone annulaire (8) formée entre la paroi externe (16) du brûleur et la paroi interne (17) en aval de la première zone, et le brûleur comprenant un conduit (1) d'alimentation en gaz à faible pouvoir calorifique sensiblement parallèle à l'axe du brûleur, un conduit (3) d'alimentation en air primaire formé dans la paroi externe (16) et débouchant dans la première zone annulaire (5), un conduit (4) d'alimentation en air secondaire formé dans la paroi externe (16) et débouchant dans la seconde zone annulaire (8), une fente annulaire (6) d'introduction de l'air primaire de la première zone annulaire (5) dans la zone de combustion (7), ladite fente annulaire (6) étant formée entre la paroi externe (16) et l'extrémité amont (25) de la paroi interne (17), des orifices (9) d'introduction de l'air secondaire de la seconde zone annulaire (8) dans la zone de combustion (7), lesdits orifices étant percés dans la paroi interne (17), et la fente annulaire (6) ayant une forme telle que l'air primaire est apporté dans la zone de combustion (7) sous forme d'une lame d'air conique, et crée une zone de compression, et les orifices (9) étant disposés de manière à permettre le tourbillonnement de l'air secondaire.
Abstract:
A method for burning fuel comprises conveying a fuel flow (7) in a combustion chamber (2), conveying an oxidizing agent flow (9) into the combustion chamber (2), removing combustion gases/fumes (11) from the combustion chamber (2), withdrawing a partial flow (15) of combustion gases/fumes (11) from the combustion chamber (2) and supplying the first partial flow (15) in the oxidizing agent flow (4) upstream of the combustion chamber (2) by means of using the oxidizing agent flow as the driving fluid for suctioning the partial flow (15) of combustion gases/fumes.
Abstract:
A method of optimizing operation of a furnace to control emission within a system. Each furnace zone inside of the furnace is associated with at least one exhaust zone. A signal indicative of an amount of byproduct exiting the furnace through at least one of the exhaust zones is received from one or more of the sensors. Based on this signal, an offending furnace zone is identified from among the plurality of furnace zones, the offending furnace zone including an oxygen level contributing to the amount of the byproduct. A relative adjustment of at least one of an amount of oxygen being introduced into the offending furnace zone, and an angular orientation of an oxygen injector introducing oxygen into the offending furnace zone relative to a focal region within the furnace can be initiated. The furnace may have structure to perform the method and may be part of a system.
Abstract:
To provide an axial piston motor (1), comprising at least one main burner (2), which has at least one main combustion space (21) and at least one main nozzle space (23), and comprising at least one pre-burner (3), which has at least one pre-combustion space (31) and at least one pre-nozzle space (33), wherein the pre-combustion space (31) is connected to the main nozzle space (23) by way of at least one hot gas feed (30), that has improved operating and control characteristics even under non-steady-state operating conditions, the pre-nozzle space (33) of the pre-burner (3) has at least one auxiliary hot gas feed (40).