US10602648B2

A one-directional clutch that only allows rotation in the forward direction, that is the cover tape pulling direction, is provided between, of two cover tape pulling gears, the lower side cover tape pulling gear and shaft thereof, such that reverse rotation of cover tape pulling gears is prevented by the one-directional clutch. For the engaging portion of the one-directional clutch and cover tape pulling gear, the friction of the engaging portion of the one-directional clutch and the cover tape pulling gear is adjusted such that the cover tape pulling gear slip rotates in the reverse direction when a specified rotational force or greater in the reverse direction that is greater than the force required to peel the cover tape is applied to the cover tape pulling gear.
US10602629B2

The present disclosure relates to a protective housing for a control unit. The protective housing includes at least one resizable cover element having at least two cover plates that are displaceable relative to one another and define a first cover area for protecting at least a first side of the control unit, and a displacement device suitable for displacing the at least two cover plates of the resizable cover element relative to one another so that the first cover area is changed.
US10602627B2

A key device comprises a housing in which a key hole is formed, a side key unit assembled at the key hole of the housing, and a gap of a predetermined thickness formed between a portion of the assembled side key unit located within the key hole and the key hole, wherein the gap is secured by processing any one or both of the side key unit located within the key hole or the housing in which the side key unit is assembled.
US10602623B1

An electronic device may have a flexible display. The electronic device may have housing portions that are rotatably coupled to each other so that the flexible display may fold along one or more bend axes. A device may have rollers that store a flexible display and that help deploy the display from within a housing when additional display area is desired. A touch screen in a housing may be overlapped by a flexible display that has been scrolled outwardly from the housing. Wireless transmitter and receiver circuitry may be used to convey image data to display driver circuitry. The display driver circuitry may display images on a pixel array in a flexible display based on the image data. Magnets may be used to outwardly bias edge-mounted bistable support structures to help prevent a rolled flexible display from wrinkling.
US10602622B2

A wiring board includes a first insulating layer including a surface having unevenness, a second insulating layer including a surface having unevenness, laminated on the first insulating layer, and made of the same insulating material as that of the first insulating layer, insulating particles contained in the first and second insulating layers at rate of 40 to 80 wt %, a first wiring conductor on a first underlying metal layer surface, and a second wiring conductor on a second underlying metal layer surface. A second level difference of the unevenness in a surface region of the second insulating layer under the second wiring conductor is smaller than a first level difference of the unevenness in a surface region of the first insulating layer under the first wiring conductor, and the second level difference is not more than ⅖ of an average particle size of the insulating particles.
US10602621B1

A method of manufacturing a circuit board includes: providing a substrate including a bottom layer and a resin layer over the bottom layer, the resin layer including a first surface in contact with the bottom layer and a second surface opposite to the first surface; forming a plurality of vias through the resin layer; depositing a first metal layer in the vias, the first metal layer filling a portion of each of the vias; depositing a second metal layer over the first metal layer and in the vias; forming a patterned metal layer over the second metal layer and extending from each of the vias to a position over the second surface; separating the bottom layer and the resin layer; and removing a portion of the resin layer from the first surface, so that the first metal layer protrudes from the resin layer.
US10602619B2

An anisotropic conductive connection structure body includes: a first electrode terminal on a surface of which a protruding portion is formed; a second electrode terminal; and an anisotropic conductive adhesive layer containing electrically conductive particles that provide conduction between the first electrode terminal and the second electrode terminal. A ratio of a height of the protruding portion to a before-compression particle size of the electrically conductive particle is less than 60%, an opening area ratio of the first electrode terminal is more than or equal to 55%, and a height of the second electrode terminal is more than or equal to 6 μm.
US10602618B2

A parts mounting system includes: a parts checking section that detects parts information which is identification information applied to the electronic parts and includes a parts code for specifying parts of the electronic parts and a parts maker code for specifying the parts maker and checks the detected parts information with parts information previously registered in a storing part; and a parts data generation section that, when the detected parts information is unregistered parts information in which the parts code is stored in the storing part and the parts maker code of the parts code is not stored in the storing part, generates parts data of the electronic parts relating to the unregistered parts information based on previously registered parts data having the same parts code.
US10602613B2

An electronic device where molten solder does not come into contact with a sealant so as not to destroy a sealing function. An electronic device is provided with: an insulating base mounted on a printed circuit board; a common planar terminal provided so as to extend from an outer side surface to a bottom surface edge of the insulating base, and cause electrical continuity between the outer side surface and the bottom surface edge of the insulating base; a cover fitted to the insulating base and covering the common planar terminal; and a sealant sealing a gap between the outer side surface of the insulating base and an inner circumferential surface of the cover. A solder pool is formed in a position surrounded by the printed circuit board and the common planar terminal at the bottom surface edge of the insulating base.
US10602610B2

According to an embodiment, a printed circuit board and an electronic device is disclosed. The printed circuit board includes a first pattern configured to be formed in a first layer. The printed circuit board also includes a second pattern configured to be formed in at least one second layer under the first layer. The printed circuit board also includes a via configured to electrically connect the first pattern to the second pattern. The printed circuit board further includes a recess configured to be formed by removing at least a portion of an area in which the via is formed and to electrically separate the first pattern from the second pattern.
US10602608B2

A circuit board includes a flexible wiring board with a reinforcing member. The flexible wiring board has a first, second and third sections. The reinforcing member is embedded in a cavity in the first section of the wiring board, and is sandwiched by a pair of resin layers provided below and above. A pair of wiring layers are disposed on the pair of the resin layers, respectively. The metal reinforcing member has either a plate shape or a frame shape. The first section of the wiring board is positioned closer to one of the wiring layers than to another of the wiring layers in a vertical direction.
US10602607B2

An apparatus comprising includes a first pair of conductors to carry differential signals, at least one ground conductor neighboring the first pair of conductors, the ground conductor to be connected to a ground plane, and at least one particular conductor to carry sideband signals. The particular conductor is to be connected to a ground plane via a resonance mitigation circuit, and the resonance mitigation circuit comprises a resistor.
US10602604B2

An electronic component unit includes: first electronic components which do not need to be cooled; second electronic components which are cooled; a first circuit board in which the first electronic component is mounted on a first surface and in which the second electronic component is mounted on a second surface; a second circuit board in which the first electronic component is mounted on a first surface and in which the second electronic component is mounted on a second surface; and one cooling plate which includes a first cooling surface and a second cooling surface, the second electronic component mounted on the second surface of the first circuit board is cooled by contact with the first cooling surface of the cooling plate, and the second electronic component mounted on the second surface of the second circuit board is cooled by contact with the second cooling surface of the cooling plate.
US10602600B2

An x-ray source can include a housing with material with an atomic number of ≥42 and a thermal conductivity of ≥3 W/(m*K) to assist in removing heat from the x-ray source and to block x-rays emitted in undesirable directions. An x-ray source can include a shell that is electrically conductive and that encloses at least part of a voltage multiplier without enclosing a control circuit to minimize or eliminate electromagnetic interference in the control circuitry caused by the voltage multiplier. An x-ray source can include a negative voltage multiplier, a positive voltage multiplier, and a ground plane between the negative voltage multiplier and the positive voltage multiplier. The ground plane can minimize or eliminate electromagnetic interference between the negative voltage multiplier and the positive voltage multiplier. An air-filled channel, associated with the ground plane, can reduce weight of the x-ray source.
US10602597B1

An LED luminaire comprising LED arrays, a full-wave rectifier coupled to AC mains, a power switching converter, and an LED driving circuit coupled to the power switching converter is used to replace a conventional luminaire with a severe temporal light artifact. The power switching converter is configured to convert a first DC voltage from the full-wave rectifier into a second DC voltage with a low-frequency ripple associated with the AC mains. By adapting switching frequencies to compensate the low-frequency ripple of the second DC voltage, the LED driving circuit can regulate the second DC voltage into a third DC voltage with a ripple-reduced LED driving current to drive the LED arrays with a flicker-reduced light emission to protect users of the LED luminaire from possible health hazards such as seizures, headaches, eyestrain, reduced visual performance, migraines, etc.
US10602596B2

Various embodiments relate to systems and methods for controlling one or more LED-based lighting sources that are coupled to a logic module by a ribbon cable. The ribbon cable allows some or all of the processing components (e.g., processors and drivers) to be decoupled from the LED-based lighting source(s). The processing components can instead be housed within the logic module, which is able to simultaneously control the LED-based lighting source(s). Together with color models established for each LED board, the logic module acts as a platform for modularity and is able to more precisely control the color channels of each LED-based lighting source using the color models established for those LED-based lighting source(s). Techniques are also described herein that allow the logic module to utilize data stored within an erasable programmable read-only memory (EPROM) that describes the color characteristics of an LED-based lighting source.
US10602584B2

A system can configure a luminaire for providing illumination of a selected color temperature, a selected lumen output, or a selected photometric distribution. The luminaire can comprise at least two light sources that have different illumination characteristics, for example different color temperatures, different lumen outputs, or different photometric distributions. The system can configure the luminaire to operate a first of the two light sources, a second of the two light sources, or both of the light sources based on an input. When the luminaire is configured to operate both of the light sources, the luminaire can produce illumination having a color temperature, a lumen output, or a photometric distribution that is different than either of the two light sources.
US10602569B2

A method for applying for media transmission permission, and a method and an apparatus for canceling media transmission permission are provided. The method for applying for media transmission permission includes: determining, by a first terminal, that a second terminal needs to transmit media data; and sending, by the first terminal, media transmission permission request indication information to a mission critical service (MCS) server, where the media transmission permission request indication information is used to instruct the MCS server to grant media transmission permission to the second terminal.
US10602568B2

Provided are a delinking method implemented by a remote UE in a wireless communication system, and a device using said method. The method is characterized by: receiving a disconnect message for disconnecting a link between a relay UE and the remote UE; disconnecting the link on the basis of the disconnect message; and not attempting to establish a link between the remote UE and the relay UE in a UE-specified time section.
US10602566B2

A user terminal has a function of device-to-device (D2D) communication, and determines whether it is in a radio resource control (RRC) idle mode, receives a system information block (SIB) broadcasted by the base station in the RRC idle mode, where the SIB includes resource information indicating usable radio resource and power information for controlling transmission power used in transmitting data to other user equipment by the D2D communication, and determines radio resources and power used to transmit the data based on the resource and power information. In another aspect, a base station is configured to broadcast the SIB.
US10602564B2

The present disclosure provides a control channel monitoring method at a UE, comprising: monitoring only a first type of control channel in a first state of the UE; if first control information which indicates data required by the UE in the first state on a data channel is detected on the first type of control channel, decoding the first control information in order to obtain the data required by the UE in the first state on the data channel; and monitoring only a second type of control channel when the UE is in a second state which is transited from the first state. The present disclosure also provides a corresponding UE, a control channel configuration and transmission method at a network node, and a corresponding network node.
US10602562B2

An originating user equipment (UE) that initiates a communication session as a real time text (RTT)-based communication may be configured to automatically downgrade the communication session in response to identifying one or more attributes of a response to a session request that indicate a communication session cannot be established with a full set of features requested by the user. For example, the originating UE can determine that a response to a session request indicates at least one of (i) an inability to establish the communication session, or (ii) an ability to establish the communication session without support for the exchange of the non-voice content via the RTT media stream. Based on this determination, a communication session can be established that does not support the exchange of the non-voice content via the RTT media stream. In this manner, rich RTT features are sacrificed in order to connect the user.
US10602552B2

A method and system are proposed for establishing a requested connection between a source node and a destination node in a telecommunications network. The system and method are described in relation to a 3GPP network, but are applicable to other types of networks. The method includes generating a source application identifier for the connection within the source node, retrieving a source node identifier for the source node and transmitting the source application identifier and the source node identifier to the destination to provide a source connection identifier for the requested connection between the source node and the destination node.
US10602550B2

There is are provided methods and apparatus relating to layer 2 relaying and mobility using a sidelink interface, including a remote user equipment (UE) for use in a wireless communication network, the UE comprising: a device to network (D2N) entity, a device to device (D2D) entity, and control logic to: receive a service data unit derived from an IP packet direct the service data unit to the D2N entity for communication with an eNB using a Uu interface in a first mode of operation, and direct the service data unit to the D2D entity for communication with the eNB via a first relay UE using a sidelink interface in a second, relay, mode of operation.
US10602549B2

A method and apparatus are disclosed from the perspective of a User Equipment (UE). In one embodiment, the method includes receiving a Random Access Channel (RACH) configuration from a network node, wherein the RACH configuration indicates at least one Physical Random Access Channel (PRACH) resource for beam failure recovery. The method further includes receiving a timing advance command from the network node, and starting or restarting a time alignment timer when receiving the timing advance command. The method also includes releasing the at least one PRACH resource for the beam failure recovery indicated by the RACH configuration when the timing alignment timer expires.
US10602547B2

An Access Point (AP) and a wireless device, as well as complementary methods performed by the AP and the wireless device for communication with each other, are provided. Embodiments of the AP-performed method can include determining one or more Clear Channel Assessment Thresholds (CCATs) for data to be transmitted to the wireless device, wherein each CCAT is associated with a particular Quality of Service (QoS) category of the data. Such embodiments can also include determining whether the channel is busy or free based on the determined one or more CCATs and based on signals or energy detected on the channel and, based on determining that the channel is free, transmitting the data to the wireless device. In some embodiments, the data can be transmitted to the wireless device while further data is being transmitted on the channel.
US10602543B2

An asynchronous channel reservation design is disclosed having a partial symbol alignment. The transmitting node performs a listen before talk (LBT) procedure on a transmission channel shared by one or more transmission/reception points (TRPs). Upon detecting passing the LBT, a preamble is transmitted followed by a dynamic length cyclic prefix that includes the normal cyclic prefix plus an additional variable period. The transmitter then transmits the channel reservation message after the dynamic length cyclic prefix. On the detector side, once the preamble is detected, the detecting node assumes a normal cyclic prefix before attempting to detect and decode the channel reservation information in the message. Using a demodulation reference signal (DMRS) in the channel reservation message, the detecting node may detect the channel reservation message information from the shifted version of the detected message.
US10602539B2

A communication means which allocates a terminal identifier to a destination communication apparatus and carries out communication with the destination communication apparatus by use of a plurality of functions including an identifier generation section 152 for generating different terminal identifiers corresponding to a function used and an identifier allocation section 114 having an identifier selecting section 104 for allocation to the destination communication apparatus. Using a plurality of different terminal identifiers (terminal function identifiers), a function to be used between the destination can be specified. Moreover, it is possible to optimize the size of a memory for storing information required for adaptive modulation control.
US10602535B2

In a wireless communication system, a physical broadcast channel (PBCH) is encoded based on a Polar code and then is transmitted. Half-frame information within the PBCH is mapped to a bit position 247 among bit positions of the Polar code and synchronization signal and PBCH block (SSB) index information within the PBCH is mapped to bit positions 253, 254, and 255 of the Polar code.
US10602532B2

Methods and systems for wireless packet switching include determining a schedule for a plurality of transceivers in an enclosure. The schedule specifies which of the plurality of transceivers will act as a transmitter and which will act as a receiver. Data is transmitted from each transmitter to a corresponding receiver with a configured beamforming direction. Data is transmitted from a transmitter to a corresponding receiver by a wired connection if an angle of the beamforming direction is lower than a minimum angle.
US10602527B2

Techniques for channel selection and related operations in a shared spectrum environment are disclosed. In one example, a channel selector or the like may be used to select one of a number of available channels as an operating channel based on a comparison of cost functions for each of the available channels, with the cost functions being based on separate utility and penalty metrics. In another example, a channel scanner or the like may be used to trigger a channel scan in response to a channel quality metric indicating poor service for a threshold number or proportion of access terminals. In another example, an operating mode controller may be used to trigger a Time Division Multiplexing (TDM) mode on an operating channel in response to a utilization metric being above a threshold. The TDM mode may cycle operation between activated and deactivated periods in accordance with a TDM communication pattern.
US10602523B2

A device may receive a request, from a user equipment (UE), to connect to a network. The device may receive antenna information indicating that the UE has a single antenna, and the device may receive device type information indicating a device type of the UE or network resource requirements associated with the UE. The device may obtain network policy information, relating to the UE, based on the antenna information and/or the device type information. The network policy information may indicate one or more policy rules associated with allocating network resources. The device may determine a quantity of network resources to allocate based on the network policy information, and the device may allocate the quantity of network resources for the UE.
US10602519B2

A network node, wireless device and methods for switching between an active and target bandwidth parts. A method in a network node includes selecting one or more resource blocks in the target bandwidth part for a transmission or reception between the wireless device and the network node. The selected resource blocks to be used in the target bandwidth part are indicated in a resource allocation field of a downlink control channel information in the active bandwidth part, the allocation field having information bits. The resource allocation field in the active bandwidth part and the information bits therein are configured based on a target bandwidth part resource allocation type. The target bandwidth part resource allocation type indicates whether the information bits include a bitmap corresponding to one or more resource block groups, or an integer value corresponding to a starting resource block and a length of the allocation in resource blocks.
US10602512B2

Disclosed are a method for transmitting and receiving a frame in a wireless local area network (WLAN) system and an apparatus for the same. A method for generating interference/non-interference station lists includes receiving a first frame from a second station, acquiring a receiver address of the first frame from the first frame, and setting, based on whether to receive a second frame that is a response to the first frame from a third station indicated by the receiver address within a preset time from a time when the first frame has been received, the third station as an interference station or a non-interference station. Therefore, the performance of a communication system may be improved.
US10602508B2

A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines K subsets of a resource pool. Each subset includes K grid elements. Additionally, each grid element includes at least K sub-elements. The apparatus selects one subset of the K subsets of the resource pool. Additionally, the apparatus transmits a message using K sub-elements of the selected subset.
US10602495B2

The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for transmitting, by a user equipment (UE), data in a wireless communication system, the method comprising: receiving a first uplink grant for a logical channel group (LCG) and a first LCG indicator of the LCG; generating a Medium Access Control Protocol Data Unit (MAC PDU) containing a data of only the LCG indicated by the first LCG indicator; and transmitting the MAC PDU using the first uplink grant.
US10602488B2

Aspects of the present disclosure provide hybrid automatic repeat request (HARQ) techniques for enhanced machine type communication (eMTC). In one aspect, a method is provided which may be performed by a wireless device such as a user equipment (UE) for determining a HARQ ID. The method generally includes determining a HARQ ID based, at least in part, on a coverage enhancement (CE) level, and performing a HARQ process timeline based, at least in part, on the determined HARQ ID. Another method is provided for determining a subframe to transmit feedback. The method generally includes determining at least one subframe to transmit a physical uplink control channel (PUCCH) to acknowledge one or more downlink transmissions based, at least in part, on availability of uplink subframes following one or more downlink subframes carrying the downlink transmissions to be acknowledged and transmitting the PUCCH in the determined at least one subframe.
US10602484B2

The present application provides a method for receiving an E-MBMS by a terminal in a wireless communication system. Specifically, the method may comprise the steps of: receiving control information including information related to a first cluster from a serving cell; receiving a first E-MBMS signal in a first sub-frame from the first cluster on the basis of the information related to the first cluster; receiving control information including information related to a second cluster from the serving cell; and receiving a second E-MBMS signal in a second sub-frame from the second cluster on the basis of information related to the second cluster. The control information including the information related to the cluster is transmitted through a physical control channel in every sub-frame.
US10602481B2

Methods and apparatus are provided for paging enhancement for the UE in the LC-MTC mode. In one novel aspect, the UE determines if the UE is in CE mode, obtains a set of narrow-band resource blocks reserved for LC-MTC paging messages and decodes a paging message based on the obtained narrow-band resource blocks. In one embodiment, the paging message occupies a predefined narrow band resource blocks without control information. In another embodiment, MPDCCH is used as control message to schedule narrow-band paging messages. In one embodiment, the MPDCCH searching space comprises a paging narrow-band selected from the set of narrow bands based on a UE ID. In another novel aspect, methods for PO detection are provided. The UE obtains a set of common paging narrow-bands from a higher layer configuration, determines a paging occasion to monitor paging message, decodes paging messages within the obtained common paging narrow-band, and performs combination.
US10602480B2

The present invention discloses a paging method and apparatus, The method includes: obtaining, by a first access network device in a first time period, a first paging parameter group used for paging a terminal device, where the first time period is a time period before the terminal device switches from a connected mode to a light connected mode, and the first access network device is an access network device to which the terminal device is connected last time before the terminal device enters the light connected mode or an idle mode; and generating, by the first access network device, a paging message for the terminal device based on the first paging parameter group, and sending the paging message.
US10602479B1

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An apparatus and method are provided for transmitting/receiving a paging message in a next generation communication system.
US10602478B1

A method and system for controlling application of MU-MIMO. The disclosure provides for considering a device's mobility as a basis to decide whether to provide the device with MU-MIMO service. For instance, a base station could determine which of the base station's served devices are each stationary or moving less than a threshold extent. And on at least that basis, the base station could select each such device to receive MU-MIMO service. Or faced with a choice between devices to receive MU-MIMO service, the base station could compare the devices' speed of movement and could select the devices that have lower speed of movement to receive MU-MIMO service.
US10602472B2

Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to an embodiment of the present invention, a method of a terminal in a wireless mobile communication system comprises the steps of: receiving data network information including data network access permission region information and data network identification information; checking whether the terminal enters a data network access permission region, on the basis of the data network information; and performing a data network access procedure on the basis of the checking result.
US10602468B2

Synchronization of plural outputs of data transported by a wireless network is facilitated by band limiting a sample clock signal controlling a rate at which data is processed by the network's devices and/or band limiting wall time data controlling the real time for presenting a datum.
US10602467B2

Exemplary embodiments provide a method and apparatus for transmitting a synchronization signal for Device-to-Device (D2D) communication in a wireless communication system. The method includes: receiving, at a first UE, a D2D synchronization signal transmitted from a second UE, the D2D synchronization signal comprising a primary D2D synchronization signal (PD2DSS) and a secondary D2D synchronization signal (SD2DSS); determining a root index based on the received PD2DSS; and determining a type of a synchronization source based on the root index. The root index corresponds to an integer value X when the type of synchronization source is associated with D2DSSue_net. The root index corresponds to an integer value Y when the type of synchronization source is associated with D2DSSue_oon. Each of the integer value X and integer value Y is not an element of a set {25, 29, 34}.
US10602454B2

According to one embodiment of the present invention, a method by which a terminal, which is configured so as to support a plurality of cells having one or more transmission time interval (TTI) lengths or subcarrier spacings, controls uplink transmission power in a wireless communication system comprises the steps of: calculating transmission power for uplink transmission; and performing uplink transmission for a specific cell by the calculated transmission power, wherein the calculated transmission power can be allocated up to a maximum transmission power configured for the terminal in a symbol or a TTI of the uplink transmission for a cell different from the specific cell, or in a symbol or a TTI, which does not overlap with a symbol or a TTI of uplink transmission having a different TTI length or a different subcarrier spacing from those of the uplink transmission for the specific cell.
US10602452B2

A method for operating a first device-to-device (D2D) device in a cellular communications system includes receiving geo-location information from a first entity in the cellular communications system, the geo-location information including location information for cellular users of the cellular communications system and resources of the cellular communications system available to the cellular users, selecting one of the resources to avoid causing interference to a cellular transmission, the resource being selected in accordance with the geo-location information, and transmitting to a second D2D device over the selected resource.
US10602445B2

Various examples and schemes pertaining machine-to-machine (M2M) semi-persistent scheduling (SPS) in wireless communications are described. A user equipment (UE) receives a control signal from a network node of a wireless network. The UE applies, based on the control signal, an SPS configuration such that the UE enters one of one or more low-power modes between two adjacent SPS occasions.
US10602444B2

An apparatus includes a wireless transceiver configured to communicate data with a network device. The apparatus also includes a processing device, operatively coupled with the wireless transceiver. The processing device is configured to determine whether a computing device coupled to the apparatus has data to transmit to the network device. The processing device is also configured to transmit a first message indicating that the computing device does not have data to transmit to the other device in response to determining that the computing device does not have data to transmit to the network device. The processing device is further configured to transition the apparatus to a reduced power state. The apparatus uses less power in the reduced power state than in an active state.
US10602426B2

Provided is a method of modifying a data path between a user equipment (UE) and a core network node (CNN) in a wireless communication network. The method comprises the steps of: at a network node handling both signalling messages and user data for an existing data path between said UE and said CNN, obtaining data uniquely associated with a data path resource for said UE and/or uniquely identifying said UE and mapping said data to said existing data path; and modifying said existing data path based on said mapping. The network node handling both signal messaging and user data for an existing data path may comprise a gateway (GW) connecting a source base station (SBS) and a target base station (TBS) to a Mobility Management Entity (MME) of the core network, said GW being configured to handle both user plane data and control plane data for a plurality of UEs. The data uniquely associated with a data path resource for said UE and/or uniquely identifying said UE may be obtained from a Source to Target Transparent Container Information Element (IE) of a Handover Required message issued by the SBS.
US10602424B2

A wireless communication device, comprising radio frequency transceivers which transmit outbound messages to targeted receivers, and receive the inbound messages addressed to the respective transceiver; each having a processor which controls the transceiver to establish communication sessions according to a protocol, and processes targeting and address information. The transceiver communicates with a telephone device having a telephone address book containing information which defines the targets and address for a telephone network and perhaps other networks. The address book entries are human editable through a human machine user interface. The address book entries are intended for centrally controlled switch networks having hierarchically formatted address information, but since these are at least quasi-unique, they are used as address labels in an unswitched peer-to-peer network formed of the transceivers. This permits a common address scheme across the peer-to-peer network and switched network of the telephone device.
US10602417B2

A system described herein improves user equipment (“UE”) access to call and data services provided by a network carrier by updating settings on the UE based device data from the UE. The updates may modify the UE hardware configuration, including activating or deactivating different network radios of the UE, enable or disable different call or data services accessed through the different network radios, and/or modify parameters controlling UE network selection and switching (e.g., handoff). In doing so, the system may improve the user experience when accessing wireless services of the network carrier and resolve quality issues whether due to poor signal strength, congested networks, or excessive network switching.
US10602414B2

Aspects of the subject disclosure may include, for example, receiving video content streams from multiple source mobile devices and identifying that the video content streams pertain to a same event. Additional aspects may include identifying end mobile devices for the video content streams and determining a portion of the end mobile devices are coupled to one communication network and another communication network. Further aspects can include identifying a predicted traffic pattern on the first communication network based on the multiple video content streams pertaining to the same event and that the portion of the multiple end mobile devices are communicatively coupled to the first communication network. Additional aspects may include transmitting a portion of the video content streams across the first communication network and transmitting another portion of the video content streams across the second communication network according to the predicted traffic pattern. Other embodiments are disclosed.
US10602408B2

Example implementations are directed to a method and an apparatus for managing one of a plurality of core networks (CNs) sharing a radio access network (RAN), which may receive a RAN resource allocation control type indicator associated with at least one CN of the plurality of CNs. The RAN resource allocation control type indicator be at least one of: a guaranteed minimum allocation of RAN resources, an absolute allocation of RAN resources, and a percentage-based allocation of RAN resources. The method and apparatus may further include determining a RAN resource allotment parameter for the at least one CN of the plurality of CNs. The RAN resource allotment parameter and an identification of the associated at least one CN may be transmitted to a traffic controller such that the at least one CN is allocated an amount of RAN resources based on the resource allotment value may.
US10602402B1

A method for adjusting packet length is disclosed. A first dynamic reference point currently closest to the mobile device is calculated. A current position of a mobile device is compared with GPS data of the first dynamic reference point to calculate brief GPS data. It is determined whether a second dynamic reference point has been uploaded to the server. It is determined whether the first dynamic reference point is identical to the second dynamic reference point if the second dynamic reference point has been uploaded to the server. The first dynamic reference point is uploaded to the server if the first dynamic reference point is not identical to the second dynamic reference point. The first dynamic reference point is uploaded to the server if the second dynamic reference point has not been uploaded to the server, and the brief GPS data is uploaded to the server.
US10602401B2

A method for performing aggregation at one or more layers starts with an AP placing at a first layer one or more received frames in a queue at the AP. When a transmit scheduler is ready to transmit an aggregated frame corresponding to the queue, the AP may iteratively select a plurality of frames selected from the one or more received frames, and aggregate at the first layer the plurality of frames into the aggregated frame. The number of frames included in an aggregated frame may be based on at least one of: a dynamically updated rate of transmission associated with a size of the frames, a class of the frames, a transmission opportunity value associated with the class of the frames and a total projected airtime for transmitting the aggregated frame. Other embodiments are also described.
US10602396B2

This document discloses a solution for detecting and mitigating anomalies such as signalling storms in a radio access network of a wireless communication system. According to an aspect, there is disclosed a method including receiving, in a first local traffic analysis module, configuration parameters from a second local traffic analysis module or from a central traffic analysis module connected to a plurality of local traffic analysis modules; monitoring, by a first traffic analysis module by using the received configuration parameters, traffic in a radio access network of a wireless communication system; detecting, in the monitored traffic on the basis of the configuration parameters, an anomaly causing a control plane signalling load; and in response to said detecting, taking an action to mitigate the anomaly and reporting information on the anomaly to the central traffic analysis module.
US10602395B2

An RF congestion monitoring system and method is provided. In one or more examples, the RF congestion monitoring system can include a modified aircraft transponder capable of receiving signals associated with Air Traffic Control and Traffic Collision Avoidance Systems, analyzing the received signals to determine the presence on one or more events occurring in the received signals, and generating an event count that identifies the types of signals associated with the events being received. A processor can receive the generated event count and based on the received count can calculate a transponder occupancy percentage metric indicative of the amount of RF congestion in a given air space. In one or more examples, the modified transponder can be configured to receive various radar signals in the 1030 and 1090 MHz frequency signal bands and process those signals to determine the amount of RF congestion in the airspace.
US10602383B1

Computing devices are configured to passively monitor network stacks and protocols for a respective computing device, transmit metadata and statistics gathered by the monitoring to a remote service, and utilize a crowd-sourced heuristic model responsively generated by the remote service to proactively predict connectivity issues and connect to a best available network media and access device for the network media. A computing device's operating system may monitor various networking protocols without the computing device engaging in constant network activities (e.g., video streaming). The statistics obtained from this passive monitoring can be utilized by the remote service using various machine learning techniques to predict when networks will subsequently fail. Profiles are developed and sorted within the model to be used by individual computing devices to seamlessly connect to access devices based on performance, as opposed to connecting to the access device previously utilized by the user.
US10602372B2

In one embodiment, a terminal of a first wireless communication network determines a protection zone for each of a plurality of unintended receivers of a second wireless communication network, where a protection zone defines a geographical area where transmission by the terminal might interfere with operation of a corresponding unintended receive. At the time of an attempted transmission, the terminal determines its current location, and whether the current location is within any protection zone of the plurality of unintended receivers. If not within any protection zone of the plurality of unintended receivers, the terminal performs the transmission, but if so, then the terminal may then perform a local assessment of interference to the one or more unintended receivers. Once concluding that there would be no interference with any of the one or more unintended receivers, the terminal may then perform the transmission. Otherwise, the terminal prevents the transmission.
US10602355B2

A device for accessing a wide area network via a mobile communication network. The device includes a first connection module for connection to the mobile communication network, a second connection module suitable for generating a local network, a data processing module and a subscriber identification card. The data processing module is configured to connect the first and second connection modules via a channel. The subscriber identification card is configured to implement a control module suitable for controlling the use of the channel.
US10602346B2

A method and system for delivering content to a plurality of devices is provided. In one embodiment, the method may be for delivering content elements of one or more presentations to a device configured to communicate via a wireless data network, wherein the content elements include static content elements, dynamic content elements, and on-demand content elements. The method may comprise delivering to the device, data, such as compilation data, of the content elements included in the one or more presentations; delivering the static content elements to the device via the wireless data network during one or more time periods of increased available wireless data network capacity; delivering the dynamic content elements to the device via the wireless data network substantially according to a schedule; and delivering the on-demand content elements to the device via the wireless data network substantially immediately after a user request for an on-demand content element.
US10602335B2

A method includes identifying content displayed by a content presentation system associated with a physical environment. A user device is detected within the physical environment associated with the content presentation system. Responsive to detecting the user device, information, associated with the content, is transmitted to the user device. Responsive to detecting the user device, an identifier corresponding to the content is stored in association with a profile related to the user device.
US10602334B2

Device authentication may be provided. A mobile computing device may read a device ID from a dispensing device (e.g., a beverage dispenser, kiosk, ATM, etc.) wirelessly when the mobile computing device is placed in close proximity to the dispensing device. The mobile computing device may send the device ID along with a user ID to a server in a notification from the mobile computing device. Using the user ID, the server may look up user preferences from a table on the server. User preferences may be sent from the mobile computing device to the server. The server may send the user preferences to the dispensing device that corresponds to the device ID. In response, the dispensing device may display a customized user interface based upon the user preferences.
US10602321B2

A system for receiving multiple conversations or messages and for playing the multiple conversations or messages with a mobile device and wireless earpieces. The system may determine various presentation parameters based on various characteristics of the received messages and may play the messages such that audio appears at distinguishing locations around the user. The system may change how messages and/or conversations are played in response to recognize a change in the focus of the user based on detected user inputs, such as body movement gestures.
US10602304B2

A communication technique of fusing a fifth generation (5G) communication for supporting higher data transmission rate beyond a fourth generation (4G) system with an Internet of things (IoT) technology and a system thereof is provided. The technique may be applied to an intelligent service (smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. A method is provided for effectively managing a registration state for a terminal in a 5G core network such as an access and mobility management function (AMF) in a situation of accessing a 5G network via a non-3rd generation partnership project (3GPP) access.
US10602302B1

A method or apparatus provides binaural sound that originates to a person at a location inside a field of view (FOV) provided to the person by an electronic device. The electronic device determines when the location of the binaural sound moves outside the FOV and assists the person in determining the location of the binaural sound. A display of the electronic device displays a visual indication that shows a direction to the location of the binaural sound outside the FOV.
US10602297B2

The disclosure relates to a processing multi-channel audio signals, an example embodiment including a method of processing a multi-channel audio signal, the method comprising: determining a location of sound sources (101, 102) within the signal; applying a rotation operation to the signal, a direction of the rotation operation dependent on the location of the sound sources in the signal; and generating a rotated audio signal.
US10602296B2

Phase effect interference is determined at a listening location between signals from at least two audio objects; and a modified position is computed for at least one of the audio objects such that the determined phase effect interference at the listening location is altered as a result of the modified position. For each audio object for which the position is modified at least phase of at least one frequency component of the respective signal is adjusted in correspondence with the modified position so as to eliminate the determined phase effect interference. The signals from the at least two audio objects are formed after this adjusting; and then the formed signals are provided to a sound system comprising multiple audio transducers so as to render the formed signals at the listening position where the phase effect interference is eliminated during rendering.
US10602294B2

An audio processing system and method which calculates, based on spatial metadata of the audio object, a panning coefficient for each of the audio objects in relation to each of a plurality of predefined channel coverage zones. Converts the audio signal into submixes in relation to the predefined channel coverage zones based on the calculated panning coefficients and the audio objects. Each of the submixes indicating a sum of components of the plurality of the audio objects in relation to one of the predefined channel coverage zones. Generating a submix gain by applying an audio processing to each of the submix and controls an object gain applied to each of the audio objects. The object gain being as a function of the panning coefficients for each of the audio objects and the submix gains in relation to each of the predefined channel coverage zones.
US10602289B2

In one aspect, the disclosure provides an apparatus that includes an acoustic transducer, and a backing coupled to the transducer, wherein the backing includes solid grains with fluid between the grains.
US10602285B2

A method includes receiving a new hearing aid profile generating instruction, generating a new hearing aid profile corresponding to each of a plurality of hearing aid users in response to receiving the new hearing aid profile, and providing the new hearing aid profile to a computing device associated with the hearing aid users.
US10602277B2

The present disclosure provides an acoustic device, including a frame, a vibration system fixed to the frame, a magnetic circuit system configured to drive the vibration system to vibrate and produce a sound, and a magnetic frame sealing cap configured to fix the magnetic circuit system to the frame, where the magnetic circuit system includes a magnetic yoke and a magnet fixed to the magnetic yoke, the magnetic frame sealing cap includes a bottom wall and a side wall that is in a ring shape and is bent and extends from a periphery of the bottom wall, the magnetic yoke is fixed to the bottom wall, and the side wall is fixed to the frame. Compared with the related art, the acoustic performance of the acoustic device of the present disclosure is optimal.
US10602275B2

Enhancing audio content based on application of different gains to different frequency bands of an audio signal is disclosed. Audio information contained in an input signal can undergo beamforming to provide an initial adjustment to the audio information, e.g., noise reduction, etc. In an embodiment beamforming can comprise double-beamforming in which first audio information is adjusted based on second audio information and the second audio information is adjusted based on the first audio information. Different gains can be applied to content in determined frequency bands, resulting in an amplified signal. In some embodiments, the gains can be related to hearing sensitivity of a listener, e.g., via a hearing sensitivity model. The amplified audio information from each frequency band can then be recombined. The recombined signal can be level limited and subjected to further digital and analog gains. The resulting output, e.g., enhanced audio, can be individually adapted for a listener.
US10602274B2

Provided is a wearable audio input/output device. The wearable audio input/output device is provided with a frame, a first audio collection unit, a second audio collection unit, and a first speaker. The frame can be mounted to a user. The first audio collection unit is provided on the frame. The second audio collection unit is provided on the frame. The second audio collection unit is arranged such that the distance between the first audio collection unit and mouth of the user is less than the distance between the second audio collection unit and the mouth of the user. The first speaker is provided on the frame between the first audio collection unit and the second audio collection unit.
US10602250B2

The disclosure is related to materials that includes phase change materials. The materials are suitable for use in acoustical devices such as headphones.
US10602244B2

A network-based sensing system for monitoring an object is disclosed. The system includes a sensor, attached to the object, that collects object information, a first wireless access point that operates in a first private network covering a first private region, and at least one cellular base station that operates in a public network outside of the first private region. The sensor includes functionality to detect a location of the sensor in a location detection period and to determine a type of network coverage of the sensor. The sensor establishes connection with the first wireless access point via a first private network for transmitting the object information, when the sensor is covered by the first private network, and with the at least one cellular base station via a public cellular network for transmitting the object information, when the sensor is covered by only the public cellular network.
US10602243B2

A method of monitoring biometric data for an individual includes detecting that the individual has moved within a predetermined range of a fixed display device. The method further includes wirelessly receiving a sensed biometric parameter of the individual at a receiver associated with the fixed display device. After determining that the individual has moved within the predetermined range and that the sensed biometric parameter is an authorized parameter for display based on a user profile of the individual, the sensed biometric parameter is displayed on the fixed display device. The method further includes detecting that the individual has moved outside of the predetermined range, and removing the sensed biometric parameter from the fixed display device.
US10602229B2

An apparatus, method and computer-readable medium provide control of set top box volume based on mobile device events. The apparatus may execute a process that includes controlling a volume setting of an audio amplifier to output audio content to the one or more audio or audio/visual devices. A connection event signal from a mobile device is received via a wireless radio frequency receiver. The connection event signal indicates a call state of the mobile device. In response to receiving the connection event signal, a received signal strength indication associated with the connection event signal obtained. A volume setting that corresponds to the obtained received signal strength indication is determined. The volume setting output to the audio amplifier is adjusted according to the determined volume setting.
US10602223B2

Apparatus, systems, and articles of manufacture are disclosed to categorize audience members by age. An example system includes a processor to execute instructions to: generate, an age-correction model by: at an initial node, splitting audience member records into child nodes based on an initial attribute-value pair; at the child nodes: calculating an effective quantity of audience member records based on the weight assigned to the corresponding child node; when the effective quantity of audience member records satisfies a minimum leaf size, splitting the corresponding child node into additional ones of the child nodes based on a corresponding child node attribute-value pair; and when the effective quantity of audience member records does not satisfy the minimum leaf size, designating the corresponding child node as a terminal node; and correct, based on the age-correction model, an age characteristic associated with a media impression.
US10602220B2

The present invention relates to an encoding device and a method, a decoding device and a method, an editing device and a method, a storage medium, and a program which can perform encoding and decoding so that buffer failure does not occur. Information, such as a minimum bit rate, a minimum buffer size, and a minimum initial delay time, is contained in a random access point header contained in an accessible point in a bitstream. A bitstream analyzing unit 72 analyzes an input bitstream, sets the above-mentioned information, and outputs the resulting information to a buffer-information adding unit 73. The buffer-information adding unit 73 adds the input information to the input bitstream and outputs the resulting bitstream. The present invention is applicable to an encoding device and a decoding device which process bitstreams.
US10602211B2

A method includes displaying content on a television, detecting a personal display device in proximity of the television, detecting a selection of content displayed on the television, detecting an instruction associated with the selection, displaying, based on the instruction, information associated with the selection on the personal display device and displaying on the television an alert indicating that the information associated with the selection is on the personal display device.
US10602208B2

Social media inputs from users, and specific to a content of a broadcast program, are analyzed to determine a sentiment value expressed relative to a portion of the content by a user. A group is formed of those users whose sentiment values expressed relative to the portion within a defined period during the broadcast of the program are within a specified tolerance value of sentiment value expressed by the user. A time zone of a location extracted from a social media input of the user is assigned to the group. A fabricated event that evokes a predicted sentiment is inserted in the broadcast program. A confidence value for the time zone is computed by comparing a sentiment value of a response by the group to the fabricated event with the predicted sentiment value. The group's placement in the time zone is confirmed when the confidence value exceeds a threshold.
US10602188B2

Provided are image encoding and decoding methods and apparatuses using weighted bi-prediction. The image decoding method and apparatus according to one embodiment obtain one or more prefixes including a first counter value indicating the number of additional syntax elements subsequent to main syntax elements from a received bitstream, obtain the additional syntax elements including weight information and information about whether to perform weighted bi-prediction on prediction units separated for predicting a current block, based on the one or more prefixes, and generate a prediction block including a prediction value, based on the main syntax elements and the additional syntax elements.
US10602184B2

An image coding method includes: writing, into a coded bitstream, buffer description defining information for defining a buffer description; constructing a default reference list; reorder pictures included in the default reference list; writing, into the coded bitstream, reference list reordering information for indicating details of the reordering; and coding an image using the buffer description and a reference list resulting from the reordering, and in the reference list reordering information, among the pictures, a picture to be reordered is specified using an index which is used in other processing in the image coding method.
US10602177B1

A frame rate up-conversion (FRC) apparatus and an operation method thereof are provided. A motion vector (MV) generation circuit provides an MV of a current pixel of an interpolation frame. According to the MV, a data fetch circuit fetches first original data of a first pixel in a first original frame and second original data of a second pixel in a second original frame. According to a position of the first pixel in the first original frame and a position of the second pixel in the second original frame, a boundary processing circuit processes the first original data and the second original data to generate first processed data and second processed data. An interpolation frame generating circuit generates pixel data of the current pixel of the interpolation frame according to the first processed data and the second processed data.
US10602171B2

A video decoder may perform, based on an operation mode, at least one of a first decoding operation to restore a first bin value based on a first context value, a second decoding operation to restore a second bin value based on an updated first context value or a second context value, a third decoding operation to restore a third bin value based on the updated first context value or a third context value, and a fourth decoding operation to restore at least one bypass bin value without a context value. Based on the operation mode, the video decoder may output the first bin value, the at least one bypass bin value, the first bin value and the at least one bypass bin value, the first bin value and one of the second and third bin values, or at least one of the first, second, and third bin values.
US10602162B2

Techniques for selecting a coding mode for an image coding process are described. Coding modes can be selected through a coding mode transition state machine, a re-quantization process, selection of an optimal transform size, by skipping some quantization parameters, or by performing motion search.
US10602161B2

A method for decoding a multilayer video signal, according to the present invention, is characterized by: selecting, from a corresponding picture of at least one reference layer, a candidate reference picture of a current picture by using sublayer number information relating to the reference layer and a temporal ID of the current picture belonging to a current layer, determining the number of active references for a current picture based on the number of the candidate reference picture, acquiring a reference layer Identifier (ID) based on the determined number of active references, determining an active reference picture for the current picture using the reference layer ID, generating a reference picture list for the current picture, the reference picture list including a temporal reference picture and the active reference picture, and performing inter-layer prediction for the current picture based on the reference picture list.
US10602160B2

The present invention relates to an image information decoding method. The decoding method includes receiving a bit stream including a Network Abstraction Layer (NAL) unit that includes information related to encoded image, and parsing a NAL unit header of the NAL unit. The NAL unit header may not include 1 bit flag information that represents whether a picture is a non-reference picture or a reference picture in the entire bit stream during encoding.
US10602158B2

A method and apparatus to maximize video slice size is described herein. The method packs as many macroblocks as possible within a capped-size slice, while preserving user-defined quality constraints. The probability to conform to the maximum slice size constraint may be adjusted according to a user-defined parameter. The method may be integrated into a rate control process of a video encoder. The method predicts whether encoding a macroblock with a quantization parameter exceeds a current slice size constraint. It further predicts whether encoding a given number of macroblocks with a given configuration of quantization parameters exceeds the current slice size constraint. The method then proceeds to encode the current macroblock either on a condition that encoding the given number of macroblocks with the given configuration of quantization parameters falls below the size constraint of the current slice or after determining that a new slice is needed.
US10602154B2

A system for adapting various writing speeds of storage devices and methods for making and using same are provided. A recording device maintains a data buffer with a buffer size. Data recorded by the recording device with a selected recording bitrate is stored into the data buffer of the recording device. The recorded data is written from the data buffer into a selected storage device that is attached onto the recording device. An amount of recorded data stored in the data buffer is compared with two or more sets of thresholds, and the recording bitrate of the recording device can be adjusted, as needed, in response to the results of the comparison. By adjusting the recording bitrate, the recording device advantageously can accommodate storage devices with various speeds while maintaining the quality of the recorded data and maximizing the capacity of the storage device.
US10602152B2

Adaptive video processing for a target display panel may be implemented in or by a server/encoding pipeline. The adaptive video processing methods may obtain and take into account video content and display panel-specific information including display characteristics and environmental conditions (e.g., ambient lighting and viewer location) when processing and encoding video content to be streamed to the target display panel in an ambient setting or environment. The server-side adaptive video processing methods may use this information to adjust one or more video processing functions as applied to the video data to generate video content in the color gamut and dynamic range of the target display panel that is adapted to the display panel characteristics and ambient viewing conditions.
US10602147B2

A system and method of forming entropy coding groups in an entropy encoder operating in a transform mode includes receiving a block of a first number of quantized transform coefficients as a current block of sample values and evaluating the current block of sample values using one or more grouping factors. In response to a determination that the current block meets a first grouping condition, a first grouping method is selected where the first grouping method forms a first entropy coding group with one sample value of a DC transform coefficient. In response to a determination that the current block meets a second grouping condition, a second grouping method is selected where the second grouping method forms a first entropy coding group with at least two sample values, one of the sample values being the DC transform coefficient.
US10602137B2

A method for decoding a multi-layer video signal, according to the present invention, determines whether a corresponding picture in a lower layer is used as an inter-layer reference picture for a current picture in an upper layer, on the basis of a time level identifier of the lower layer, and restrictively performs inter-layer prediction for the current picture on the basis of a tile boundary alignment flag indicating whether tile alignment is performed between the upper layer and the lower layer if the corresponding picture in the lower layer is used as the inter-layer reference picture for the current picture in the upper layer.
US10602126B2

Described are digital camera devices for 3D Imaging. Embodiments of the invention capture and process sensory data including image data to produce 3D content and generate depth information. Digital camera devices improve upon existing camera devices by implementing dynamic calibration processes that improve the quality of image capture and image projection. In some embodiments the digital camera devices include an imaging system for performing computer vision tasks including scene reconstruction, event detection, video tracking, object recognition, 3D pose estimation, learning, indexing, motion estimation, object tracking, facial recognition, object counting, 3D imaging, image enhancement and image restoration.
US10602118B2

A method for generating encoded depth data includes receiving digital fringe projection (DFP) data corresponding to a three-dimensional structure of a physical object, and generating first and second fringe encodings for a first predetermined wavelength based on the DFP data at a first coordinate. The method further includes generating third and fourth fringe encodings for a second predetermined wavelength based on the DFP data at the first coordinate, the second wavelength being longer than the first wavelength, and generating a combined fringe encoding based on the third fringe encoding and the fourth fringe encoding. The method further includes storing the first, second, and combined fringe encoding data in a pixel of two-dimensional image data at a pixel coordinate in the two-dimensional image data corresponding to the first coordinate.
US10602116B2

There is provided an information processing device, an information processing method, and a program capable of suppressing a user's uncomfortable feeling while reducing the burden on the user, the information processing device including: a first display control unit configured to perform first control with respect to a position of a display object in a depth direction, the position being perceived by a user on a basis of an eye movement; and a second display control unit configured to perform second control with respect to a state of the display object, the state not including the position in the depth direction as a state. The first display control unit and the second display control unit perform control based on a first relation in a first range in the depth direction, and perform control based on a second relation in a second range in the depth direction, the second relation being different from the first relation, the second range being different from the first range.
US10602112B2

An image processing apparatus 100 includes: an analysis range indicating section 23 that indicates an analysis range that is a range, on a screen of captured-image data, that has a brightness higher than a predetermined brightness; a color analysis section 24 that analyzes a color included in the analysis range; a color correction instructing section 25 that gives an instruction to perform a color correction, on the basis of the color analysis; and an image generator 50 that corrects the captured-image data on the basis of the color correction instruction, so as to generate a corrected image.
US10602103B2

The disclosure provides a wavelength conversion wheel including a substrate, a first wavelength conversion layer, and a second wavelength conversion layer. The substrate has a rotation central axis. The first wavelength conversion layer is disposed on the substrate and has a first end. The second wavelength conversion layer is disposed on the substrate and has a second end. The second end is closely adjacent to the first end. An edge of the first end and an edge of the second end are complementary in shape, and a boundary formed between the edge of the first end and the edge of the second end is not parallel to a radial direction of the substrate, wherein the radial direction is perpendicular to an extension direction of the rotation central axis. A projection apparatus using the wavelength conversion wheel is further provided.
US10602100B2

Image display apparatus and methods may use a single imaging element such as a digital mirror device (DMD) to spatially modulate plural color channels. A color channel may include a light steering element such as a phase modulator. Steered light from a light steering element may be combined with or replaced by additional light to better display bright images. These technologies may be provided together or applied individually.
US10602094B1

A top-level service executes a procedure call to at least one dependent service to determine an entitlement result for a user device making a request of the top-level service. A processing device generates an entitlement token comprising the entitlement result, encrypts the entitlement token and sends the entitlement token to the user device. The user device can return the entitlement token when making additional requests of the top-level service to prevent the top-level service from having to make additional procedure calls to the at least one dependent service.
US10602091B2

Disclosed are a method of learning relationship among characters in video call or its background, temporal and spatial information, and visual objects and automatically recommending and providing a visual object using the relationship, and a system configured to execute the method. A method of providing video call may include: storing a visual object selection model including relation information between at least one visual object and at least one selection factor, by a video call providing system; and automatically determining, by the video call providing system, a recommended visual object to be displayed on at least one of a terminal and a counterpart terminal of the terminal performing video call, at a point of time specified for displaying a visual object, based on the visual object selection model.
US10602089B2

A method of acquiring information about content includes the operations of receiving a video signal from an external apparatus connected to an image display apparatus, extracting an object included in an on screen display (OSD) image from an image that is produced using the video signal, and collecting the information about content by using the extracted object.
US10602086B2

A method of operating a three-dimensional image sensor may include: obtaining position information of an object using light emitted by a light source module, the three-dimensional image sensor including the light source module having a light source and a lens; and adjusting a relative position of the light source to the lens based on the obtained position information of the object. A method of operating an image sensor may include: obtaining position information of an object using light emitted by a light source module, the image sensor including the light source module; and adjusting an emission angle of the light emitted by the light source module based on the obtained position information.
US10602085B2

The present disclosure is related to an imaging device, an imaging system, and a moving body. The imaging device according to an exemplary embodiment includes: a plurality of pixels and a connection transistor. Each of the plurality of pixels includes a photoelectric conversion unit, an amplification transistor that outputs a signal based on an electric charge generated in the photoelectric conversion unit, and a selection transistor that connects a source of the amplification transistor and an output line. The connection transistor includes two nodes, a conducting state between the two nodes being controlled by a signal supplied to a gate of the connection transistor. One of the two nodes is connected to the source of the amplification transistor of a first pixel included in the plurality of pixels. The other is connected to the source of the amplification transistor of a second pixel included in the plurality of pixels.
US10602083B2

In an image sensor, some pixels in an array contain a sampling circuit to sample the light intensity and a capacitor to store an analog value representing the intensity at that pixel. Alternatively, a group of pixel circuits will be equipped with such sampling and capacitor circuits. This allows simple redundancy-reducing computations with a relatively simple pixel architecture.
US10602066B2

Provided are an imaging device, an imaging method, a program, and a non-transitory recording medium which simultaneously image a plurality of images having different imaging characteristics, and detect blurring of the plurality of images. Image signals having imaging characteristics different from each other are simultaneously obtained by an imaging unit including an imaging optical system constituted by a first optical system and a second optical system which are provided in different regions and have imaging characteristics different from each other and a directional sensor, true movement vectors are extracted from movement vectors detected from the image signals and degrees of certainty thereof, and blurring of an image resulting from a shake of the imaging unit is detected from the true movement vectors.
US10602054B2

A method to record video with a video camera while respecting bystander privacy includes acquiring sensory data separate from the video, parsing the sensory data for evidence of a human being in a field of view of the video camera, and recording video with the video camera if no human being is detected in the field of view, based upon the sensory data.
US10602040B2

A wastewater monitoring system uses a camera in a fixed location in a wastewater pipe. The camera is coupled to a sensor that measures some characteristic of material in the wastewater pipe. The sensor is programmed with one or more alarms that, when triggered, cause the sensor to wake up the camera and command the camera to take one or more photos. Sensor data, such as current time/date, location, and the characteristics of material in the wastewater pipe, is sent by the sensor to the camera, which overlays one or more photos with visible text information corresponding to the received sensor data. The sensor can wake up the camera and command the camera to turn on the camera's Wi-Fi interface, which allows a wastewater control system in a remote location to communicate directly with the camera.
US10602032B2

A method of correcting image distortion of an optical device in a display device and a display device are provided. The method includes: generating a plurality of pre-distorted images having different correcting values based on a same reference image; inputting each of the pre-distorted images into the optical device respectively to generate a plurality of display images in one-to-one correspondence to the plurality of pre-distorted images; comparing each of the display images with the reference image respectively, to obtain a display image having a distortion value smaller than a first threshold with respect to the reference image, and determining a correcting value of a pre-distorted image corresponding to this display image as a distortion value of the display device; and correcting the image distortion of the optical device depending on the distortion value of the optical device.
US10602030B2

Syncing a personal device to a timecode generator can include acquiring media data with a personal device, receiving, using a timecode module, timecode data over an RF network, transmitting a timecode package including the timecode data to the personal device, decoding the timecode package to obtain the timecode data, and embedding the timecode data into a media stream including the acquired media data.
US10602027B2

For the mapping in a non-linear color space of source colors belonging to a same constant-hue leaf, instead of using a lightness mapping function based only on a cusp lightness condition stating that a source cusp color of this leaf should be mapped into a corresponding target cusp color of this leaf, it is proposed to build such a function also on other source cusp color(s) and other target cusp color(s) having hues different from that of said leaf. Preferably, the hue interval in which these other colors are considered is representative of the curvature of the non-linear color space at the position of colors of this constant-hue leaf.
US10602022B2

Equipment includes: a user authentication unit configured to perform a user authentication process based on authentication information stored in a storage medium; a usage registration unit configured to register a request for using the authentication information, the request being transmitted from an application; a storage controller configured to store the authentication information acquired from the storage medium in a storage unit; and a notifier configured to send the authentication information stored in the storage unit to the application, regarding which the request is registered.
US10602016B2

Ability information about an authentication printing function to be transmitted from a printing apparatus to a print client is varied depending on whether a communication path between the apparatuses is encrypted.
US10602013B2

A reading module of the present disclosure is provided with a light source, an optical system, and a sensor. The optical system images, as reading light, reflected light of light radiated from the light source to an illumination object. The sensor converts the reading light imaged by the optical system into an electric signal. The optical system is provided with a mirror array in which a plurality of reflection mirrors are disposed in an array in a prescribed direction and a plurality of aperture stop portions that adjust an amount of the reading light. Each of the reflection mirrors is disposed at a prescribed distance from an adjacent one of the reflection mirrors in a prescribed direction.
US10602003B2

A method for calibrating a multi-function printing (MFP) device includes printing a calibration target image on a first side of a print medium from at least one print medium source with a printing device of the MFP device. The calibration target image includes at least one fiducial. The method includes scanning the first side of the print medium comprising the calibration target image with a scanning device of the MFP device to create a first scanned image, identifying at least one edge of the print medium via a background pattern to determine a number of scan measurements, identifying at least one position of the at least one fiducial within the calibration target image, and calculating a calibration target error based on the at least one fiducial and the scan measurements.
US10602000B2

Apparatus and methods for policy decisions regarding a service data flow enabled for service chaining. One embodiment comprises a policy control element configured to make policy decisions for a session. The policy control element communicates with an offline charging system. The policy control element detects a new service added to the service chain implemented for the service data flow, and transmits a charging rules request to the offline charging system responsive to detecting the new service being added to the service chain. The policy control element receives a response from the offline charging system that includes offline charging rules that are mapped to the new service of the service chain, makes a policy decision for the service data flow based on the offline charging rules, and transmits the policy decision to a policy enforcement element.
US10601998B2

Audio systems and methods are provided to reduce echo content in an audio signal. The systems and methods receive an audio signal and sound stage rendering parameter(s), and select a set of filter coefficients to filter the audio signal to provide an estimated echo signal. The estimated echo signal is subtracted from a microphone signal to provide an output signal with reduced echo content. The set of filter coefficients are selected based upon the sound stage rendering parameter(s) from among a plurality of stored sets of filter coefficients.
US10601995B2

Apparatus and methods consistent with the present disclosure route electronic communications to an appropriate resource that can efficiently and effectively provide responses to inquires included in or that are associated with a particular electronic communication. Methods and apparatus consistent with the present disclosure may be optimized for various different types of communication mediums with different sets of capabilities, requirements, or constraints by evaluating data that may be associated with historical information or with a stream of information.
US10601991B1

The present invention allows a CEC system to automatedly, and without human intervention, identify interactions that are likely in need of supervisor intervention. The system reviews all incoming and outgoing interactions for analysis by a metadata analytics service (MAS) software module. The MAS analyzes the interactions to generate interaction metadata, which is used by an interaction analysis engine (IAE) to score the quality of the interaction. If the quality of the interaction is not sufficient, the system marks the interaction as being a problem interaction and notifies a supervisor of the interaction. This ensures the intelligent and dynamic determination of interactions that require additional assistance and assures notification to a supervisor.
US10601984B2

A system for detecting three-way calls in a monitored telephone conversation includes a speech recognition processor that transcribes the monitored telephone conversation and associates characteristics of the monitored telephone conversation with a transcript thereof, a database to store the transcript and the characteristics associated therewith, and a three-way Call detection processor to analyze the characteristics of the conversation and to detect therefrom the addition of one or more parties to the conversation. The system preferably includes at least one domain-specific language model that the speech recognition processor utilizes to transcribe the conversation. The system may operate in real-time or on previously recorded conversations. A query and retrieval system may be used to retrieve and review call records from the database.
US10601974B2

The invention relates to a replaceable adaptor for attaching a headset device to a helmet, which comprises: (a) a lower portion at a lower level having a shape suitable to be accommodated within a helmet cavity at the helmet; and (b) an adaptor cavity which is adapted to accommodate said headset device; wherein when a need is arisen to attach another headset having a different shape or dimensions to a same helmet, or when a need is arisen to replace the helmet by another helmet having a cavity of different shape or dimensions, said adaptor is replaced accordingly.
US10601961B2

In one example, a service function forwarder of a service function chain enabled domain receives, from a classifier of the service function chain enabled domain, network traffic assigned to a service function path that includes at least one service node configured to apply a service function to the network traffic. The service function forwarder forwards the network traffic along the service function path. The service function forwarder receives, from the at least one service node, instructions for dynamically assigning a particular service function path to predicted network traffic that the at least one service node predicts will be triggered by the network traffic. The service function forwarder forwards the instructions to the classifier.
US10601957B2

A device may receive a request for a mobile device to obtain an application. The request may include a mobile device identifier for the mobile device. The device may send, to the mobile device, a link to a web page. The device may receive, from the mobile device, a request for the web page. The device may send, to the mobile device, a redirect to a software distribution platform to obtain the application from the software distribution platform. The device may receive a registration identifier for the mobile device after the mobile device obtains the application from the software distribution platform. The device may send, to a message server, a request for a message to be sent to the mobile device. The request may be based on the registration identifier and the application.
US10601956B2

Presented herein are methods associated with a Services Delivery Platform (SDP) architecture for a distributed application building blocks, such as microservices, deployment-agnostic. The system includes a central compute node and numerous remote compute nodes. Techniques are provided to “onboard” and assimilate the capabilities of remote compute nodes so that they are an integrated part of the SDP system and can be accessed and used in connection with one or more services provided by the SDP system.
US10601955B2

An automated method for distributed and redundant firmware evaluation involves using a first interface that is provided by system firmware of a client device to obtain, at an evaluation server, a first firmware resource table (FRT) from the client device. The evaluation server also uses a second interface that is provided by a component of the client device other than the system firmware to obtain a second FRT from the client device. The evaluation server automatically uses the first and second FRTs to identify a trustworthy FRT among the first and second FRTs. The evaluation server automatically uses the trustworthy FRT to determine whether the client device should be updated. For instance, the evaluation server may automatically use the trustworthy FRT to determine whether firmware in the client device should be updated. Other embodiments are described and claimed.
US10601954B2

A web service request is received, and a stored performance metric value, generated for other web service requests of the same type, is compared to a threshold value. If the stored performance metric value meets the threshold value, then the received web service request is routed to a sandboxed instance of the web service for execution. If the stored performance metric value does not meet the threshold value then the received web service request is routed to a default web service instance for execution. In either case, the performance metric is monitored during execution of the received web service request, and the stored performance metric value is updated based upon the monitored performance metric generated for the received web service request.
US10601951B2

A method for managing applications configured for execution on a mobile device is provided. The method includes receiving one or more network access requests from one or more applications executing on the mobile device, determining that the mobile device is operating in a background mode, suppressing transmission to a network of the one or more network access requests based on the determination, and transmitting a subset of the one or more network access requests upon transition out of the background mode.
US10601947B2

Some embodiments include a method of operating an avatar server. The method can include implementing an application service avatar in an avatar server that has at least an intermittent network access to an application service server for providing an application service to client applications. The avatar server can establish a service group by maintaining profiles of one or more end-user devices connected to the avatar server to access the application service. The avatar server can provide a localized application service by emulating at least a subset of functionalities provided by the application service to the end-user devices, for example, by locally processing, at least partially, a service request from at least one of the end-user devices at the avatar server. The avatar server can asynchronously communicate with the application service server to complete the service request.
US10601937B2

Various embodiments relate generally to data science and data analysis, computer software and systems, and control systems to provide a platform to facilitate implementation of an interface, and, more specifically, to a computing and data storage platform that implements specialized logic to predict an action based on content in electronic messages, at least one action being a responsive electronic message. In some examples, a method may include receiving data representing an electronic message with an electronic messaging account, identifying one or more component characteristics associated with one or more components of the electronic message, characterizing the electronic message based on the one or more component characteristics to classify the electronic message for a response as a classified message, causing a computing device to perform an action to facilitate the response to the classified message, and the like.
US10601936B2

A server, a client, a control method, and a non-transitory computer-readable medium that can promote social interactions of users attending a specific event. The server includes a communication unit configured to receive a profile of a user or an interest signal indicating interest in a specific event along with identification information of the user from a client; an accumulation unit configured to accumulate the profile of the user in association with the identification information of the user; and a control unit configured to control the identification information to be stored in the accumulation unit in association with the specific event according to the interest signal, to search for a user having a profile similar to the received profile based on the identification information and create a group users of similar interests, and transmit information of the created group to the client before an opening of the specific event.
US10601932B2

Network and/or application resources can be dynamically instantiated based on service attributes and/or network capabilities. In one aspect, a customized and/or localized core slice can be selected that can deliver the requested service with target performance parameters. According to an aspect, dynamic selection, control, and/or management reporting can be provided for core network slices. Moreover, optimal core network slice selection can be performed to reduce network transport costs and efficiently deliver various services using an optimal core slice that matches a service profile being requested by an end user and/or device.
US10601931B2

Systems and methods for allowing separate parties to identify each other through the use of matching computer-coordinated identifiers are discussed. In some cases, the methods include using a processor of a computer system to identify a first computer device configured to provide a first perceptible identifier, using the processor to identify a second computer device that is configured to provide a second perceptible identifier, and using the processor to send the first perceptible identifier to the first computer device and the second perceptible identifier to the second computer device, wherein the first and second perceptible identifiers correspond with each other to provide a two-sided, computer-coordinated verification. In some cases, the described methods include modifying the first and second identifiers as the first and second computer devices come into proximity with each other. Other implementations are discussed.
US10601927B1

Certain aspects of the present disclosure relate to a technique for configuring context aware sessions. A first session is provided using a first communication channel Contextual information of the first session is used to provide a second session using a second communication channel, wherein the second session is associated with the first session.
US10601923B2

Offline messaging between a repository storage operation cell and one or more mobile/remote storage operation cells is disclosed. The repository cell is managed by a repository storage manager that communicates to and from the remote cell via a specially-configured media agent. The illustrative intermediary media agent is configured to: queue messages directed to the remote cell, process them according to applicable parameters (e.g., time-to-live constraints, updates, cancellations, etc.), and transmit the processed messages to the remote cell when connectivity is available. The intermediary media agent also relays messages from the remote cell to the repository, including responses by the remote to the processed messages received from the repository via the intermediary media agent.
US10601922B2

An information processing apparatus coupled to a storage device that stores object data including pieces of data, the information processing apparatus including a memory and a processor configured to execute a process including measuring a first acquisition time to acquire data that satisfy an acquisition condition from the storage device on an object-by-object basis, measuring a second acquisition time to acquire the data on a session-by-session basis, determining whether to acquire the data that satisfy the acquisition condition with an object-based acquisition that acquire the data on the object-by-object basis, or with a session-based acquisition that acquire the data on the session-by-session basis based on the first acquisition time and the second acquisition time, and upon a reception of a data acquisition request including the acquisition condition, acquiring the data that satisfy the acquisition condition on from the storage device in accordance with a result of the determining.
US10601911B2

An example operation may include one or more of identifying partitions associated with a blockchain, identifying a new transaction to be committed to the blockchain, determining a partition code assigned to the new transaction, and committing the new transaction to one of the partitions associated with the partition code.
US10601906B2

A method to load balance via a load balancing node in a virtual network environment, the method including: receiving a request packet from a client through a router; selecting, via a load balancer of the load balancing node, a backend virtual machine server to receive the received request packet; generating, via a virtual switch of the load balancing node, a packet for virtual networking by overlaying information for transmitting the received request packet to the selected backend virtual machine server through a virtual network to the received request packet; and transmitting the generated packet for virtual networking to a hypervisor node including the selected backend virtual machine server.
US10601905B2

A processing device in a system can allocate builds to execute jobs across servers in a distributed server environment such as a continuous integration (CI) or continuous deployment (CD) server environment, determine workload patterns, and store a workload pattern vector including a resource usage pattern for the builds and the servers. The processing device can provide an interface that allows a user to switch priorities of user-owned builds in server environments, even after execution of the jobs has begun. The user's ability to prioritize or reprioritize builds is limited to user-prioritizable builds as determined based on the resource usage patterns of the builds running the jobs. The user can thus prioritize some user-owned builds without adversely affecting builds of other users.
US10601903B2

Embodiments for optimizing dynamic resource allocations in a disaggregated computing environment. A data heat map associated with a data access pattern of data elements associated with a workload is constructed. A locality of the data elements associated with the workload within the disaggregated computing environment is determined using the data heat map. Particular resources within pools of resources are assigned to a dynamically constructed disaggregated system in real-time based upon the locality of the data elements in relation to other ones of the resources within the pools of resources such that the dynamically constructed disaggregated system executes the workload using an optimized set of the particular resources.
US10601894B1

Minimizing bandwidth consumption in rendering dynamic content, such as video streaming. Traditional streaming video applications utilize lossy protocols that often result in degraded user experiences. A dynamic content encoder/decoder allows a server-based browser application to generate vector-based rendering instructions for processing by a client-based browser application. Additionally, as the dynamic content changes the content to be displayed, a server-based browser application generates updated vector-based instructions and encoded spatial and temporal differences to minimize the data transmitted to the client-based browser.
US10601892B2

A method, system, and computer program product for operating a collaborative bookmarking system (CBS). A request is received from a client for a universal resource locator (URL) associated with an identifier, wherein the URL and the identifier make up a bookmark which has been previously shared with a community by a user. An alternative candidate URL for the requested URL is located, wherein the alternative candidate URL has previously been suggested to the CBS by the user as a replacement for an original URL. Client validation, by the client, of the alternative candidate URL is requested and received. The validated alternative candidate URL is associated with the identifier as part of the bookmark in place of the requested URL.
US10601891B2

A cloud streaming service system, a cloud streaming service method using an optimal GPU, and an apparatus for the same are disclosed. A cloud streaming service can be provided by determining whether a video is played on a browser, when a playback of the video is sensed, decoding the video by using a video decoding entity determined on the basis of system resource conditions, and performing a streaming procedure corresponding to capturing, encoding and sending the decoded video. When a video is provided through the cloud streaming service, it is possible to effectively use the resources of a cloud streaming system by efficiently distributing a plurality of GPUs equipped in the cloud streaming system.
US10601889B1

An apparatus comprising an interface and a processor. The interface may (a) receive a panoramic video, (b) present a plurality of encoded target areas to a network and (c) present a downscaled panoramic video to the network. The processor may (a) generate target areas by cropping sections of the panoramic video, (b) encode each of the target areas using first parameters and (c) use second parameters to encode the downscaled panoramic video. Encoding using the first parameters generates a different bitrate than using the second parameters. The target areas cover an entire field of view of the panoramic video. Each of the target areas covers a different position of the panoramic video. The network presents one of the encoded target areas to a playback device corresponding to a region of interest of the playback device. The network presents the downscaled panoramic video to each playback device.
US10601886B2

A method of enabling a Dynamic Adaptive Streaming over HTTP, DASH, player to fetch media segments from a network, wherein said method comprises the steps of receiving, by a DASH Aware Network Element, DANE, middleware, from said network, a manifest, wherein said manifest comprises a representation base Uniform Resource Identifier, URI, for indicating a location to said DASH player for fetching said media segments, a default representation base URI which is available in a default mode for fetching said media segments from a default content delivery network, CDN, a secondary representation base URI which is available in a secondary mode for fetching said media segments from a secondary CDN, transmitting, by said DANE middleware, said manifest to said DASH player, transmitting, by said DANE middleware, to said DASH player, a ManifestModificationCommand message, wherein said ManifestModificationCommand message comprises one or more representation base URI's of any of said default representation base URI and said secondary representation base URI that are to modify a representation base URI in said manifest.
US10601885B2

Content, such as a video game, may be delivered by a content provider to a destination using, for example, streaming content delivery techniques. The transmission of the content may be monitored in order to determine transmission conditions such as a quality of the network connection from the content provider to the destination. The determined transmission conditions may then be used to determine adjustments to a complexity of various scenes associated with the content. For example, in some cases, when transmission conditions are unfavorable, scenes may be adjusted by reducing a complexity of the scenes.
US10601876B1

Disclosed embodiments relate to systems and methods for identifying inconsistencies between network security applications. Techniques include identifying a plurality of network security applications, each having a corresponding network security policy; determining that at least one of the plurality of network security applications has a corresponding network security policy that does not comply with a normalization model; implementing the network security policy that does not comply with the normalization model on an endpoint computing resource; determining a result of the implementing with respect to a requested action on the endpoint computing resource; identifying, based on the result of the implementing, at least one inconsistency between how the plurality of network security applications address the requested action; and performing, based on the identifying of the inconsistency, at least one of: generating a report identifying the inconsistency, or reconciling the identified inconsistency.
US10601875B2

Methods, apparatus, systems, and non-transitory computer-readable media for managing a plurality of disparate computer application and data control policies on a computing device, especially a computing device connected to a computer network, are described. In one example, at least one policy distribution point is provided that includes least one policy distribution point including at least one information management policy. A plurality of policy enforcement points, including a first policy enforcement point operating at a first policy enforcement level, and a second enforcement point operating at second policy enforcement level, are also provided. A first policy element to the first policy enforcement point, and a second policy element to the second policy enforcement point, are allocated. A management compartment in computer memory in communication with said computing device including one or more computer applications, data, and metadata specified and controlled by the information management policy is also provided.
US10601859B2

Systems and methods for detecting replay attacks may use one or more sensors to collect data about a state of a device. The device may be used to perform a transaction. The device may be used to authenticate or identify a user. The state of the device may pertain to a characteristic of the device position, movement, component, or may pertain to one or more environmental conditions around the device. The state of the device may be expected to change over time, and certain states are unlikely to be repeated. The detected repetition of a state of the device may be a cause for increasing the likelihood that a replay attack is taking place.
US10601856B1

A method and system for implementing a cloud native crowdsourced cyber security service. Specifically, the disclosed method and system entail leveraging existing disaster recovery (DR) solutions to perform cyber security assessments on cloud native application images restored within isolated cloud-based testing sandboxes. In leveraging existing DR solutions, a crowdsourced cyber security service is integrated into the existing DR solution as an additional feature.
US10601853B2

A system and method for generating policies for investigating cyber-security attacks are provided. The method includes selecting at least one entity of interest (EoI); determining at least one detection event associated with the at least one EoI; processing the at least one detection event to create a plurality of investigation rules, wherein each of the plurality of investigation rules includes a set of filters utilized to identify malicious activity related the at least one EoI; and defining an investigation policy for the EoI, wherein the defined investigation policy includes the plurality of investigation rules.
US10601852B2

Provided is an information processing device that includes a processor and has a capability to detect abnormalities on an in-vehicle network that may be caused by an attack. The processor receives input of data elements to be used as training data, normalizes the training data so as to be distributed within a first region, divides a multi-dimensional second region that encompasses the first region into third regions that are hypercubes of equal sizes, obtains S data elements that are contained by each of the third regions, and for each third region that includes a number of data elements that is less than a first threshold value T, adds noise elements that are vectors with a uniform distribution to the third regions, generates noise-added training data including the vectors in the second region, and generates and outputs Isolation Forest learning model data by using the generated noise-added training data.
US10601846B2

Methods and systems for neutralizing malicious locators. Threat actors may shut down their web pages or applications (i.e., resources) that serve malicious content upon receiving request(s) configured to be perceived by the resource as non-browser requests. Therefore, initiating (large-scale) non-browser requests, or requests that are at least perceived as non-browser requests, may effectively act to inhibit, or even nullify, intended attack vectors.
US10601843B2

A communication device includes: a communication section that transmits and receives a message in a network; an acquisition unit that acquires state information on a state of an object for which the network is provided; an estimation unit that estimates the state of the object based on the state information acquired in the acquisition unit; a setting unit that sets a filtering rule based on the state estimated in the estimation unit; and a filter unit that executes filtering processing for the message in accordance with the filtering rule set in the setting unit.
US10601842B1

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving first user input by a primary device from a primary input device, where the user input is provided by a user to the primary input device that is coupled to a primary device. Receiving second user input provided by the user to a secondary input device that is in communication with the primary device. Determining a user credential based on the first user input and the second user input, where at least one or the first input and the second input includes at least a portion of the user credential. Receiving an indication that the user is authentic based on the user credential, and, in response, enabling the user to further interact with the primary device.
US10601825B2

A method for authorizing an electronic device to perform an action includes detecting interaction data from an interaction between a hardware sensor and an identity-augmented tangible object; wherein data of the first set of interaction data is intrinsically dependent on physical characteristics of the identity-augmented tangible device; computing parametric descriptors from the interaction data; transmitting the parametric descriptors and supplementary data to a remote database system; generating, on the remote database system, identity data from a comparison of parametric descriptors with a known set of parametric descriptors; and authorizing, in response to both of the identity data and the supplementary data, the electronic device to perform a first action.
US10601823B2

A networked system for authenticating devices that comprise constrained devices connected in a network either directly to cloud based and/or dedicated servers or though gateways to cloud based and/or dedicated servers.
US10601812B2

A system and method for transmitting user credentials to another device. According to some embodiments, a method is described of receiving into a first portable electronic device a set of credentials from a user, the set of credentials to include a WLAN SSID and a network key, the set of credentials to allow the first device to connect to the WLAN. The set of credentials is used to connect the first device to the WLAN. The first device creates a message for wireless transmission, the message includes the set of credentials for accessing the WLAN and is adapted to be delivered to a second device. Finally, the first device transmits the message over the air, wherein the message is addressed to the second device. The second device receives the message and uses the credentials in the message to connect to the WLAN. Other embodiments are also described.
US10601805B2

One more devices and/or access control systems are described that securitize data and data transmissions using three sets of computing operations including authentication, validation, and securitization that allows or denies access to the data and/or the data transmissions. The system includes securitization of signals between one or more secure master and/or partial DASA databases for various user devices. Specific methods and devices for securing (primarily digital and normally two-way) communications using applications that offer the combination of securing communications from user devices with reader devices, are also is provided.
US10601797B1

In one embodiment, a network management system associated with a multi-hop wireless network may receive registration information associated with a network node, wherein the registration information comprises cipher text encoded with a public key, and wherein the cipher text comprises a MAC address and one or more of a firmware hash assigned to the network node or a serial number assigned to the network node. The network management system may decode the cipher text with a private key corresponding to the public key. The network management system may record the registration information in a lookup table on a data store of the network management system. The network management system may register the network node associated with the recorded registration information as an unignited network node on the multi-hop wireless network.
US10601776B1

Techniques for providing a securing platform for service provider network environments are disclosed. In some embodiments, a system/process/computer program product for providing a securing platform for service provider network environments includes communicating with an orchestrator and/or another network element on a service provider network to identify a subscriber with a new IP flow using a security platform; associating the subscriber with the new IP flow at the security platform; and determining a security policy to apply at the security platform to the new IP flow based on the subscriber.
US10601770B2

Aspects of the present disclosure involve systems, methods, computer program products, and the like, for correlating information associated with one networking transmission protocol, such as Internet Protocol version 6 (IPv6), to information associated with a different networking transmission protocol, such as Internet Protocol version 6 (IPv4). More specifically, when resolving an Internet Protocol (IP) address associated with a requesting device to a network, the system may base the resolved destination on one or more attributes of a known address to build a network mapping of the received IP address. In one specific example, an IPv6 address is received and associated with a known IPv4 address to map the network.
US10601769B2

A method for routing a request for content from a content provider through an IPv6 network is described, the IPv6 network being an information centric network (ICN) in which content is directly addressed using at least a portion of an IPv6 address. The method includes receiving, at an IPv6 network, a request for content, determining that the request does not comprise an ICN address. The method further includes intercepting the request, and translating the request into an IPv6 address in which at least a portion of the address is directed to or associated with the piece of content. Systems and methods described herein address problems arising from the interaction between IP and ICN networking models.
US10601763B2

A code-generating system can be accessed from within a messaging application on a mobile computing device to generate and insert a two-dimensional (2-D) code into a message. During operation, the system can receive a request to generate a 2-D code, such as from the messaging application executing on the mobile device or from the operating system. In response to receiving the request, the system can present a user-interface (UI) mechanism (e.g., modal window) for entering or selecting message content to convert into a 2-D code. Then, in response to obtaining the message content from a local user, the system may generate a 2-D code for the message content, and may generate a message that includes the 2-D code (e.g., by inserting the 2-D code into the message body). The system may then send the message, which includes the 2-D code, to a target recipient.
US10601761B2

Social networking system users may create events where a group of other users invited to the event meet at a specified time and location. The social networking system suggests users to invite to an event based on a prediction that the users would attend the event if invited. Various factors may be used to make the prediction, such as an affinity between the inviting user and the other users, the availability of the other users at the time of the event and/or the proximity of the other users to the location of the event. An inviting user receives the suggested users and selects suggested users to invite to the event or invitations may be automatically sent to the suggested users by the social networking system.
US10601758B2

A method for a computer system includes receiving a first user communication, determining a first group of users, determining a target number of users, determining whether the first group of users includes the target number of users, and if not, providing the communication to the first group of users, determining a hierarchal mapping of groups of users in response to user memberships, determining a second group of users from the hierarchal mapping, determining a plurality of social network relationship factors for the second group of users with respect to the first user, and providing the communication to at least a subset of users in the second group of users in response to the first plurality of social network relationship factors.
US10601754B2

Systems and method for delivering messages are provided in which a plurality of messages to be electronically sent are stored in a storage unit. Each of the respective messages includes associated metadata describing information about the respective message. The storage unit includes local storage which stores a first amount of information describing imminent messages, which are more likely to be sent, and stored a second amount of information, less than the first amount of information, describing non-imminent messages which are less likely to be sent. The storage unit also includes remote storage, which stores additional information about the messages. A processor operates to determine information about each message, and manages an amount of information about the messages which are stored locally.
US10601745B2

Responsive to a search query received from a remote user device, retrieve one or more channel based communication and engagement objects (CBCEO). Each CBCEO comprises a primary communication channel which is associated with an enterprise data source. Each primary communication channel facilitates electronic communication between the respective enterprise data source of the primary communication channel and users. The one or more retrieved CBCEO are integrated into an advertising unit of a data source. The advertising unit is rendered on a display page by the data source to a display of the user device. An enterprise data source is selected via the one or more CBCEO of the rendered advertising unit from the user device and a secure bidirectional conversation is established. The secure bidirectional conversation comprises an exchange of messages between the user device and the enterprise data source through a primary communication channel of the enterprise data source.
US10601737B2

Methods and apparatus for register Read and Write operations over Auto Negotiation Next Pages. Register Reads and Writes are implemented using sequences of Auto Negotiation (AN) Next Page messages. The embodiments define mechanisms to use AN Next Pages to carry write and read instructions. It defines a bi-directional communication mechanism to allow writes to be confirmed and read data to be returned to the requestor. Sequences of several AN Next Pages are used to assemble full address and data fields, when necessary. Two link partners (endpoints or an endpoint and an intermediate partner) exchange AN Next Pages with address and data information. The method uses a unique device address assigned to each device discovered in the serial chain to enable write and read operations to specific devices.
US10601736B2

A repeater includes input ports for inputting packets from modules, input buffers configured to store the input packets, output ports for outputting packets to modules, output buffers configured to store the packets before output, a switch connected between the input buffers and the output buffers, and a controller. The controller selects any of the input buffers, acquires any of the packets from the selected input buffer, and based on a result of comparison between a destination of a packet previously transferred to the output buffer corresponding to the destination of the acquired packet and the destination of the acquired packet and on the availability of the output buffer, determines propriety of transfer of the acquired packet. The controller controls the switch to transfer the packet determined to be transferable, from the input buffer to the output buffer.
US10601732B1

Some embodiments provide a method for a packet processing pipeline of a network forwarding integrated circuit (IC). The packet processing pipeline includes multiple match-action stages for processing packets received by the network forwarding IC. Each packet is transmitted through the pipeline using a set of data containers. The method receives data, generated by the network forwarding IC, that is separate from the packets processed by the pipeline. The method transmits through the packet processing pipeline (i) a packet using a first set of data containers and (ii) the received data using a second set of data containers. The first and second sets of data containers are transmitted together through the packet processing pipeline. For at least one of the match-action stages, the method processes the packet data in the first set of data containers and the received data in the second set of data containers in a same clock cycle.
US10601721B2

A method, an apparatus, a computer-program product and a system for transmission of data packets are disclosed. A communication link between a first device and a second device is established in accordance with a transmission control protocol for transmission of a data packet between the first device and the second device. The communication link is monitored during transmission of the data packet from the second device to the first device. Based on the monitoring, at least a portion of a bandwidth available for transmission of an acknowledgement from the second device to the first device is adjusted. The acknowledgement indicates receipt of the data packet performing by the second device.
US10601719B2

A system for enforcing quality of service and methods of configuring and enforcing quality of service (QoS). In one embodiment, the system includes: (1) a host configured to process a plurality of applications and (2) a modem coupled to the host and configured to interface with data networks and having a non-access stratum configured to prioritize real time data packets and selectively to discard data packets based on a defined criteria.
US10601717B2

The present invention discloses methods and systems for restricting data usage at a first network device. The first network device determines a first usage threshold. A first instruction is retrieved from a first server when the first threshold is reached. The first instruction comprises information for determining whether or not to restrict data usage. Data usage is restricted or not restricted according to the first instruction. The first server is periodically updated with data usage information.
US10601711B1

Certain hash-based operations in network devices and other devices, such as mapping and/or lookup operations, are improved by manipulating a hash key prior to executing a hash function on the hash key and/or by manipulating outputs of a hash function. A device may be configured to manipulate hash keys and/or outputs using manipulation logic based on one or more predefined manipulation values. A similar hash-based operation may be performed by multiple devices within a network of computing devices. Different devices may utilize different predefined manipulation values for their respective implementations of the manipulation logic. For instance, each device may assign itself a random mask value for key transformation logic as part of an initialization process when the device powers up and/or each time the device reboots. In an embodiment, described techniques may increase the entropy of hashing function outputs in certain contexts, thereby increasing the effectiveness of certain hashing functions.
US10601707B2

Disclosed is an apparatus and method for segment routing using a remote forwarding adjacency identifier. In one embodiment, a first node in a network receives a packet, wherein the packet is received with a first segment-ID and another segment ID attached thereto. The first node detaches the first and the other segment IDs from the packet. Then the first node attaches a first label to the packet. Eventually, the first node forwards the packet with the attached first label directly to a second node in the network. In one embodiment, the other segment ID corresponds to a forwarding adjacency or tunnel label switched path between the first node and another node.
US10601706B2

Gateway configuration methods and devices that resolve problems of a relatively heavy configuration workload, update inflexibility, and low configuration efficiency that exist when an operation and maintenance (OM) entity is used to uniformly configure gateways in an LTE system. The method includes: configuring, by a control plane gateway, a parameter for a user plane gateway, and sending, by the control plane gateway, a configuration message to the user plane gateway, where the configuration message carries the configuration parameter configured by the control plane gateway for the user plane gateway. The control plane gateway configures the parameter for the user plane gateway, so that the control plane gateway implements configuration of the user plane gateway, and configuration flexibility and configuration efficiency are improved.
US10601699B2

Aspects of the present disclosure involve systems for providing multiple egress routes from a telecommunications network for a client of the network. In general, the system provides for a client of the network to receive intended packets of information through multiple connections to the network such that load balancing and failover services for traffic to the customer are provided. The process and system allows for telecommunications network to utilize a common next-hop value of announced border gateway protocol (BGP) routes to advertise multiple routes to reach a destination customer network or address. By utilizing a common next-hop value in the announced BGP information, the devices of the network may load balance communication packets to the destination customer or address among the multiple egress locations from the network, as well as providing fast failover to alternate routes when a failure at the network or customer occurs.
US10601690B2

Systems and methods are described for accurately determining which of a set of networked computing environments most closely approximates a target computing environment. The determination is based on executing a reference workload in the target computing environment and calculating a coefficient of equivalency for each of the networked computing environments, which relates the performance of one or more computing resources in the target computing environment to the corresponding resources in the networked computing environments. The coefficient of equivalency may further be used to determine which of a set of networked computing environments will provide a target level of performance when executing the workload. The target computing environment may be assessed in terms of time, cost, percentage of capacity utilized, or other criteria.
US10601686B2

Systems and methods are described for a media guidance application (e.g., implemented on a user device) that improves quality of service while streaming code-agnostic content by optimizing buffering based on bit rate.
US10601685B2

In a method for visualizing cyclical patterns in metric data, receiving, by one or more processors, data relating to a computer environment. The method further includes creating, by one or more processors, a visualization, wherein the visualization presents the data in a first format. The method further includes causing, by one or more processors, the visualization to be displayed in a user interface. The method further includes receiving, by one or more processors, an indication of a user interaction in the user interface, wherein the user interaction indicates an alternative visualization of the data, wherein the alternative visualization presents the data in a second format that includes a fragment of the received data. The method further includes creating, by one or more processors, the alternative visualization.
US10601682B2

A method includes obtaining a service availability level of a to-be-deployed service; determining, based on an availability policy library and according to the service availability level of the to-be-deployed service, availability-related parameter information of a resource corresponding to the service availability level of the to-be-deployed service; and allocating and configuring the corresponding resource for the to-be-deployed service based on a resource information library and according to the availability-related parameter information of the resource corresponding to the service availability level of the to-be-deployed service, where the resource includes at least one of the following: an infrastructure resource, a non-HA software resource, or an HA software resource.
US10601674B2

A method includes providing a graphical user interface (GUI) that allows a user to dynamically change virtual user (VU) distributions of a load test performed on a target website or web application during test run-time. The GUI allowing the user to make a change to a current ramp profile of one or more VU distributions responsive to application of first user input. The first input including dragging an icon to a position in a first graph, the position denoting a future number of VUs at a future time. Following application of the first input, the change to the current ramp profile is visually displayed on a second graph in real-time as the load test progresses.
US10601673B2

A replication of a physical network is created in the cloud. The replicated network safely validates configuration changes for any hardware network device of the physical network and the physical network end state resulting from the changes without impacting the physical network steady state. The replicated network creates virtual machines on hardware resources provisioned from the cloud. The virtual machines emulate network device functionality and have the same addressing as the network devices. Nested overlay networks reproduce the direct connectivity that exists between different pairs of the network devices on the virtual machines. A first overlay network formed by a first Virtual Extensible Local Area Network (VXLAN) provides direct logical connections between the cloud machines on which the virtual machines execute. A second overlay network of VXLANs leverages the first VXLAN to establish direct logical connections between the virtual machines that mirror the direct connections between the network devices.
US10601668B2

Methods and systems are provided for adaptive management of local networks, such as in-premises networks, which may have access to and/or may be connected to external networks, such cable or satellite networks. A network management device that manages a local network may receive from a client device in the local network, a communication request relating to communication within the local network, may process the communication request, and may configure the communication of the client device based on processing of the communication request. The processing of the communication request may include assessing effects of communication of the client device, at the network management device, on other connections and/or communications, with the other connections and/or communications including external connections and/or communications with one or more devices and/or networks external to the local network. Processing of the communication request may include assessing likelihood of interference at the network management device.
US10601656B2

A network element upgrade method and a device are provided, which relate to the field of communications technologies, so as to resolve a problem that in an existing upgrade process, after a network element switches all services to a new version, an overall situation may be affected once a problem occurs during the upgrade to the new version. The network element upgrade method provided in the present invention includes: receiving a distribution policy; forwarding, to a first network element according to the distribution policy, some of a plurality of received service messages sent by an external network element, and forwarding remaining service messages to a second network element according to the distribution policy; forwarding, to the second network element according to the distribution policy, all of a plurality of subsequently received service messages sent by the external network element.
US10601650B2

The present application is concerned with a method for loading configuration data to a first Intelligent Electronic Device IED in a Substation Automation SA system, wherein the SA system included a second IED connected to the first IED via a communication network. The method includes: determining a first SID for the first IED by means of a neighbour ship relation, wherein the neighbour ship relation is predefined and indicative of a relative arrangement of the first and second IED in the communication network; assigning the first SID to the first IED; and obtaining first configuration data corresponding to the first SID, and loading the first configuration data to the first IED. The Global Identification GID of the first IED may be determined from the communication network, and the first SID can be linked with the GID of the first IED. The present application concerns also an active IED for configuration of a new or replaced IED in the substation system, according to the above mentioned method.
US10601643B2

This application provides a troubleshooting method and apparatus. The troubleshooting method includes obtaining key performance indicator (KPI) information of each service processor in a monitored network element; determining a faulty object according to the KPI information; determining a troubleshooting policy according to the faulty object; and sending the troubleshooting policy to a management unit in a network function virtualization (NFV) system, so that the management unit uses the troubleshooting policy to perform troubleshooting. Using the method or apparatus in this application, a problem of relatively low precision in fault locating according to a heartbeat message of a network element can be resolved.
US10601640B1

An applied intelligence framework may receive log information descriptive of a cloud computing stack. The applied intelligence framework may generate a stack token. The stack token may include a computer resource node representative a computer resource of the cloud computing stack. The applied intelligence framework may access, from an ontology repository, a diagnosis instruction. The diagnosis instruction may determine a fault based on at least one of the log parameters. The applied intelligence framework may execute the diagnosis instruction to determine the fault. The applied intelligence framework may append, to the stack token, a fault node representative of the fault. The applied intelligence framework may query an ontology repository based on the stack token to identify a resolution identifier. The applied intelligence framework may append, to the stack token, a resolution node. The applied intelligence framework may determine, based on stack token and the applied ontology repository, a resolution to the fault.
US10601639B2

A network monitoring system is provided that includes a processor, a memory coupled to the processor and a database that includes session data of one or more transactions in a multiprotocol wireless communication system. The network monitoring system further includes a rule engine configured and operable to store rules associated with at least one rule set. The network monitoring system also includes an analysis engine configured to identify a root cause of a failure for one or more of the transactions based on at least one rule in the rule set.
US10601635B1

An apparatus, system, and method provide remote management of a distributed computer system through a wireless communication link. A wireless server application utilizes a stateless protocol to communicate with a wireless client. An administrator uses the wireless client running on a portable device connected to a wireless server through the wireless communication link to access a network management application connected to the distributed computer network.
US10601634B2

A cloud service control device includes a first communicator configured to control communication with a cloud service providing a plant control function of controlling a plant, a second communicator configured to control communication with a first device using service information related to the cloud service, a verifier configured to verify an operation state of the cloud service, a selector configured to select the cloud service on the basis of the verified operation state, and an information transferor configured to transfer the service information between the selected cloud service and the first device.
US10601629B2

Probabilistic generation and decoding modulation symbols for use with optical communication. Codewords are generated using combinations of symbols from a modulation symbol alphabet, and each type of modulation symbol is sequentially generated using a hardware efficient combination generator that performs as a virtual lookup table (LUT). Likewise, decoding can be performed by sequentially identifying locations of individual modulation symbols within the received codeword.
US10601624B2

Transmitting apparatus and receiving apparatus for communication systems use coded orthogonal frequency-division multiplexed (COFDM) dual-subcarrier-modulation (DCM) signals. The same coded data is mapped both to COFDM subcarriers located in the lower-frequency half spectrum of the DCM signal and to COFDM subcarriers located in its upper-frequency half spectrum. Symbol constellation mappings of COFDM subcarriers in those half spectra preferably employ labeling diversity providing peak-to-average power ratio (PAPR) of the COFDM DCM signals substantially reduced from PAPR of double-sideband COFDM signals.
US10601621B2

A user equipment (UE) receives, from a base station apparatus (gNB), a radio resource control message including information used for configuring whether a first reference signal is used for uplink transmissions or a second reference signal is used for uplink transmissions. The first reference signal is a demodulation reference signal associated with a physical uplink shared channel. The second reference signal is a demodulation reference signal associated with a physical uplink shared channel. The UE also transmits, based on the information, to the gNB, the first reference signal on an antenna port. The UE transmits, based on the information, to the gNB, the second reference signal on the same antenna port as the antenna port on which the first reference signal is transmitted. The second reference signal is mapped to resource elements in a resource block, which are different from resource elements in a resource block to which the first reference signal is mapped.
US10601618B1

An apparatus for modulating a signal is described. The apparatus comprises a first modulation unit, a second modulation unit and at least one local oscillator providing a local oscillator signal with an initial frequency. Each modulation unit has a main modulation member and an auxiliary modulation member. The local oscillator is connected with the first and second modulation units via a first local oscillator sub path and a first local oscillator path as well as a second local oscillator sub path and a second local oscillator path respectively. The local oscillator sub paths process down-converted local oscillator signals. The main modulation member of each modulation unit is connected with one of the local oscillator sub paths. The auxiliary modulation member of each modulation unit is connected with one of the local oscillator sub paths and one of the local oscillator paths. Further, a method for modulating a signal is described.
US10601606B2

An apparatus 101, a communications network 301, a vehicle 305 and a method are disclosed. The apparatus and method are for providing communications between buses 303A, 303B, 303C 303D within the vehicle 305. The apparatus 101, which preferably is a central gateway, comprises a control means 102, storage means 104 for storing data and communication means 105 for transmitting and receiving signals on the plurality of data buses 303A, 303B, 303C 303D. The control means 102 is configured to determine at least one selected bus 303A, 303B, 303C 303D in respect of a received partial networking request and in dependence on a set of conditions for partial networking being met, cause network management signals to be provided to the at least one selected bus 303A, 303B, 303C 303D for maintaining nodes 201, 302 on the at least one selected bus in an awake state while allowing node(s) on at least one other bus to enter a sleep state. In the present example, three of the buses 303A, 303B and 303C are CAN buses and are connected to ports 107 of a first transceiver 106A, while one bus 303D is a FlexRay bus and it is connected to a port 107 of a second transceiver 106B. The apparatus 101 differs from conventional central gateways in that, it is configured to receive partial networking requests and provide communication in respect of those requests. If the apparatus 101 receives a network management message and a partial networking request from the same node 201, 302, it may allow some buses (that are not required for the communication requested by the partial networking request) to return to the sleep state, while selected buses that are required for the partial networking communication are maintained in an awake state. In this way, the apparatus 101 may enable communication between nodes 201, 302 on different buses, while allowing nodes 201, 302 on buses that are not required for the communication to enter a sleep state. A node 201 may perform several different functions which only require partial networking, and the partial networking request may comprise a message that identifies the function for which communication is required, to enable the gateway 101 to maintain the required buses in an awake state.
US10601604B2

A first device receives a first command for performing a first functionality on at least a second device, the first functionality comprising a plurality of constituent functionalities, wherein the second device is not configured to execute the first command. The first command is translated into a plurality of sub-commands for execution by respective devices. Each of the plurality of sub-commands, when executed, performs a respective constituent functionality of the plurality of constituent functionalities, and execution of any one of the sub-commands individually does not perform the entire first functionality. The first device manages execution of the plurality of sub-commands by the respective devices, wherein execution of the plurality of sub-commands by the respective devices emulates performance of the first functionality on at least the second device.
US10601601B2

An information processing system includes: a first information processing device including a transmission unit, the transmission unit being configured to transmit a dummy segment including dummy data, after sequentially transmitting transmission segments into which transmission data is divided; and a second information processing device configured to communicate with the first information processing device using a transmission control protocol, the second information processing device including a removal unit configured to remove the dummy segment and to set data including the transmission segments as the transmission data when the transmission segments and the dummy segment are received.
US10601587B2

A method for establishing a first secured communication channel between an administrative agent in a device and a distant server, the device comprising a secure element communicating with the administrative agent, the secure element being administrated through the administrative agent by the distant server, the administrative agent being administrated by a third party server through a second secured communication channel, the distant server and the third party server being connected through a third secured channel. The third party server requests, from the distant server, an operation on the secure element and a one-time PSK. The distant server sends, to the third party server, the one-time PSK. The third party server sends, to the administrative agent, a triggering message including the one-time PSK. A TLS-PSK handshake is performed between the administrative agent and the distant server with the one-time PSK to establish the first secured communication channel.
US10601585B1

Blockchain encryption techniques are provided. An exemplary method includes sending a signed transaction with at least two users to a blockchain; obtaining, by a first user, a public key of a second user from the blockchain; generating, by the first user, a symmetric key by combining a private key of the first user and the public key of the second user; encrypting, by the first user, a data item using the symmetric key; and providing the encrypted data item to the blockchain. The second user obtains the encrypted data item and a public key of the first user from the blockchain, and decrypts the encrypted data item using the symmetric key generated, by the second user, by combining a private key of the second user and the public key of the first user.
US10601575B1

A short-reach data link receiver includes an edge detector configured to generate a pulse on an edge of a data input, a first clock-data recovery path coupled to an output of the edge detector for recovering a clock and data from the output of the edge detector, a second clock-data recovery path coupled to the output of the edge detector for recovering the clock and data from the output of the edge detector, and a controller configured to alternate between the first and second clock-data recovery paths to recover the clock and data using one of the paths while calibrating the other path. The controller may swap the paths whenever calibration of one path is completed. That may include beginning calibration of the next path immediately after swapping of the paths. Alternatively, power consumption may be reduced by delaying calibration of the next path after swapping of the paths.
US10601574B2

Methods and systems are described for receiving a plurality of signals corresponding to symbols of a codeword on a plurality of wires of a multi-wire bus, and responsively generating a plurality of sub-channel outputs using a plurality of multi-input comparators (MICs) connected to the plurality of wires of the multi-wire bus, generating a plurality of wire-specific skew control signals, each wire-specific skew control signal of the plurality of wire-specific skew control signals generated by combining (i) one or more sub-channel specific skew measurement signals associated with corresponding sub-channel outputs undergoing a transition and (ii) a corresponding wire-specific transition delta, and providing the plurality of wire-specific skew control signals to respective wire-skew control elements to adjust wire-specific skew.
US10601569B2

A method and apparatus for (a) operating a first full-duplex transceiver to exchange radio-frequency signals with a second full-duplex transceiver, (b) determining at the first full-duplex transceiver that a residual self-interference signal exceeds a threshold, (c) in response to the determination that the residual self-interference signal exceeds the threshold, performing a self-training operation.
US10601568B2

An interference indication method and apparatus are presented. After detecting interference from a neighboring cell, a base station sends interference indication information to the neighboring cell, where the interference indication information includes at least indication information of a frequency resource that receives the interference from the neighboring cell and that is configured to be in a flexible half-duplex mode, so as to indicate that the interference from the neighboring cell is interference on the frequency resource configured to be in the flexible half-duplex mode. In this way, in an application scenario of a flexible half-duplex technology, a base station can learn of a status of interference from a neighboring cell, so as to use a corresponding interference suppression mechanism.
US10601565B2

Certain aspects of the present disclosure provide techniques for flexible scheduling of reference signals and data in an uplink pilot time slot (UpPTS) in a wireless network. A method of wireless communication by a base station (BS) is provided. The method generally includes scheduling a first one or more symbols of a UpPTS for one or more user equipments (UEs) to transmit data and a second one more symbols of the UpPTS for one or more UEs to transmit one or more sounding reference signals (SRSs). The BS receives the data in the first one or more symbols and the one or more SRSs in the second one or more symbols. Based on the scheduling received from the BS, the UE determines the symbols of the UpPTS for transmission of SRSs and data.
US10601558B2

Embodiments of the invention include methods of providing flexible sounding reference signal (SRS) transmission in a wireless communication network. In one embodiment, a method is implemented in a network device for configuring sounding reference signal (SRS) transmission from a terminal device to the network device, the method comprises: transmitting, by a network device to a terminal device, an indication of a plurality of alternative SRS transmission selections; and detecting, by the network device from a signal of the terminal device, a SRS transmission based on the plurality of alternative SRS transmission selections.
US10601549B2

For example, an EDMG STA may be configured to generate a plurality of spatial streams of an EDMG PPDU; map the plurality of spatial streams to a respective plurality of pairs of space-time streams according to an STBC scheme by mapping a first data sequence of a spatial stream to a first symbol in an odd numbered space-time stream, mapping a second data sequence of the spatial stream to a second symbol in the odd numbered space-time stream, mapping a sign inverted complex conjugate of the second data sequence to a first symbol in an even numbered space-time stream, and mapping a complex conjugate of the first data sequence to a second symbol in the even numbered space-time stream; and transmit a transmission comprising the plurality of pairs of space-time streams over a channel bandwidth in a frequency band above 45 Gigahertz (GHz).
US10601546B2

A dynamic interleaver performs a read operation to identify bit lines with high failures, and form groups of data bits for parity bits computation, such that each group includes at most one data bit from the bit lines with high failures. Thus, the interleave selects the bit lines with high failures based on a most recent read test, and can be adjusted according to the conditions of the storage device.
US10601542B1

Methods and apparatus for transmitting Ethernet data along an Ethernet link with a BASE-T transceiver are disclosed. One exemplary BASE-T Ethernet transceiver includes an Ethernet data framing module having an input interface to receive Ethernet block data bits at a first data rate. Logic associates the Ethernet block data bits with an auxiliary bit and a number of zero bits. An error encoder is coupled to the logic to encode all of the data bits, auxiliary bit and zero bits into an error encoded transport frame having plural error check bits. A symbol mapper receives the error encoded transport frame and transforms the error encoded transport frame into multiple symbols. A transmitter coupled to the symbol mapper transmits the multiple symbols over an Ethernet link at one of a selection of symbol rates. The data rate of data transmitted over the Ethernet link is based on the number of zero bits.
US10601530B2

A method for generating a measurement result, and a device are provided, and the method includes: receiving, by a terminal on a receive beam for each cell, a reference signal sent on a transmit beam of a corresponding cell, and measuring the received reference signal to obtain at least one group of measurement samples for each cell; processing the at least one group of measurement samples for each cell to obtain at least one initial processing value; processing the at least one initial processing value to obtain at least one target processing value; and reporting, by the terminal, a target processing value that meets a preset reporting rule in the at least one target processing value to a base station as a measurement result, or using, by the terminal itself, the target processing value to evaluate cell quality.
US10601526B2

A signal is transmitted and received between a base station device and a communication terminal device that are included in a communication system, through a multi-element antenna including a plurality of antenna elements. At least one of the base station device and the communication terminal device includes a PHY processing unit that is a calibration unit that performs calibration of phases and amplitudes of beams formed by the antenna elements when the signal is transmitted and received. The PHY processing unit obtains a correction value for the phases and the amplitudes of the beams in the respective antenna elements so that the phases and the amplitudes of the beams are identical among the antenna elements, and performs the calibration based on the obtained correction value.
US10601519B2

A receiver circuit with low power consumption and a method for reducing power consumption of a receiver system are provided. The method for reducing power consumption of the receiver system comprises steps of: providing a signal receiver module; intermittently enabling/disabling the signal receiver module when a microprocessor is in a sleep mode; detecting whether the signal receiver module receives a signal when the signal receiver module is enabled; and waking the microprocessor up to decode the received signal if the signal receiver module receives the signal.
US10601513B2

Methods, systems, and devices for network communications to reduce optical beat interference (OBI) in upstream communications are described. For example, a fiber node may provide a seed source to injection lock upstream laser diodes. Therefore, upstream communications from each injection locked laser diode may primarily include the wavelength associated with each seed source. The seed sources may be unique to each end device and configured to minimize OBI. That is, the upstream laser diodes may be generic, but the collected seed source may enable upstream communications at varying wavelengths. The end device may provide upstream communications by externally modulating a signal generated by the injection locked laser diode.
US10601507B2

Methods and apparatuses for communication between a mobile device and a target device are disclosed. Information of a target device is determined by means of at least one element of a mobile device for providing an optical link with the target device. An optical component of the mobile device is then aligned with an optical component of the target device based on said information determined by the mobile device. The target device can obtain information of relative positioning of the target device and the mobile device determined for the purposes of providing an optical link between the target device and the mobile device and the optical component thereof can be aligned with the optical component of the mobile device based on the information.
US10601506B2

Apparatus for and method of transmitting an optical signal by a Free Space Optical, FSO, communication system, the method comprising: transmitting, by an optical signal transmitter (104), an optical signal (700) into at least part of a volume of an optical medium (302); and controlling, by a controller, the optical signal transmitter (104), to scan the at least part of the volume (302) using the optical signal (700) in a sequence of non-overlapping loops (704, 708). The sequence of non-overlapping loops (704, 708) may be a sequence of non-overlapping, concentric circular loops.
US10601498B2

An embodiment of the present invention is a system to maximize efficiency as a mobile terminal receives data signals transmitted through multiple satellite spot beams. The multiple spot beams can be broadcast via a single satellite or multiple satellites. As a mobile terminal travels throughout a region, the system determines which spot beam would delivers data in the most efficient manner possible. This system takes into account multiple factors, including but not limited to velocity of the mobile terminal, traffic within a spot beam, business affiliations, etc. Once the system takes into account the various factors, an embodiment of the present invention generates a relative weighted factor that is subsequently associated with various available spot beams. Based on rankings of the weighted factors associated with each spot beam, the system may choose to receive data from a different spot beam.
US10601497B2

A method of scheduling wake up times for terminals in a satellite communication system using satellite ephemeris data in order to extend battery life of terminals is described. The terminal periodically evaluates the stored ephemeris data to determine whether it is valid, recently valid, or invalid. When the ephemeris data is valid the terminal can schedule wake up times to either transmit or receive updated ephemeris data. For recently valid ephemeris data the terminal calculates possible satellite pass windows and schedules wake up time. For invalid data the terminal wakes and listens periodically with a period that is less than the expected satellite pass duration. It may repeat this process several times before sleeping for an amount of time less than the expected satellite pass duration and repeating. Additional gateway beacons may be used to provide ephemeris data, and satellites may also provide information on beacon locations.
US10601493B2

Method for discovering the presence of a communication node which seeks participation in a radio communication network. The method involves receiving with a first directional antenna a first signal from a late entrant node (LEN) concurrent with a radio network communication session (RNCS). Digital data processing gain is applied to the first signal to facilitate detection of a digital data sequence. A time difference of arrival (TDOA) analysis is performed if the digital data sequence transmitted from the late entrant node is also detected in a second signal contemporaneously received at a second directional antenna. The TDOA analysis is used to estimate at least one beam-steering vector.
US10601488B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may determine a location of an object relative to the wireless communication device, wherein the location is determined based at least in part on a result of processing one or more images that include the object. The wireless communication device may configure at least one of a beam or a beam scan characteristic used to identify the beam to be used by the wireless communication device based at least in part on the location of the object relative to the wireless communication device. The wireless communication device may communicate using the beam. Numerous other aspects are provided.
US10601487B1

According to exemplary embodiments described herein, communicating via a plurality of antennae includes transmitting different data streams from each of a first antenna and a second antenna in a first transmission mode, and transmitting identical data streams from a third antenna and one of the first and second antennae in a second transmission mode. The first and second antennae are horizontally stacked relative to each other and the third antenna is vertically stacked relative to both the first and second antennae.
US10601486B1

A method for providing a compressed beamforming feedback of a communication channel includes receiving, at a first communication device, a plurality of training signals from a second communication device via the communication channel, determining a channel matrix corresponding to the communication channel based on the plurality of training signals, precomputing a sequence of column sorting orders and/or a sequence of scaling factors based on a first intermediate matrix derived from the channel matrix in advance of performing a modified QR decomposition, performing the modified QR decomposition to derive the compressed beamforming feedback based on the first intermediate matrix with the precomputed column sorting orders and/or scaling factors as an input, and transmitting the compressed beamforming feedback from the first communication device to the second communication device to enable the second communication device to steer at least one subsequent transmission to the first communication device based on the compressed beamforming feedback.
US10601483B2

Technology for a user equipment (UE) operable for channel state information (CSI) reporting for selected bandwidth parts is disclosed. The UE can be configured to decode CSI reporting parameters for one or more bandwidth parts (BWPs). The UE can be configured to calculate CSI for the one or more BWPs based on measurements from the one or more BWPs and the CSI reporting parameters for the one or more BWPs. The UE can be configured to generate one or more CSI reports for the one or more BWPs based on measurements from the one or more BWPs and the CSI reporting parameters for the one or more BWPs. The UE can be configured to encode the one or more CSI reports using the one or more BWPs.
US10601481B2

Disclosed herein is a method of receiving a channel state information-reference signal (CSI-RS) of a user equipment (UE) in a wireless communication system, including receiving CSI-RS resource information about a CSI-RS resource location having the CSI-RS mapped thereto, from a base station and receiving the CSI-RS through a CSI-RS resource at a location determined based on the CSI-RS resource information, wherein the CSI-RS resource information includes an index value indicating a location of a CSI-RS resource element where the CSI-RS is transmitted, a period and offset information of a subframe where the CSI-RS is transmitted, and information on a number of antenna ports where the CSI-RS is transmitted, wherein when the index value indicates locations of different CSI-RS resource elements by types of the subframe where the CSI-RS is transmitted and the CSI-RS is set to be transmitted alternately through a normal subframe and a special subframe within one wireless frame, the location of the CSI-RS resource is determined in additional consideration of a type of the subframe in addition to the CSI-RS resource information.
US10601480B2

Systems and methods are disclosed for utilizing unused bit resources to convey restrictions on parameters evaluated for a feedback report in a Multiple-Input Multiple-Output (MIMO) wireless communication system. In one embodiment, a method of operation of a transmitting node in a wireless network includes transmitting a feedback restriction indicator to a receiving node, where the feedback restriction indicator is an unused bit resource in one or more instances of a control channel that is indicative of one or more desired restrictions on parameters to be evaluated by the receiving node for a feedback report to be provided from the receiving node. The method of operation of the transmitting node further includes receiving the feedback report from the receiving node, where the feedback report is limited according to the feedback restriction indicator.
US10601479B2

In an antenna array, signals may be manipulated to increase coherency at certain locations (beamfocusing) and reduce or cancel the signals at other locations (nulling). This is accomplished by multiplying the signals received or transmitted by the set of antennas by a weight vector that is generated by determining a covariance matrix based on a vector representing signals at the set of antennas, vectors representing the desired beamfocusing and nulling locations, and a desired nulling depth.
US10601478B2

Methods and apparatus for selecting between downlink beamforming training and uplink beamforming training for hybrid beamforming. The decision whether to perform downlink beamforming training or uplink beamforming training for hybrid beamforming can be used by a network node to reduce training overhead and increase system capacity. A selection value is computed, indicative of the relative costs of signaling overhead for downlink beamforming training and uplink beamforming training to support downlink transmissions by the network node to the group of wireless devices using hybrid beamforming. The selection between uplink beamforming training and downlink beamforming training is based on the selection value.
US10601473B2

A non-transitory computer-readable medium, network device, and method for enabling simultaneous transmit and receive in the same Wi-Fi band within a device by obtaining a first information corresponding to a first set of signals to be transmitted wirelessly by a first antenna of a first device; transmitting, by the first antenna of the first device, the first set of signals; receiving, by a second antenna of the first device, a second set of signals comprising (a) the first set of signals transmitted by the first antenna of the first device and (b) a third set of signals transmitted by a second device different than the first device; determining a third information corresponding to the third set of signals by canceling the first set of signals from the second set of signals, wherein the third information comprises an estimation of the third set of signals transmitted by the second device.
US10601466B2

A sensor for sensing a usage status of an electrical device and its associated method are disclosed. The sensor is disposed at a near-end of a power line of the electrical device. The sensor provided with a magnetic detector, an analog-to-digital converter and a controller. The magnetic detector is close to the power line to detect a magnetic field change around the power line to correspondingly generate an analog signal. The analog-to-digital converter (ADC) is used to receive the analog signal and convert the analog signal to a digital signal. The controller is used to receive the digital signal and generate an indication signal to accordingly learn at least one of statuses of being turned on and turned off the electrical device.
US10601463B2

Methods and systems are provided for telephone line access with crosstalk stability. A transceiver device coupled to a telephone line, bundled with other telephone lines in a telephone cable, may determine when another transceiver device connected to the telephone cable is estimating signal to noise ratio on another telephone line in the telephone cable, and may control communications over on the telephone line, the controlling including forcing a transmission on the telephone line based on the estimation of signal to noise ratio by the other transceiver device. The transmission may be forced on the telephone line when there is no data to send on the telephone line at a time when the other transceiver device estimates the signal to noise ratio. The forced transmission may be generated by modulating sub-carriers using a pseudo-random sequence generated with an initial seed different from initial seeds used by other transceiver devices.
US10601462B2

A cable modem comprises transceiver circuitry and echo cancellation training circuitry. The transceiver circuitry may be operable to transmit and receive signals on a full-duplex Data Over Cable System Interface Specification (DOCSIS®) network. The echo cancellation training circuitry may be operable to: determine an echo cancellation training group to which the electronic communication device belongs; determine one or more training periods during which the echo cancellation training group is permitted to transmit training signals; and transmit an echo cancellation training signal during the determined training one or more periods and use the transmitted training signal to train echo cancellation circuitry of the cable modem.
US10601457B2

Aspects of the disclosure relate to a remote control which may include one or more buttons configured to provide input to the remote control upon being activated, a transmitter for transmitting data, a receiver for receiving data, a processor and memory storing computer executable instructions that, when executed, cause the two-way remote control to perform a method for configuring repeat transmission behavior of one or more of the buttons of the two-way remote control. Further, the receiver may be configured to receive data from a device configured to be controlled by the remote control and the data may include instructions for configuring the repeat transmission behavior of the one or more buttons of the two-way remote control. Additionally, the two-way remote control may configure the repeat transmission behavior of the one or more buttons of the two-way remote control based on the data received from the device.
US10601451B1

A method includes providing a radio frequency front end (RFFE) switch including a single pole input terminal and a number (N) of output terminals. Each of the N output terminals is a component of a respective one of N throws of the RFFE switch, with N being greater than one. The N output terminals include a first output terminal corresponding to a first throw of the N throws and at least one additional output terminal not connected to any radio frequency (RF) band path. The at least one additional output terminal includes a second output terminal corresponding to a second throw of the N throws. The method includes connecting the first output terminal to a single RF band path. The method includes forming a parallel connection between the single pole input terminal and the single RF band path. The parallel connection provides at least two parallel branches for routing RF signals being transceived between the single pole input terminal and the single RF band path.
US10601446B2

An encoding method generates an encoded sequence by performing encoding of a given coding rate according to a predetermined parity check matrix. The predetermined parity check matrix is a first parity check matrix or a second parity check matrix. The first parity check matrix corresponds to a low-density parity check (LDPC) convolutional code using a plurality of parity check polynomials. The second parity check matrix is generated by performing at least one of row permutation and column permutation with respect to the first parity check matrix. An eth parity check polynomial that satisfies zero, of the LDPC convolutional code, is expressible by using a predetermined mathematical formula.
US10601438B2

A modulator of an analog to digital converter includes a quantizer component configured to generate a digital signal based on a clock input operating at a sample rate. The modulator further includes a first digital to analog converter (DAC) configured to generate first DAC output at half the sample rate. The modulator further includes a second DAC configured to generate second DAC output at half the sample rate, where the first DAC and the second DAC are updated at alternate cycles of the clock input.
US10601428B2

A circuit device includes a D/A converter, a comparator that compares a temperature detection voltage from a temperature sensor unit with a D/A conversion voltage from the D/A converter, and a processing circuit that executes a determination process based on a comparison result from the comparator, and obtains temperature detection data as a result of A/D conversion of the temperature detection voltage, in which, the processing circuit determines the temperature detection data so that a change in the temperature detection data at a second output timing following a first output timing with respect to the temperature detection data at the first output timing is equal to or less than k×LSB.
US10601414B2

A bias generator and a method for generating a bias voltage are presented. The bias generator is for use with an electronic circuit comprising a first switch coupled in series with a second switch. The bias generator is adapted to generate a reference voltage, a first bias voltage, and a second bias voltage. The second bias voltage is based on the reference voltage. After applying the first voltage to the first switch and the second voltage to the second switch, the bias generator controls a voltage across the first switch. The bias generator may be adapted to set a value of the reference voltage to control the voltage across the first switch. For instance, the reference voltage may be set to a fix value so that the voltage across the first switch is maintained at a constant value.
US10601410B1

Several embodiments of electrical circuit devices and systems with a duty cycle correction apparatus that includes a duty cycle adjustment circuit that is configured to adjust a duty cycle of the input clock signal based on an averaged code value. The duty cycle correction apparatus includes a duty cycle detector circuit that receives first and second clock signals from a clock distribution network. The duty cycle detector is configured to output a duty cycle status signal that indicates whether the first clock signal is above or below a 50% duty cycle based on a comparison of the first clock signal to the second clock signal. The duty cycle correction apparatus also includes a counter logic circuit configured to determine the average code value, and the counter logic circuit automatically cancels an offset of the duty cycle detector when determining the averaged code value.
US10601409B2

A circuit, method, and system are disclosed for sampling a signal. The system includes a sampler circuit configured to sample input signals when a clock signal is at a first level to produce sampled signals, a detection circuit that is coupled to the sampler circuit, and a feedback circuit that receives an output signal and generates the clock signal. The detection circuit pre-charges the sampled signals when the clock signal is at a second level and, using threshold adjusted inverters, detects voltage levels of each sampled signal to produce detected voltage level signals, where a threshold voltage of the threshold adjusted inverters is entirely outside of a transition voltage range of the sampler circuit. In response to one of the detected voltage level signals transitioning from the second level to the first level, the detection circuit transitions the output signal from the first level to the second level.
US10601406B2

A semiconductor apparatus includes a first voltage detection circuit configured to generate a first voltage detection signal in response to the voltage level of a first voltage, a current control signal and a second voltage detection signal; and a storage and output circuit configured to generate a power control signal and the current control signal in response to the voltage detection signal.
US10601400B1

A filter including a piezoelectric substrate; a surface acoustic wave (SAW) device on the piezoelectric substrate and including unequally spaced interdigitated input and output transducer electrodes of unequal widths, wherein the input transducer electrodes are to convert an incoming radio frequency (RF) electrical signal into surface acoustic waves; a SAW propagation path between the input and output transducer electrodes; and a magnetostrictive film in the SAW propagation path to filter the surface acoustic waves that are at a ferromagnetic resonance frequency of the magnetostrictive film, wherein the output transducer electrodes are to convert the filtered surface acoustic waves into an outgoing electrical RF signal. The SAW device may operate in a wide-band pass configuration. The wide-band pass configuration result in a transmission of frequencies up to −60 dB. The magnetostrictive film may include a ferromagnetic material. The interdigitated input and output transducer electrodes may include unequal widths between adjacent electrodes.
US10601392B2

Resonator devices, filter devices, and methods of fabrication are disclosed. A resonator device includes a substrate and a single-crystal piezoelectric plate having parallel front and back surfaces. An acoustic Bragg reflector is sandwiched between a surface of the substrate and the back surface of the single-crystal piezoelectric plate. An interdigital transducer (IDT) is formed on the front surface. The IDT is configured to excite shear acoustic waves in the piezoelectric plate in response to a radio frequency signal applied to the IDT.
US10601385B2

An apparatus including a recording system including at least one microphone; a controller including a processor and a non-transitory memory, where the controller is configured to automatically adjust at least one recording parameter for a sound signal from the at least one microphone based, at least partially, upon a distance between the apparatus and a sound source; and a distance determinator configured to determine the distance between the apparatus and the sound source and provide the determined distance to the controller so as to adjust the at least one recording parameter, where the distance determinator includes at least one sensor and does not include the at least one microphone, where the apparatus is a portable electronic device.
US10601384B2

An instrumentation amplifier configured for providing high common mode rejection and low distortion is described and includes an input differential pair configured to receive a differential input voltage and differential feedback voltage and a folded cascode amplifying stage configured to receive output current mode signals provided from the input differential pair. A current mirror is configured to mirror output current mode signals provided from said folded cascode amplifying stage. An external gain setting configuration may include a resistor feedback network, which includes a first resistor being connected between feedback inputs of said input differential pair, a second resistor between an output terminal of the current mirror and a first feedback input of said input differential pair, a third resistor between a common terminal and a second feedback input of said input differential pair.
US10601377B2

Methods and systems for optimizing amplifier operations are described. The described methods and systems particularly describe a feed-forward control circuit that may also be used as a feed-back control circuit in certain applications. The feed-forward control circuit provides a control signal that may be used to configure an amplifier in a variety of ways.
US10601374B2

A power amplifier module includes an amplifier transistor and a bias circuit. A first power supply voltage based on a first operation mode or a second power supply voltage based on a second operation mode is supplied to the amplifier transistor. The amplifier transistor receives a first signal and outputs a second signal obtained by amplifying the first signal. The bias circuit supplies a bias current to the amplifier transistor. The bias circuit includes first and second resistors and first and second transistors. The first transistor is connected in series with the first resistor and is turned ON by a first bias control voltage which is supplied when the first operation mode is used. The second transistor is connected in series with the second resistor and is turned ON by a second bias control voltage which is supplied when the second operation mode is used.
US10601372B1

A frequency multiplier, which may include multiple commutator cells, for multiplying an input signal is provided. A frequency doubler is provided that includes at least one transformer. Each of the at least one transformer includes a primary and a secondary. Each secondary includes a center tap. The frequency doubler further includes at least one commutator cell. Each of the at least one commutator cell includes a first differential pair of input terminals and a second differential pair of input terminals. Each primary is connected to the first pair of differential input terminals and each secondary is connected to the second differential pair of input terminals. The frequency doubler further includes at least one current source and at least one ground. The center tap is connected to the at least one ground via the at least one current source.
US10601370B2

A low loss unidirectional conductive sheet using magnetic field biasing and electron spin precession for coupling RF power to ferrite resonators, comprising the step of placing a plurality of ferrite resonators in a bias magnetic field to excite the electron spins of the materials of said ferrite resonators into precession.
US10601367B2

A system for redirecting sunlight to a mobile platform includes a satellite and a mobile platform including a first RF antenna that transmits a message including a position and velocity of the mobile platform on the path, along with a time of transmission, and a photovoltaic cell that receives and converts light into electrical energy. The satellite includes a second RF antenna that receives the message, an optical channel, a collector system coupled to the optical channel and that gathers sunlight into the optical channel, a diffuser system coupled to the optical channel and that diffuses light therefrom to generate a beam of light, and a processor coupled to the second RF antenna. The processor computes a target position of the mobile platform based on the position, the velocity, and the time of transmission, and instructs the diffuser system to direct the beam to the target position.
US10601366B2

A pneumatically actuated solar panel array system that includes a plurality of separate actuator assemblies that each have a top plate and bottom plate and a first and second bellows that each extend between and are coupled to the top and bottom plates at a respective top head and bottom head, the first and second bellows being configured to be separately pneumatically inflated, where the pneumatic inflation expands the bellows along a length. The pneumatically actuated solar panel array system can also include a plurality of solar panels coupled to the actuator assemblies with the solar panels being configured to be actuated based on inflation of one or more bellows associated with the plurality of actuator assembles.
US10601362B2

A solar panel mounting system for use on flat and “S” tile roof structures includes a support arm coupled to a threaded post. A base flashing and corresponding attachment bracket are configured to couple with the post. A tile replacement flashing is installed over the base flashing and includes a conical protrusion with associated aperture. The aperture is configured to receive the post.
US10601360B2

A one-piece, monolithic tile support mount attaches to a roof and provides rigid structural support for a lateral attachment bar or L-foot that is used to hold a height-adjustable mounting mechanism or mounting rail, which is used to attach solar photovoltaic panels to the roof of a roof covered with roofing tiles. A custom-designed, sheet-metal or polymer, aperture-less replacement tile is mounted between the lateral attachment bar or the L-foot and the tile support mount. Also provided is a compact, magnetic positioning tool that provides proper alignment of a drill bit when drilling or punching holes through the replacement tile.
US10601351B2

A motor control apparatus that controls a stepping motor includes a calculation unit configured to determine a time with respect to a distance based on a theoretical formula expressing a parameter in an acceleration period or deceleration period of the stepping motor. The calculation unit includes a first calculation unit and a second calculation unit. The first calculation unit is configured to apply an iterative root-finding procedure to a distance which is a function of a time included in the theoretical formula to determine the time with respect to the distance of the n-th step expressed using a reciprocal of a derivative of the function. The second calculation unit is configured to apply the iterative root-finding procedure to the reciprocal of the derivative to determine the reciprocal of the derivative at a time when the first calculation unit determines the time with respect to the distance of the n-th step.
US10601349B2

A motor actuating apparatus includes three phase connections for three motor phase connections, a high-connection for a supply voltage and a low-connection for a reference potential of the supply voltage, three bridge branches having a series connection of a high-switch and a low-switch and a control device for actuating the switches of the bridge branches. The high-switches are connected to the high-connection and the low-switches are connected to the low-connection. Each of the three phase connections is connected to exactly one of the three bridge branches between the high-switch and the low-switch. The control device is adapted for actuating the switches of the bridge branches such that during a first time period a first phase connection is switched to passive and the second phase connection and third phase connection are alternatingly connected to the high-connection and the low-connection in a predeterminable duty cycle if the supply voltage is applied.
US10601335B1

A power inverter circuit includes a capacitor and a power module. The capacitor includes a positive plate and a negative plate that are spaced apart along opposing sides of the capacitor and extend toward each other along a common side of the capacitor. The power module includes a positive connector and a negative connector that are connected to the positive plate and the negative plate, respectively, and are spaced apart and extend parallel across from each other.
US10601332B2

In described examples, an isolated DC-DC converter includes: an input node for receiving an input voltage; a transformer including first and second terminals; first and second low-side switches; and first and second high-side switches. The first low-side switch is coupled between the first terminal and a primary side ground. The second low-side switch is coupled between the second terminal and the primary side ground. The first high-side switch is coupled between the first terminal and the input node and is configured to be activated by a voltage at the second terminal. The second high-side switch is coupled between the second terminal and the input node and is configured to be activated by a voltage at the first terminal. Further, the isolated DC-DC converter includes a switch controller to cause the first and second voltages to alternatingly be zero by opening and closing the first and second low-side switches.
US10601327B2

The invention relates to an isolated DC/DC converter (1) comprising: —a first branch (A) comprising series-connected switches (MA1, MA2), the first branch (A) being connected to the input of the converter; —a second branch (B) comprising series-connected switches (MB1, MB2); —an inductance (L2) connected between the midpoints of the first and the second branch (B); —a capacitor connected across the end terminals of the second branch (B); —a third branch (C) comprising a magnetic component and connected to the midpoint of the second branch (B); wherein a series of opening and shutting actions of the switches (MA 1, MA2, MB1, MB2) converts an input voltage (Ue) into an output voltage (Uout) by means of the magnetic component.
US10601309B2

Device for transforming and for rectifying polyphase, in particular three-phase, voltage comprising a polyphase transformer comprising a voided central zone, a voltage rectifier circuit that is connected to the transformer and a fan. The voltage rectifier circuit includes at least three heat dissipation units forming a right prism of regular polygonal section comprising a voided central zone, the transformer, the voltage rectifier circuit and the fan being positioned such that at least some of the airflow produced by the fan flows through the voided central zone of the rectifier so as to immerse the transformer.
US10601307B1

The object is to provide a technology for enabling detection of the voltage resistance in an assembled snubber substrate. A semiconductor device includes: a snubber substrate fixed to a base while being spaced from a p electrode and an n electrode; a snubber circuit disposed on the snubber substrate and electrically connected to the p electrode and the n electrode; and a semiconductor element electrically connected to the snubber circuit. The base includes an insulating component insulating the p electrode, the n electrode, and the snubber substrate from one another.
US10601306B1

A power supply unit for an information handling system, including a filter module configured to filter an AC voltage signal; a rectifier module to rectify the filtered AC voltage signal to generate a DC voltage signal, the DC voltage signal proportional to the AC voltage signal; a voltage regulator module configured to determine that the DC voltage signal is above a threshold voltage level, and in response, clamp the DC voltage signal such that the clamped DC voltage signal i) is not proportional to the AC voltage signal and ii) is less than the threshold voltage level; a capacitor module to average peaks voltages of the clamped DC voltage signal; and a DC/DC converter to convert the averaged DC voltage signal to a converted DC voltage signal, the converted DC voltage signal having a desired DC voltage level.
US10601305B2

A hybrid Cascaded H-Bridge (CHB) converter can include a selective harmonic current mitigation pulse width modulation (SHCM-PWM) unit coupled to an input current and providing an output signal SWSHCM, a phase shift pulse width modulation (PSPWM) unit coupled to the input current and providing an output signal SWPS, a modulation selector coupled to the output signal SWSHCM of the SHCM-PWM unit and the output signal SWPS of the PSPWM unit and providing an output signal SW, and a CHB converter coupled to the output signal SW of the modulation selector. The modulation selector can select one of the output signals (SWSHCM and SWPS) as the output signal SW based on the input current.
US10601304B2

In methods, apparatus, systems, and articles of manufacture to a high efficient hybrid power converter, an example apparatus includes: a switched capacitor (SC) converter to generate a first voltage based on a voltage source; and a direct current-to-direct current (DC-DC) converter to generate a second voltage based on the voltage source of the apparatus, the difference between the first voltage and the second voltage corresponding to an output voltage.
US10601301B2

An abnormality detection device includes a detection circuit unit, a protection circuit unit, and an abnormality determination unit. The detection circuit unit includes: a voltage detection circuit and a current detection circuit that generate, as analog signals, detection values indicating a current and a voltage at a predetermined position of a vehicle-mounted power supply device. An A/D converter converts the detection value into a digital signal. The protection circuit unit performs a predetermined protection operation on the vehicle-mounted power supply device if a voltage or a current of an input path or an output path of a voltage converting unit has an abnormal value. The abnormality determination unit makes at least one of the detection circuit unit and the protection circuit unit perform a predetermined diagnosis operation, and determines, based on a result of the diagnosis operation, whether the detection circuit unit and the protection circuit unit is abnormal.
US10601293B2

An electrical system including a linear motor in which energized forcer and thruster coils are used for the field and armature elements. In accordance with exemplary embodiments, one or more thruster coils may be provided on a shaft with opposing single or multiple fixed forcer coils. Using coils as the electromagnets for forcer and thruster coils advantageously provides necessary power while also minimizing system weight and decreases in magnetism typically encountered with permanent magnets with rising temperature, resulting in higher and more controllable magnetic forces over varying temperatures. Ferrous elements, such as a ferrous system housing and/or open ferrous containers for the thruster coils may be further included to advantageously focus the magnetic forces. Additionally, multiple forcer and thruster coils may be disposed in various arrangements along the shaft. Exemplary applications include use of such a system for controlling oscillations of a poppet valve in an internal combustion engine.
US10601286B2

A manufacturing method for a motor core includes a preparing step, a coating step, a stacking step, and a forming step. In the preparing step, the silicon steel sheets are cleaned and dried. In the coating step, an electrically insulating colloid is coated between each pair of adjacent silicon steel sheets. In the stacking step, the silicon steel sheets on which the electrically insulating colloid is applied are stacked on each other to form a layered structure. In the forming step, the stacked silicon steel sheets are subjected to a colloid curing process so that the electrically insulating colloid forms a thermosetting plastic. This reduces the chance of forming eddy currents, reducing the eddy current loss of the motor core during operation.
US10601283B2

A cooling portion has an air inlet into which cooling air flows and is positioned in a preset range. When a distance from the upper to lower ends of an oil chamber in the axial direction of a rotating shaft member is h, and the shortest distance between an outer peripheral face of a casing and an inner peripheral face of a cover is a, the preset range is set in the following manner. Specifically, the preset range is set between ¼h upward and 5/4h downward relative to the upper end of the oil chamber as a reference point, in the axial direction of the rotating shaft member. Additionally, the preset range is set between the outer peripheral face of the casing and relative to the outer peripheral face of the casing as a reference point, in the radial direction of the rotating shaft member.
US10601279B2

A permanent magnet synchronous motor with an integrated pump body and its preparation method are provided. The preparation method comprises: 1) performing an injection molding process for the first time on a coil, which is wound on a coil former, to form a coil sealing part for sealing the coil; 2) assembling an iron core in the sealed coil and performing the injection molding process for the second time on them to form a pump body part with a rotor barrel, wherein the rotor barrel is formed by conducting the injection molding process based on the iron core, and an isolating thin layer is formed at a polar arc part of the iron core to isolate the iron core from a rotor cavity in the rotor barrel. A good electromagnetic property of the motor is ensured and the water leakage problem is solved.
US10601270B2

A rotor having a lamination stack including a first partial stack with first sheet metal laminations and a second partial stack with second sheet metal laminations. The laminations and partial stacks are joined axially along a center axis of the lamination stack. Each partial stack has a radially inner circumferential area and a radially outer circumferential area and a plurality of connection areas distributed in circumferential direction in mutual register at the joined partial stacks and form a common connection area. At least one of the partial stacks includes a fastening area for arranging the lamination stack at a carrier element. The lamination stack has a magnetic interaction area formed by one of the circumferential areas of the partial stacks for cooperation with a stator. The magnetic interaction area has a plurality of rotor poles with permanent magnets, which are uniformly distributed along the circumference.
US10601268B2

A rotor capable of preventing a magnet or a cover tube from being damaged by contacting a mold of an injection machine during production. The rotor includes a rotor core, a plurality of magnets arranged on the outside of the rotor core in the radial direction, a cylindrical cover tube surrounding the plurality of magnets, and resin charged to a gap defined between an outer peripheral surface of the rotor core and an inner peripheral surface of the cover tube. An axial dimension of the rotor core is greater than an axial dimension of each magnet, and an axial dimension of the cover tube.
US10601243B2

Systems, apparatuses and methods are provided herein for generating energy with a shopping cart. A shopping cart apparatus comprises: a front wheel, a back wheel, a bottom frame, and a power generator assembly. The power generator assembly comprises: a generator coupled to the back wheel, the generator being configured to convert kinetic energy from a rotation of the back wheel to electrical energy, a capacitor element coupled to the generator and configured to store the electrical energy generated by the generator, the capacitor element comprising a first electrode and a second electrode separated by a dielectric material, wherein the first electrode comprises an elongated member of the bottom frame extending from the back wheel toward the front wheel, and a first contact member and a second contact member coupled to the capacitor element and configured to discharge the electrical energy stored in the capacitor element.
US10601242B2

A charger, including a power conversion circuit, a charging interface, and an overcurrent protection circuit, where the charging interface includes a power cable, a ground cable, a signal cable, a resistor and a switch device, where a first end of the resistor is connected to the power cable, a second end of the resistor is connected to the signal cable, in a process in which the charger charges a terminal device and when a difference between a voltage of a first end of the switch device and a voltage of a second end of the switch device is greater than or equal to a first voltage threshold, the second end and a third end of the switch device are connected such that the power cable and the ground cable are connected to generate an overcurrent, and the overcurrent protection circuit controls the power conversion circuit to stop current output.
US10601241B2

The present disclosure relates to a module for relaying power wirelessly to a device implanted in a user. The module may include a structure adapted to be worn by the user, a receiver configured to receive a first wireless power transmission at a first frequency, a transmitter configured to transmit a second wireless power transmission at a second frequency different from the first frequency, and a frequency changer configured to convert energy generated by the first wireless power transmission into energy for generating the second wireless power transmission. Each of the receiver, transmitter and frequency changer may be disposed on or in the structure.
US10601239B2

Systems and methods for charging and discharging a plurality of batteries are described herein. In some embodiments, a system includes a battery module, an energy storage system electrically coupled to the battery module, a power source, and a controller. The energy storage system is operable in a first operating state in which energy is transferred from the energy storage system to the battery module to charge the battery module, and a second operating state in which energy is transferred from the battery module to the energy storage system to discharge the battery module. The power source electrically coupled to the energy storage system and is configured to transfer energy from the power source to the energy storage system based on an amount of stored energy in the energy storage system. The controller is operably coupled to the battery module and is configured to monitor and control a charging state of the battery module.
US10601235B2

An electronic control unit includes a first controller, a second controller, and a determination portion. The first controller includes a first control portion that determines whether or not supply of power from a battery to the first controller is interruptible. The second controller includes a regulator that regulates power supplied from the battery to the first controller and a second control portion that controls the regulator. The determination portion determines whether or not the supply of power is forcibly interruptible even when the first control portion does not determine that the supply of power is interruptible. When the determination portion determines that the supply of power is forcibly interruptible, the second control portion controls the regulator to interrupt the supply of power from the battery to the first controller.
US10601234B2

A battery pack for an energy generation system includes a cell array of conductively interconnected power cells configured to store and discharge energy, a direct current (DC)-to-DC converter coupled to the cell array and configured to receive power from the cell array during discharging of the cell array or to output power to the cell array during charging of the cell array, a pair of output terminals coupled to the DC-to-DC converter for coupling with an external device; and an arc fault detection system coupled between the DC-to-DC converter and the pair of output terminals. The arc fault detection system includes a first sensor for measuring power transmitted between the DC-to-DC converter and the pair of output terminals and a controller coupled to the first sensor and configured to disable the battery pack based on a measurement of the power transmitted between the DC-to-DC converter and the output terminals.
US10601230B2

An electric power supply system for a vehicle includes a first battery, a second battery connected in parallel with the first battery, a voltage sensor configured to detect a voltage value of the second battery, a current sensor configured to detect a current value of the second battery, an electronic control unit configured to make a voltage of the alternator fluctuate according to a predetermined voltage waveform, and calculate internal resistance of the second battery using the voltage value and the current value of the second battery respectively detected by the voltage sensor and the current sensor while the electronic control unit is making the voltage of the alternator fluctuate according to the predetermined voltage waveform.
US10601221B2

An electrostatic protection circuit of a display panel includes a first P-type thin film transistor having a gate connected to a high potential electrostatic output line and a drain connected to a high potential electrostatic output line, a second P-type thin film transistor having a gate connected to a high potential electrostatic output line and a drain connected to a source of the first P-type thin film transistor, and a source connected to the electrostatic signal input line; a first N-type thin film transistor having a gate connected to the low potential electrostatic output line, and a drain connected to the low potential electrostatic output line; a second N-type thin film transistor having a gate connected to the low potential electrostatic output line and a drain connected to the source of the first N-type thin film transistor, and a source connected to the electrostatic signal input line.
US10601217B2

In certain aspects of the disclosure, a chip includes an isolation device, wherein the isolation device is configured to allow a signal to pass from a first circuit in a first power domain to a second circuit in a second power domain via a signal line that crosses between the first and second power domains when the isolation device is disabled, and to clamp a portion of the signal line in the second power domain to a logic state when the isolation device is enabled. The chip also includes a failure detector configured to detect an imminent power failure of at least one of the first power domain or the second power domain, and to enable the isolation device in response to detection of the imminent power failure.
US10601215B2

An on-vehicle power source switch apparatus configured to switch off a switch when a ground fault occurs is provided. A first system includes a generator, a first power storage that powers a first vehicle load. A second system includes a second power storage device that powers a second vehicle load. A separation switch is connected between the first and the second systems. A first and a second control circuits respectively output a first and a second provisional control signals for controlling the separation switch. A logic circuit switches on the separation switch when both the first and the second provisional controls signal indicate on. When power is generated, the first and the second control circuits output respective first and second provisional control signals indicating on, and when a ground fault has occurred, the first and second control circuits output the first and second provisional control signals indicating off.
US10601207B2

A method of manufacturing a wire with a terminal includes a crimping process of crimping a crimping terminal on a wire by a terminal crimping apparatus that includes a first mold including a supporting surface supporting the crimping terminal, and a second mold disposed to face the supporting surface and including a recessed wall surface. The recessed wall surface includes a first wall surface and a second wall surface, and a third wall surface curved toward an opposite side of the supporting surface. The first wall surface and the second wall surface include inclined portions and parallel portions. The inclined portions are inclined with respect to the stroke direction so that an interval in the width direction becomes narrower toward the third wall surface. The parallel portions are parallel to the stroke direction. In the crimping process, the side wall surfaces of the first mold face the inclined portions in a state in which the first mold and the second mold come closest to each other in the stroke direction.
US10601189B1

A connector assembly including a connector body with a spring clip including a first free end for engaging a side wall of an electrical box upon installation. During insertion of the connector body the first free end engages the knock-out hole perimeter and deforms so as to permit further insertion. Once the connector body is fully inserted, the spring clip cooperates with a lug on the connector body to hold the connector assembly onto the electrical box.
US10601172B2

A connector includes a housing. A retainer is mounted on the housing from an opening and includes a locking lance facing a cable and resiliently displaceable in one direction toward the cable. The locking lance resiliently contacts and holds the cable. The locking lance includes a curved portion curved in conformity with an outer surface of the cable and two projections projecting in a direction opposite to the one direction from ends of the curved portion. The housing includes a pressing portion to bring the curved portion into surface contact with the outer surface of the cable by pressing the projections in the one direction. A slit is between the projections of the curved portion and extends in an extending direction of the cable.
US10601169B2

A connector (1) into which a mating connector (female connector 101) is fittable from front includes a tubular receptacle (40) having a forwardly open fitting opening (50) capable of accommodating the mating connector (101) fit through the fitting opening (50). A drainage recess (70) penetrate in a direction perpendicular to a front-rear direction at a position retracted from the fitting opening (50) in the receptacle (40). Partitioning ridges (60) are at positions retracted from the fitting opening (50) and project in a direction intersecting the front-rear direction from the receptacle (40). A front end (first rib end 61A) of some partitioning ridge (first rib 61) is coupled to and flush with a back wall (72) of the drainage recess (70).
US10601168B2

A plug connection kit for connecting a branch line to a through line, comprising a plug housing and a socket housing that enclose contact inserts. Flexible cable ends are molded onto the plug housing and socket housing. The plug housing and socket housing are each manufactured by casting plastic onto a base body with the contact inserts and flexible cable ends connected thereto inserted, thus forming a solid one-piece plug and a solid one-piece socket. The female and male contact inserts are electrically connectable to one another in a contact area between the plug housing and the socket housing. The plug connection kit also includes a sealing sleeve that encases the plug housing, the socket housing, and the contact area between the two housings in order to protect the plug connection kit from penetration of water and/or dust.
US10601166B2

An electrical board for connecting two electrical harnesses to each other includes a module holder and at least one connector module to establish the connection between the two electrical harnesses, said connector module comprising a base engaged with the module holder, a perforated core extending the base and allowing connection of the two harnesses to each other via plugs. The module holder includes a fixed jaw, a movable jaw mounted to pivot on the fixed jaw, and locking means for holding the mobile jaw in the closed position.
US10601165B2

An angled multicontact connector comprises at least two angled contacts, an insulative angled body made of an insulative material, a conductive angled body made of a conductive material, a conductive material cap adapted to be fixed to the cable and to close the conductive angled body around the angled contacts. The insulative angled body includes at least one groove open toward the outside, each groove being adapted to receive at least in part the rear end of one of the angled contacts. The angled multicontact connector further includes an insulative material part adapted to be removably fixed to the insulative angled body to retain the rear end of the angled contacts not received in a groove and to separate each rear end from the rear end of any other angled contact, and from the conductive cap when the conductive cap is in a position closing the conductive angled body.
US10601162B2

An electrical connector is mounted on a circuit board for mating with a chip module. The electrical connector includes: an insulating body, provided with an accommodating hole; a conductive terminal, accommodated in the accommodating hole, and having a conducting portion; and an electrical conductor, provided below the conducting portion to be in contact with the conducting portion and electrically connected to the circuit board. The electrical conductor is received in a receiving groove of the insulating body. The positions of the electrical conductor and the conductive terminal are relatively fixed in a horizontal direction, and the electrical conductor is more wear-resistant. Thus, the electrical conductivity of the electrical conductor will not be affected due to the electrical conductor and the conductive terminal scratching with each other.
US10601161B2

A connection terminal comprises a receptacle part, a crimping part, and a connection part connected between the receptacle part and the crimping part. The crimping part includes a conductor crimping part adapted to be crimped on a conductor of a wire and an outer layer crimping part adapted to be crimped on an outer layer of the wire. The conductor crimping part includes a first conductor crimping part and a second conductor crimping part which are spaced from each other by an interval in a lateral direction perpendicular to the longitudinal direction. The receptacle part includes an elastic latch adapted to lock a plug inserted into the receptacle part and located at a rear end of the receptacle part close to the crimping part. The elastic latch is positioned between the first conductor crimping part and the second conductor crimping part in the lateral direction.
US10601158B2

There is a problem that an oxide film or high resistance abrasion powder is formed at the contact interface due to micro sliding abrasion in a high temperature environment or temperature cycle to increase the contact resistance at the contact portion of a non-noble metal connection terminal. Provided is an in-vehicle electronic module, a connector, and a connection structure thereof, which have the same connection reliability as noble metals even when exposed to a harsh environment and can reduce cost of members.The in-vehicle electronic module includes a circuit board on which an electronic component is mounted, and a protection member accommodating the circuit board and protecting the circuit board from a surrounding environment and has a structure where a surface layer at an end portion of the circuit board is made of an 1 Ag-containing Sn-based solder having average thickness of 4 μm or more, and a surface material of a connection terminal of one card edge connector has a two layer structure of a soft noble metal layer of Ag, Pd, Pt, or the like/a reaction layer of a hard noble metal and Sn or an Ni layer.
US10601156B2

Plug contact set, comprising a plug contact strip (17) having several first contact elements (12, 14) that are formed as components of a circuit board (10) and are arranged in the region of a circuit board edge (19), at least one of which contact elements (12, 14) being formed in the plugging direction (S) as a checking contact (14) having a smaller length than the remaining contact elements, and having a plug connector having several second contact elements (22) that are arranged in a housing, at least one of which contact elements (22) being set up to electrically make electric contact with the checking contact (14), wherein at least one first latch element (31, 51) that is formed as part of the circuit board (10) is arranged on the circuit board edge (19) and at least one second latch element (32) is arranged on the housing, said latch elements being set up to latch with one another when the first contact elements (12, 14) are completely contacted by the second contact elements (22), and wherein a third latch element (33, 53) that is formed as part of the circuit board (10) and that is able to latch to the second latch element (32) is provided that is arranged to be spaced apart from the first latch element (31) in the plugging direction (S) in such a way that, by latching the third latch element (33, 53) to the second latch element (32), an as clearance-free as possible fixing of the housing on the circuit board (10) in the completely contacted state of the first and second plug contacts (12, 14, 22) is achieved.
US10601155B2

A contacting device has a housing in which a first contact element is arranged. The first contact element has a receiving chamber for a second contact element, which is open with respect to at least one opening of the housing. The first contact element is displaceable relative to the housing in a direction transverse to a central longitudinal axis of the receiving chamber against a spring element, so that the second contact element is insertable into the receiving chamber and capable of being clamped in the receiving chamber by the spring element. The first contact element is firmly connected to at least one plug-in contact element. By this device, a transmission of electrical energy from a power supply line to a circuit board can be achieved in simple and reliable manner.
US10601154B2

Provided is an electrical junction box having a highly versatile novel structure such that external wires can be connected thereto from multiple directions. An electrical junction box includes cases in which a circuit member is disposed, and the cases include an external-wire fastening part in which a connection part provided on the circuit member is exposed, and to which a connection terminal provided at an end of an external wire is to be fastened and fixed. The external-wire fastening part includes a fastener that is used to fasten and fix the connection terminal to the connection part, and the external-wire fastening part has a plurality of fastening points whose normals that extend from the central axis of the fastener to a peripheral wall of the cases have the same length, the plurality of fastening points being oriented in different directions.
US10601153B2

A coaxial connector assembly including a plug connector and a receptacle connector each holding a coaxial terminal including a center and an external terminal surrounding the center terminal, wherein housings of the plug connector and the receptacle connector have an engageable/disengageable lock mechanism, in an engagement state, a range of relative movement between the coaxial terminals in an axial direction is smaller than a shorter one of a center terminal effective fitting length, which is a distance from a start position to an end position of contact between the center terminals, or an external terminal effective fitting length, which is a distance from a start position to an end position of contact between the external terminals, and an impedance in the axial direction range of the minimum effective fitting length is matched to a specific impedance.
US10601147B2

The present invention enables a core wire that contains a plurality of strands and a bonding object to be bonded more reliably using an ultrasonic bonding device that cantilever supports a pressing portion that performs ultrasonic bonding. A bonding object (for example, a terminal) is supported as on a stage, a core wire is overlaid on the bonding object, and the core wire and the bonding object are ultrasonically bonded in a state where the core wire is pressed toward the bonding object, using a pressing portion that is supported in cantilever fashion. During ultrasonic bonding, a pressing surface of the pressing portion is inclined in a pressing direction progressively toward a side where the pressing portion is cantilever supported, and also a bonding surface of the bonding object is inclined in the pressing direction progressively toward the side where the pressing portion is cantilever supported.
US10601143B2

A plurality of primary radiators (1) is classified by combinations of frequency and polarization of radiated radio waves, a plurality of primary radiators (1) belonging to the same class is arranged at positions corresponding to vertexes of one of triangles in a repeated triangle pattern TRPattern, and the shape of a main reflector (2) and the shape and arrangement of the repeated triangle pattern TRPattern are determined such that a direction of a line segment passing through positions corresponding to two vertexes in the triangle is different from a radiation direction of a sidelobe of a radio wave reflected by a main reflector (2) after having been radiated from a primary radiator (1) arranged at a position corresponding to the vertexes.
US10601132B2

An active phase switchable array includes a plurality of antenna elements and a bias circuit. Each of the radar elements includes an antenna, a power coupling network and an injection-locked oscillator (ILO), and each of the antenna elements is coupled with each other through the power coupling networks for operating the ILO of each of the antenna elements in self- and mutual-injection-locked states. The antenna elements in self-injection-locked state are utilized to detect the vital signs of subjects, and the antenna elements in mutual-injection-locked state are utilized to produce phase difference between the radiating signals of the antenna elements for forming a beam. As a result, the active phase switchable array can simultaneously detect the vital signs of multiple subjects.
US10601130B2

An embodiment of an antenna comprises an array of antenna elements arranged in groups of antenna elements adjustably coupled to respective reference waves. A multiplicity of patterns of antenna coupling settings are defined, each of which gives rise to a main lobe which points the antenna in a particular direction, each pattern also giving rise to respective side lobes. First and second such patterns may point the antenna in the same direction but with non-identical side lobes. In this way the clutter level from the side lobes relative to the main lobe is much smaller than would be the case if one of the patterns were employed both for transmitting and receiving. Alternatively, the first and second patterns may be used in quick succession both for transmitting, or used in quick succession both for receiving. The antenna may also switch rapidly between patterns where the main lobe points in a different direction in each pattern, allowing dithering of the beam or rapid switching between scanning and tracking.
US10601123B2

A vehicular antenna device capable of preventing reception trouble in a radio, a TV receiver, or the like due to noise by suppressing electromagnetic noise radiated from an electronic device or the like is provided. A vehicular antenna device is equipped with an antenna base 2 which is fixed to a vehicle body via an attaching member, an antenna case which covers the antenna base, and an antenna element 5 and a camera module 10 as an electronic device which are disposed in an internal space surrounded by the antenna base 2 and the antenna case. A camera module case 40 surrounds a circuit board 50 of the camera module 10 and thereby shields it.
US10601120B2

A base station antenna includes a reflector assembly and a linear array of radiating elements extending forwardly from the reflector assembly. The reflector assembly includes an RF choke that has a choke body and a choke cover. The choke cover at least partially covers a choke body opening so that a choke opening of the RF choke is smaller than the choke body opening.
US10601115B2

A mobile terminal includes a window including a transparent region and an opaque region surrounding the transparent region, a metal case provided below the window to accommodate the window, having a rear surface portion facing the window and a side surface portion formed to extend from the rear surface portion toward a front surface, and exposed outwardly, a non-metal member formed in a region formed by cut away a portion of the case and having a slot formation portion spaced apart from the side surface portion at a predetermined interval and a pair of sectioning portions extending from the slot formation portion and traversing the side surface portion to section the side surface portion into first to third members, and first to third antenna patterns formed in the opaque region and electrically connected to the first to third members to form first and third antennas, respectively.
US10601107B2

A printing apparatus is described that comprises an antenna configured to intercept radio waves modulated with printing data; a receiver configured to recover the printing data from the intercepted radio waves; a printing module configured to generate a printed output on a printing medium based on the printing data; and a housing for the printing apparatus, wherein the housing encloses the antenna, the receiver, and the printing module, and further wherein the antenna is integrated with an interior surface of the housing.
US10601099B2

The present disclosure sets forth various embodiments of power reception kits and methods. In one embodiment, a guided surface wave receive structure is configured to obtain electrical energy from a guided surface wave travelling along a terrestrial medium. Power output circuitry having a power output is configured to be coupled to an electrical load. The electrical load is experienced as a load at an excitation source coupled to a guided surface waveguide probe generating the guided surface wave. At least one connector is configured to couple the at least one guided surface wave receive structure to the power output circuitry.
US10601095B2

An anaerobic aluminum-water electrochemical cell that includes: a plurality of electrode stacks, each electrode stack comprising an aluminum or aluminum alloy anode, and at least one solid cathode configured to be electrically coupled to the anode; a liquid electrolyte between the anode and the at least one cathode; one or more physical separators between each electrode stack adjacent to the cathode; a housing configured to hold the electrode stacks, the electrolyte, and the physical separators; and a water injection port, in the housing, configured to introduce water into the housing. The electrolyte includes a hydroxide base at a concentration of at least 0.05 M to at most 3 M.
US10601088B2

An endplate of a battery module is configured with holes through which an inlet and outlet for a cooling tube are arranged. Cooling interfaces between the inlet and outlet and a cooling manifold are arranged outside of a battery module compartment that houses the battery module. In a first embodiment, sealing components separate from the cooling tube are arranged inside the inlet and outlet holes, with each sealing component defining multiple sealing areas (e.g., ring-shaped sealing areas) for sealing a respective hole. In a second embodiment, the cooling tube includes integrated sealing components (e.g., threaded sections of the cooling tube) inside the inlet and outlet holes, with each integrated sealing component defining a single sealing area (e.g., a ring-shaped sealing area) for sealing a respective hole.
US10601082B2

A signal collection assembly and a power battery module are provided. The signal collection assembly includes: a substrate; a signal collection line including a sheet-like metal conductive element disposed on the substrate; a signal collection member disposed on the substrate and connected with the signal collection line; and a signal collection terminal disposed on the substrate. The signal collection terminal includes a first terminal connected with the signal collection line and a second terminal connected with a power connection member of the power battery module.
US10601076B2

The present invention relates to a composition for a gel polymer electrolyte and a gel polymer electrolyte prepared using the same, and specifically provides a composition for a gel polymer electrolyte including a lithium salt, an organic solvent, and a polymer A having an epoxy group represented by Formula 1, and a polymer B having an amine group and a cyanide group represented by Formula 2, wherein the polymers A and B are included in an amount of 1 to 20 wt % based on the total weight of the composition for a gel polymer electrolyte, and wherein a gel polymer electrolyte for a secondary battery can be prepared that includes a polymer network formed by combining the polymer A having an epoxy group represented by Formula 1 and the polymer B having an amine group and a cyanide group represented by Formula 2 in a three-dimensional structure.
US10601065B2

The present invention provides a method for manufacturing a battery which includes a granulation step (Step S1) of mixing at least an active material, a binder, and a solvent to form wet granulated particles, a deposition step (Step S2) of subjecting the wet granulated particles to a forming process to form an active material layer on a current collector, a rolling step (Step S3) of placing a separator on a surface of the active material layer and rolling the separator before the wet granulated particles on the current collector are dried, to obtain a laminated body in which the current collector, the active material layer, and the separator are stacked in this order and closely attached to each other, a drying step (Step S4) of drying the laminated body to provide an integrated laminated body, and a fabrication step (Step S5) of fabricating a battery using the integrated laminated body.
US10601059B2

A fuel cell system comprises: a fuel gas supplier: an air supplier; an air flow rate acquirer that obtains a flow rate of the air that is supplied to a fuel cell; a voltage acquirer that obtains an output voltage of the fuel cell; and a controller. At the time of starting the fuel cell system, the controller controls the fuel gas supplier to supply a fuel gas to the fuel cell for a first time period. After elapse of the first time period, the controller controls the air supplier to start supply of the air. The controller calculates an integrated value of the flow rate for a second time period after the supply of the air is started. When the integrated value becomes greater than a predetermined amount and the output voltage is less than a predetermined voltage, the controller determines that the fuel cell system has an abnormality.
US10601052B2

Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.
US10601041B2

A lithium positive electrode active material including at least 95 wt % spinel having a chemical composition of LixNiyMn2-y-z1-z2D1z1D2z2O4, wherein 0.9≤x≤1.1, 0.4≤y≤0.5, 0.005≤z1≤0.2, 0≤z2≤0.2, wherein D1 and D2 are dopants chosen between the following elements: Co, Cu, Ti, Zn, Mg, Fe or combinations thereof. D1 and D2 are different dopants, and the lithium positive electrode active material is a powder composed of material particles, wherein the distribution of dopant D1 is non-uniform along a radial axis of the material particles and the distribution of the dopant D2 is substantially uniform along the radial axis of the material particles. Also, a process for preparing the lithium positive electrode active material and a secondary battery comprising the lithium positive electrode active material.
US10601039B2

A mixed oxide of sodium and transition metals having the formula (1): Nax[MnaNibCoc]O2+y  (1) wherein: 0.5≤x≤0.9, −0.1≤y≤0.1, a+b+c=1, 4a+2b+3c=4−x+2y, and 0
US10601038B2

A positive electrode active material for a nonaqueous electrolyte secondary battery that is constituted by a lithium nickel composite oxide that combines a high capacity with excellent thermal stability, a manufacturing method suitable for industrial production, and a nonaqueous electrolyte secondary battery of high safety. A positive electrode active material for a nonaqueous electrolyte secondary battery includes a lithium nickel composite oxide represented by the following composition formula (1): LibNi1-aM1aO2  (1) (where M1 represents at least one element selected from transition metal elements other than Ni, elements of the second group of the Periodic System and elements of the thirteenth group of the Periodic System; a satisfies the condition 0.01≤a≤0.5; and b satisfies the condition 0.85≤b≤1.05). The content of carbon in the lithium nickel composite oxide is equal to or less than 0.08% by mass.
US10601033B2

A high-capacity and a high-performance rechargeable battery is provided by forming a rechargeable battery stack that includes a spalled material structure that includes a spalled cathode material layer that has at least one textured surface and a stressor layer that has at least one textured surface. The stressor layer serves as a cathode current collector of the rechargeable battery stack. The at least one textured surface of the spalled cathode material layer forms a large interface area between the cathode and electrolyte which is formed above the spalled cathode material layer. The large interface area between the cathode and the electrolyte reduces interface resistance within the rechargeable battery stack.
US10601027B2

A method of making an electrode includes the step of dispersing an active electrode material and a conductive additive in a solvent to create a mixed dispersion. The solvent has a surface tension less than 40 mN/m and an ozone forming potential of no more than 1.5 lbs. ozone/lb. solvent. A surface of a current collector is treated to raise the surface energy of the surface to at least the surface tension of the solvent or the mixed dispersion. The dispersed active electrode material and conductive additive are deposited on the current collector. The coated surface is heated to remove solvent from the coating.
US10601022B2

A wiring module that is to be attached to a unit cell group in which a plurality of unit cells that each have positive and negative electrode terminals are arranged, including a plurality of basic units arranged in a direction in which the unit cells are arranged. Each of the plurality of basic units includes: a bus bar configured to electrically connect the electrode terminals of two adjacent unit cells to each other; an electrical wire that is to be electrically connected to the unit cells to detect a state of the unit cell group; a fuse configured to electrically connect the bus bar and the electrical wire to each other, and prevent an overcurrent; and a housing provided with a fuse opening into which the fuse is inserted, and a bus bar opening into which the bus bar is inserted. The fuse opening opens in a direction in which the bus bar extends.
US10601017B2

A conductor module includes a wiring member, a plurality of bus bars, a plurality of locking pieces, and a reinforcing member. A plurality of wirings and through-holes are formed in the wiring member. The bus bar is electrically connected to one of two electrode terminals. The two through-holes are formed in a first opposing region opposing one end face between both end faces of the bus bar opposing each other in a width direction with an electrical connection portion where the bus bar and the wiring are electrically connected interposed therebetween. The locking piece is formed integrally with the bus bar, is arranged in the through-hole, has a distal end positioned radially outward of the through-hole, and fixes the bus bar to the wiring member. The reinforcing member reinforces the wiring member, and is formed to surround the through-hole.
US10601015B2

A bus bar module includes a plurality of first bus bars, a plurality of second bus bars, a resin-made case, a resin-made case, and a resin-made bridging member. The first bus bars electrically connect electrode terminals to each other in a first electrode row arranged in the same direction included in a battery assembly that is a plurality of batteries superimposed in the same direction, and electrically connect the electrode terminals of the two adjacent batteries to each other in the one electrode row. The second bus bars electrically connect electrode terminals of the two adjacent batteries to each other in a second electrode row in the battery assembly. The case holds the first bus bars. The case holds the second bus bars. The bridging member bridges these cases.
US10601005B2

Provided is a battery module that is simple, compact and sure to improve the mechanical performance against cell pressing, swelling and impacts and a method for fabricating the same. The battery module according to the present disclosure includes two or more pouch-type battery cells, and a hollow quadrilateral monoframe in which the battery cells are received, wherein the monoframe has a first opening and a second opening that are open to two sides in lengthwise direction of the battery cells, wherein a cushion bag is provided in close contact between the battery cells and the monoframe.
US10601002B2

A cylindrical battery in an aspect of the present invention includes an electrode body formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween; an electrolyte; a bottomed cylindrical outer can; and a sealing body crimped to an opening of the outer can via a gasket. The sealing body includes a valve body having an annular protrusion part, an insulating member disposed on an inner circumference of the protrusion part of the valve body and having a skirt portion, and a metal plate disposed on an inner circumference of the skirt portion of the insulating member and connected to a center portion of the valve body. The metal plate is crimped with the protrusion part of the valve body via the insulating member.
US10600985B2

An organic electroluminescence display apparatus includes: an insulating layer including a flat surface, a first concave surface and a second concave surface extending from one end and another end of the flat surface, respectively; a first electrode on the insulating layer and including a first concave electrode surface overlapping with the first concave surface, a second concave electrode surface overlapping with the second concave surface, and a flat electrode surface overlapping with the flat surface; an organic layer on the first electrode; a second electrode on the organic layer, and a plurality of light shielding members on the second electrode with an opening therebetween, the opening overlapping with the organic layer. One end of each of the light shielding members is closer to the second concave surface than to the first concave surface.
US10600982B2

In an organic EL display device that includes a base material having flexibility and an organic EL element (electroluminescence element) provided on the base material, a sealing film is formed that seals the organic EL element. Additionally, a first adjustment layer and a second adjustment layer, which are configured of materials having the same thickness and the same Young's modulus and are configured to adjust a neutral surface of the organic EL display device, are each provided at an end portion on one side and an end portion on another side of the organic EL display device in a film thickness direction T.
US10600972B2

A light-emitting element which has low driving voltage and high emission efficiency, is provided. The light-emitting element includes, between a pair of electrodes, a hole-transport layer and a light-emitting layer over the hole-transport layer. The light-emitting layer contains a first organic compound having an electron-transport property, a second organic compound having a hole-transport property, and a light-emitting third organic compound converting triplet excitation energy into light emission. A combination of the first organic compound and the second organic compound forms an exciplex. The hole-transport layer contains at least a fourth organic compound whose HOMO level is lower than or equal to that of the second organic compound and a fifth organic compound whose HOMO level is higher than that of the second organic compound.
US10600968B2

An amine compound and an organic electroluminescence device including the same are provided. The amine compound according to an embodiment of the inventive concept is represented by Formula 1.
US10600967B2

The present invention relates to novel light-emitting materials. These materials comprise a side chain that includes a fully deuterated or partially deuterated alkyl chain. This new side chain could improve device lifetime compared to nondeuterated side chains.
US10600964B2

Disclosed herein is a composition comprising a regioregular oligothiophene, a regioregular poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene] and/or a benzothiophene; where the regioregular oligothiophene, the regioregular poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene] and the benzothiophene each have a number average molecular weight of less than or equal to 475 grams per mole; where the composition is melted and then annealed at a temperature between a melting point and a glass transition temperature of the composition; the composition having a charge mobility that is greater than a comparative composition that is either not annealed or annealed at the same temperature between the melting point and the glass transition temperature but without being subjected to prior melting.
US10600950B2

A method is provided for producing an electrically-powered device and/or component that is embeddable in a solid structural component, and a system, a produced device and/or a produced component is provided. The produced electrically powered device includes an attached autonomous electrical power source in a form of a unique, environmentally-friendly structure configured to transform thermal energy at any temperature above absolute zero to an electric potential without any external stimulus including physical movement or deformation energy. The autonomous electrical power source component provides a mechanism for generating renewable energy as primary power for the electrically-powered device and/or component once an integrated structure including the device and/or component is deployed in an environment that restricts future access to the electrical power source for servicing, recharge, replacement, replenishment or the like.
US10600947B2

Highly efficient thermoelectric materials with an improved thermoelectric performance due to doping ions on a Bi—Se—Te based compound, and a thermoelectric element and a thermoelectric module including the same are disclosed. The thermoelectric materials include a compound expressed by Chemical Formula 1 or a compound expressed by Chemical Formula 2. (AB2)x(Bi2Se2.7Te0.3)1-x   In Chemical Formula 1, A is a divalent cation element, B is a monovalent anion element, A and B are different with each other, and x is in a range of 0.0 In Chemical Formula 2, A is a monovalent cation element, B is a monovalent anion element, A and B are different with each other, and x is in a range of 0.0
US10600946B2

A method of manufacturing a hexagonal boron nitride (hBN) laminate on a backside of LED filament contains steps of: a) Preparing a substrate of LED filament array; b) Coating the hBN based slurry on the backside of substrate of LED filament and dried at 100-200° C.; c) Cutting the array to single LED filament. A LED filament with hBN based heat dissipation radiation laminate was obtained after this process. For heat dissipation application, hexagonal boron nitride laminate coating can significantly enhance the performance of LED light bulb.
US10600944B2

A lead frame includes a first electrode, a second electrode, two hanger leads, and an outer frame, and partially forms a box-shaped package which has a first recess for mounting a light emitting element as combined with a support member that supports the first electrode and the second electrode. At least a portion of lower faces of the electrodes, at least a portion of lower faces of the hanger leads, and at least a portion of a lower face of the planned formation area for the support member are coplanarly formed. Lower face corners of the first electrode and the second electrode are rounded while upper face corners of the first electrode and the second electrode are not rounded, and upper face corners of the hanger leads are rounded while lower face corners of the hanger leads are not rounded.
US10600943B2

A light-emitting device includes a carrier with a first surface and a second surface opposite to the first surface; and a light-emitting unit disposed on the first surface and configured to emit a light toward but not passing through the first surface. When emitting the light, the light-emitting device has a first light intensity above the first surface, and a second light intensity under the second surface, a ratio of the first light intensity to the second light intensity is in a range of 2˜9.
US10600938B2

A light-emitting device includes: a light-emitting stack including a first active layer emitting a first light having a first peak wavelength; a diode emitting a second light having a second peak wavelength between 800 nm and 1900 nm; and a tunneling junction between the diode and the light-emitting stack, wherein the tunneling junction includes a first tunneling layer and a second tunneling layer on the first tunneling layer, the first tunneling layer has a band gap and a thickness of the first tunneling layer is greater than a thickness of the second tunneling layer.
US10600931B2

An avalanche photodiode includes: a first contact layer; a light absorbing layer located on the first contact layer and having a multi-quantum well structure; a first electric field control layer located on the light absorbing layer; and a carrier multiplication layer located on the first electric field control layer. At least one of the multi-quantum well structure includes a well layer that includes Ga1-xAlxN (0≤X≤0.3), and a barrier layer that includes Ga1-xAlxN (0.7≤X≤1) and a doping portion doped with a p-type dopant.
US10600929B2

An optical voltage source and decoupling device is provided, wherein the optical voltage source has a number N of series-connected semiconductor diodes, each having a p-n junction, the semiconductor diodes are monolithically integrated and together form a first stack with an upper side and an underside, and the number N of the semiconductor diodes of the first stack is greater than or equal to two, the decoupling device has a further semiconductor diode. The further semiconductor diode has a pin junction and, the further semiconductor diode is anti-serially connected with the semiconductor diodes of the first stack. An underside of the further semiconductor diode is materially connected with the upper side of the first stack and the further semiconductor diode forms a total stack together with the first stack.
US10600923B2

The low-reflection coating of the present invention is adapted to be provided on at least one principal surface of a substrate. The low-reflection coating is a porous film having a thickness of 80 to 800 nm, the porous film including: fine silica particles being solid and spherical and having an average particle diameter of 80 to 600 nm; and a binder containing silica as a main component and containing a hydrophobic group, the fine silica particles being bound by the binder. The low-reflection coating contains 35 to 70 mass % of the fine silica particles, 25 to 64 mass % of the silica of the binder, and 0.2 to 10 mass % of the hydrophobic group of the binder. The low-reflection coating produces a transmittance gain of 1.5% or more when provided on the substrate.
US10600922B2

A solar cell can have a first dielectric formed over a first doped region of a silicon substrate. The solar cell can have a second dielectric formed over a second doped region of the silicon substrate, where the first dielectric is a different type of dielectric than the second dielectric. A doped semiconductor can be formed over the first and second dielectric. A positive-type metal and a negative-type metal can be formed over the doped semiconductor.
US10600919B1

A semiconductor structure is provided. The semiconductor structure includes a substrate, a first oxide layer disposed over the substrate, a second oxide layer, and a semiconductor layer disposed over the second oxide layer. The second oxide layer is disposed at one side of the first oxide layer and is in contact with the first oxide layer. The second oxide layer partially overlaps the first oxide layer, and the first oxide layer and the second oxide layer include the same oxide.
US10600916B2

A field-effect transistor including: a gate electrode, which is configured to apply gate voltage; a source electrode and a drain electrode, which are configured to take electric current out; an active layer, which is disposed to be adjacent to the source electrode and the drain electrode and is formed of an oxide semiconductor; and a gate insulating layer, which is disposed between the gate electrode and the active layer, wherein the gate insulating layer contains a paraelectric amorphous oxide containing a Group A element which is an alkaline earth metal and a Group B element which is at least one selected from the group consisting of Ga, Sc, Y, and lanthanoid, and wherein the active layer has a carrier density of 4.0×1017/cm3 or more.
US10600914B2

A method of forming isolation pillars for a gate structure, the method including: providing a preliminary structure including a substrate having a plurality of fins thereon, an STI formed between adjacent fins, an upper surface of the STIs extending higher than an upper surface of the fins, and a hardmask over the upper surface of the fins and between adjacent STIs; forming a first trench in a first selected STI and between adjacent fins in a gate region, and forming a second trench in a second selected STI and between adjacent fins in a TS region; and filling the first and second trenches with an isolation fill thereby forming a first isolation pillar in the gate region and a second isolation pillar in the TS region, the first and second isolation pillars extending below the upper surface of the STIs.
US10600909B2

A semiconductor device includes an epitaxial layer disposed over a semiconductor substrate, a drift region disposed in the epitaxial layer and adjacent to an upper surface of the epitaxial layer, a gate structure disposed over the epitaxial layer, a source region disposed in the epitaxial layer outside the drift region, and a drain region disposed in the drift region. The epitaxial layer and the drift region have a first conductivity type. The semiconductor device also includes a plurality of doped region pairs disposed in the drift region and arranged in a direction from the drain region toward the source region. Each of the plurality of doped region pairs includes a first doped region having a second conductivity type opposite to the first conductivity type, and a second doped region disposed over the first doped region. The second doped region has the first conductivity type.
US10600902B2

A self repairing field effect transistor (FET) device, in accordance with one embodiment, includes a plurality of FET cells each having a fuse link. The fuse links are adapted to blow during a high current event in a corresponding cell.
US10600893B2

An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
US10600891B2

A method of forming a III-V semiconductor vertical fin is provided. The method includes forming a fin mandrel on a substrate, forming a spacer layer on the substrate surrounding the fin mandrel, forming a wetting layer on each of the sidewalls of the fin mandrel, forming a fin layer on each of the wetting layers, removing the fin mandrel, removing the wetting layer on each of the fin layers, and forming a fin layer regrowth on each of the sidewalls of the fin layers exposed by removing the wetting layer from each of the fin layers.
US10600887B2

A method of forming a vertical transport fin field effect transistor is provided. The method includes forming a doped layer on a substrate, and forming a multilayer fin on the doped layer, where the multilayer fin includes a lower trim layer portion, an upper trim layer portion, and a fin channel portion between the upper and lower trim layer portions. A portion of the lower trim layer portion is removed to form a lower trim layer post, and a portion of the upper trim layer portion is removed to form an upper trim layer post. An upper recess filler is formed adjacent to the upper trim layer post, and a lower recess filler is formed adjacent to the lower trim layer post. A portion of the fin channel portion is removed to form a fin channel post between the upper trim layer post and lower trim layer post.
US10600886B2

A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes a substrate, a first source/drain layer including a plurality of pillar structures, and a plurality of fins disposed on and in contact with the plurality of pillar structures. A doped layer epitaxially grown from the first source/drain layer is in contact with the plurality of fins and the plurality of pillar structures. A gate structure is disposed in contact with two or more fins in the plurality of fins. The gate structure includes a dielectric layer and a gate layer. A second source/drain layer is disposed on the gate structure. The method includes epitaxially growing a doped layer in contact with a plurality of fins and a plurality of pillar structures. A gate structure is formed in contact with two or more fins. A second source/drain layer is formed on the gate structure.
US10600863B2

According to one embodiment, a semiconductor device includes first to fourth semiconductor regions, a first electrode, and a first insulating film. The first semiconductor region includes a first partial region and a second partial region. The second semiconductor region is separated from the first partial region. The third semiconductor region is provided between the first partial region and the second semiconductor region. The third semiconductor region includes a third partial region and a fourth partial region. The first electrode is separated from the second partial region and is separated from the second semiconductor region and the third semiconductor region. The first insulating film includes a first insulating region and a second insulating region. The fourth semiconductor region includes a first portion. The first portion is provided between the fourth partial region and at least a portion of the first insulating film.
US10600860B2

A resistive material is formed straddling over each semiconductor fin that extends upward from a surface of a substrate. The resistive material is then disconnected by removing the resistive material from atop each semiconductor fin. Remaining resistive material in the form of a U-shaped resistive material liner is present between each semiconductor fin. Contact structures are formed perpendicular to each semiconductor fin and contacting a portion of a first set of the semiconductor fins and a first set of the U-shaped resistive material liners.
US10600859B2

A display device includes a substrate, a plurality of pixels, a plurality of wirings, a power voltage supply line, an insulating layer, and a window. The substrate includes a display area and a peripheral area outside the display area. The plurality of pixels are in the display area and the plurality of wirings are in the peripheral area. The power voltage supply line covers the plurality of wirings and includes a top surface having an irregular surface corresponding to the plurality of wirings. The insulating layer includes an opening overlapping a first portion of the power voltage supply line. The window is disposed on the insulating layer and includes a light-blocking region and a light-transmissive region, the light-transmissive region entirely covering the opening.
US10600849B2

A display device is provided. The display device includes a changeable reflective structure having a first changeable electrode, a changeable reflecting layer and a second changeable electrode, which are sequentially stacked on an upper substrate opposite a lower substrate. In the display device, the reflectance of the changeable reflecting layer may be adjusted by controlling a voltage applied to the first changeable electrode and the second changeable electrode according to a state of a light-emitting structure which is disposed on an emitting area of the lower substrate. Thus, in the display device, a decrease of the color sense by the reflection of external light in a display state may be prevented, and the reflective area may have sufficient reflectance for serving as a mirror in a non-display state.
US10600845B2

According to one embodiment, a memory device includes first to third interconnects, memory cells, and selectors. The first to third interconnects are provided along first to third directions, respectively. The memory cells includes variable resistance layers formed on two side surfaces, facing each other in the first direction, of the third interconnects. The selectors couple the third interconnects with the first interconnects. One of the selectors includes a semiconductor layer provided between associated one of the third interconnects and associated one of the first interconnects, and gates formed on two side surfaces of the semiconductor layer facing each other in the first direction with gate insulating films interposed therebetween.
US10600834B2

An image sensor includes: a pixel array where a plurality of pixel groups are arrayed in two dimensions, wherein each of the plurality of the pixel groups includes: a first pixel suitable for sensing a first color signal that is color-separated through a first color filter; and a second pixel suitable for sensing a second color signal that is color-separated through a second color filter and has a longer wavelength than the first color signal, and a volume of a first color filter or a second color filter that is positioned in a peripheral area of the pixel array is different from a volume of a first color filter or a second color filter that is positioned in a central area of the pixel array.
US10600833B2

An image sensor is provided. The image sensor includes a visible light receiving portion and an infrared receiving portion. The visible light receiving portion is configured to receive a visible light. The infrared receiving portion is configured to receive infrared. The visible light receiving portion includes a color filter ball layer configured to collect the visible light. In some embodiments of the present invention, the infrared receiving portion includes an infrared pass filter ball layer configured to collect the infrared. In some other embodiments of the present invention, the infrared receiving portion includes a white filter ball layer configured to collect the infrared.
US10600826B2

A pixel array in a solid-state imaging device includes first and second signal lines provided for each column. A pixel belongs to a first or second group on a row-by-row basis and includes a photoelectric conversion film, a FD line for accumulating signal charge, and an amplifier transistor for providing a voltage according to the signal charge. The pixel in the first group further includes a selection transistor for proving output voltage of the amplifier transistor to the first signal line, and the pixel in the second group further includes a selection transistor for proving output voltage of the amplifier transistor to the second signal line. The first signal line is disposed between the FD line in the first group and the second signal line, and the second signal line is disposed between the FD line in the second group and the first signal line.
US10600823B2

A method for manufacturing a display element comprising a plurality of pixels, each comprising a plurality of subpixels. The method comprises undertaking, using a pick up tool, a first placement cycle (1908) comprising picking up a plurality of first, untested LED dies and placing them on a display substrate at locations corresponding to the plurality of pixels, testing (1912) the first LED emitters on the display substrate to determine one or more locations of non-functional first LED emitters, selecting one or more second tested LED dies based on a result of the test, configuring the selected one or more second LED dies to enable their pick up and placement on the display substrate and undertaking, using the PUT, a second placement cycle (2008) comprising picking up the selected one or more second LED dies and placing them on the display substrate at the determined locations of the nonfunctional first LED emitters.
US10600821B2

Provided is an organic light emitting diode display device and a manufacturing method thereof. The method includes: preparing a thin film transistor layer on a glass substrate; preparing a plurality of organic light emitting diode elements on a thin film transistor layer; preparing a barrier layer and a buffer layer on the thin film transistor layer, wherein the barrier layer covers the plurality of organic light emitting diode elements; preparing a plurality of island structures on the barrier layer or on the buffer layer, wherein the plurality of island structures are located a non-light emitting region on the barrier layer or the buffer layer. The path of water vapor entering the OLED display device can be prolonged to enhance the absorption of water vapor and to enhance the packaging result of the OLED display device.
US10600804B2

A vertical memory device includes a gate electrode structure on a substrate, and a channel. The gate electrode structure includes gate electrodes spaced apart from each other in a vertical direction substantially perpendicular to an upper surface of the substrate. The channel extends through the gate electrode structure in the vertical direction on the substrate. The channel includes a first portion having a slanted sidewall with respect to the upper surface of the substrate and a second portion contacting an upper surface of the first portion and having a slanted sidewall with respect to the upper surface of the substrate. A width of an upper surface of the second portion is less than a width of the upper surface of the first portion. An impurity region doped with carbon or p-type impurities is formed at an upper portion of the substrate. The channel contacts the impurity region.
US10600801B2

Three-dimensional (3D) nonvolatile memory devices include a substrate having a well region of second conductivity type (e.g., P-type) therein and a common source region of first conductivity type (e.g., N-type) on the well region. A recess extends partially (or completely) through the common source region. A vertical stack of nonvolatile memory cells on the substrate includes a vertical stack of spaced-apart gate electrodes and a vertical active region, which extends on sidewalls of the vertical stack of spaced-apart gate electrodes and on a sidewall of the recess. Gate dielectric layers extend between respective ones of the vertical stack of spaced-apart gate electrodes and the vertical active region. The gate dielectric layers may include a composite of a tunnel insulating layer, a charge storage layer, a relatively high bandgap barrier dielectric layer and a blocking insulating layer having a relatively high dielectric strength.
US10600798B2

A manufacturing method of a non-volatile memory structure including the following steps is provided. Memory cells are formed on a substrate. An isolation layer is formed between the memory cells. A shield electrode is formed on the isolation layer. The shield electrode is electrically connected to a source line.
US10600792B2

To provide a programmable logic device in which the number of elements per bit in a memory array can be reduced and with which power consumption or operation frequency can be estimated accurately at a testing stage. Provided is a programmable logic device including a plurality of programmable logic elements and a memory array which stores configuration data that determines logic operation executed in the plurality of programmable logic elements. The memory array includes a plurality of memory elements. The memory element includes a node which establishes electrical connection between the programmable logic element and the memory array, a switch for supplying charge whose amount is determined by the configuration data to the node, holding the charge in the node, or releasing the charge from the node, and a plurality of wirings. Capacitance is formed between the node and the wiring.
US10600788B2

Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
US10600786B2

Manufacture of a transistor device with at least one P type transistor with channel structure strained in uniaxial compression strain starting from a silicon layer strained in biaxial tension, by amorphization recrystallization then germanium condensation.
US10600780B2

Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate. As further described below, the first and second dies in some embodiments are placed in a face-to-face arrangement (e.g., a vertically stacked arrangement) that has the first and second set of interconnect layers facing each other. In some embodiments, a subset of one or more interconnect layers of the second set interconnect layers of the second die has interconnect wiring that carries power, clock and/or data-bus signals that are supplied to the first IC die.
US10600779B2

An RC-IGBT includes a first electrode disposed on a first main surface of a semiconductor substrate over a transistor region and a diode region. The semiconductor substrate includes a MOS gate structure on a first main surface side in the transistor region. The RC-IGBT includes: an interlayer dielectric covering a gate electrode of the MOS gate structure, and having a contact hole exposing a semiconductor layer; and a barrier metal disposed in the contact hole. The first electrode enters the contact hole, is in contact with the semiconductor layer of the MOS gate structure through the barrier metal, and is in direct contact with a semiconductor layer in the diode region of the semiconductor substrate.
US10600777B1

A semiconductor device includes a semiconductor body, first to third electrodes provided on the semiconductor body, and a control electrode. The control electrode is provided between the semiconductor body and the first electrode. The semiconductor body includes first to sixth layers. The second layer of a second conductivity type is selectively provided between the first layer of a first conductivity type and the first electrode. The third layer of the first conductivity type is selectively provided between the second layer and the first electrode. The fourth layer of the second conductivity type is provided between the first layer and the second and third electrodes. The fifth layer of the first conductivity type is selectively provided in the fourth layer and electrically connected to the first electrode. The sixth layer of the first conductivity type is provided in the fourth layer, and electrically connected to the third electrode.
US10600775B2

An electrostatic discharge protection device includes: a semiconductor substrate; an N-type doped well on the substrate, the N-type doped well including a first N+ region and a first P+ region; a P-type doped well on the substrate, the P-type doped well including a second N+ region, a third N+ region, and a second P+ region between the second N+ region and the third N+ region; and a first contact positioned above a surface of the N-type doped well between the first N+ region and the first P+ region.
US10600773B2

A semiconductor device manufacturing method includes stacking a second semiconductor chip on a first surface of a first semiconductor chip such that the at bump electrode overlies the position of a first through silicon via in the first semiconductor chip, stacking a third semiconductor chip on the second semiconductor chip such that a second bump electrode on the second semiconductor chip overlies the position of a second through silicon via in the third semiconductor chip to form a chip stacked body, connecting the first and second bump electrodes of the chip stacked body to the first and the second through silicon vias by reflowing the bump material, placing the chip stacked body on the first substrate such that the first surface of the first semiconductor chip faces the second surface, and sealing the second surface and the first, second, and third semiconductor chips with a filling resin.
US10600771B2

In one embodiment, a semiconductor device includes a first interconnection including a first extending portion extending in a first direction, and a first curved portion curved with respect to the first extending portion. The device further includes a second interconnection including a second extending portion extending in the first direction and adjacent to the first extending portion in a second direction, and a second curved portion curved with respect to the second extending portion. The device further includes a first plug provided on the first curved portion, or on a first non-opposite portion included in the first extending portion and not opposite to the second extending portion in the second direction. The device further includes a second plug provided on the second curved portion, or on a second non-opposite portion included in the second extending portion and not opposite to the first extending portion in the second direction.
US10600769B2

An electronic component is provided. The electronic component includes a substrate, an III-V die and a silicon die. The III-V die is disposed on the substrate. The silicon die is stacked to the III-V and electrically connected to the III-V die.
US10600765B2

A technique disclosed in the specification relates to a semiconductor device capable of minimizing restrictions on wire bonding activities and to a method for producing the semiconductor device. The semiconductor device of the present technique includes: a plurality of semiconductor chips disposed on a circuit pattern within a case defined by an outer frame in a plan view; and bonding wires for electrically connecting the semiconductor chips and the circuit pattern together. The semiconductor chips are arranged along a longer-side direction of the case. The bonding wires are strung along the longer-side direction of the case.
US10600763B1

Embodiments of three-dimensional (3D) memory devices and methods for forming the 3D memory devices are disclosed. In an example, a 3D memory device includes a substrate, a first memory deck above the substrate, a first channel structure, a first inter-deck plug above and in contact with the first channel structure, a second memory deck above the first inter-deck plug, and a second channel structure above and in contact with the first inter-deck plug. The first memory deck includes a first plurality of interleaved conductor layers and dielectric layers. The first channel structure extends vertically through the first memory deck. The first inter-deck plug includes single-crystal silicon. The second memory deck includes a second plurality of interleaved conductor layers and dielectric layers. The second channel structure extends vertically through the second memory deck.
US10600761B2

A microelectronic assembly including an insulating layer having a plurality of nanoscale conductors disposed in a nanoscale pitch array therein and a pair of microelectronic elements is provided. The nanoscale conductors can form electrical interconnections between contacts of the microelectronic elements while the insulating layer can mechanically couple the microelectronic elements together.
US10600758B2

A package packaged with a cap. The package features trenches, through holes, and a non-conductive coupling element forming a locking mechanism integrated embedded or integrated within a substrate. The package has a cap coupled to the non-conductive coupling element through ultrasonic plastic welding. The package protects the dice from an outside environment or external stresses or both. A method is desired to form package to reduce glue overflow defects in the package. Fabrication of the package comprises drilling holes in a substrate; forming trenches in the substrate; forming a non-conductive coupling element in the through holes and the trenches to form a locking mechanism; allowing the non-conductive coupling element to harden and cure; coupling a die or dice to the substrate; and coupling a cap to the non-conductive coupling element to protect the die or dice from an outside environment or external stresses or both.
US10600757B2

A semiconductor device is disclosed. The semiconductor device comprises a first die, a second die, and a redistribution structure. The first die and the second die are electrically connected to the redistribution structure. There are no solder bumps between the first die and the redistribution structure. There are no solder bumps between the second die and the redistribution structure. The first die and the second die have a shift with regard to each other from a top view.
US10600754B2

There is provided a bonding method capable of accurately positioning a bonding stage. According to an aspect of the present invention, a bonding method using a bonding apparatus including a rotation drive mechanism for rotating a bonding stage 1 about a θ-axis includes the steps of: (e) locking the bonding stage with respect to the θ-axis, and bonding a wire or bump onto a certain area of a substrate held on the bonding stage; (f) unlocking the bonding stage with respect to the θ-axis, and rotating the bonding stage about the θ-axis with the rotation drive mechanism; and (g) locking the bonding stage with respect to the θ-axis, and bonding a wire or bump onto a remaining region of the substrate.
US10600753B2

A semiconductor device includes an integrated circuit attached to a chip carrier in a flip chip configuration. A substrate extends to a back surface of the integrated circuit, and an interconnect region extends to a front surface of the integrated circuit. A substrate bond pad is disposed at the front surface, and is electrically coupled through the interconnect region to the semiconductor material. The chip carrier includes a substrate lead at a front surface of the chip carrier. The substrate lead is electrically coupled to the substrate bond pad. An electrically conductive compression sheet is disposed on the back surface of the integrated circuit, with lower compression tips making electrical contact with the semiconductor material in the substrate. The electrically conductive compression sheet is electrically coupled to the substrate lead of the chip carrier by a back surface shunt disposed outside of the integrated circuit.
US10600738B2

A gate electrode is formed in a trench formed in a semiconductor substrate. A gate interlayer insulating film is formed to cover the gate electrode and the like. A gate interconnection and an emitter electrode are formed in contact with the gate interlayer insulating film. A glass coating film and a polyimide film are formed to cover the gate interconnection and the emitter electrode. A solder layer is formed to cover the polyimide film. The gate interconnection and the emitter electrode are each formed of a tungsten film, for example.
US10600737B2

A non-porous dielectric barrier is provided between a porous portion of a dielectric region and an electrically conductive element of an interconnect portion of an integrated circuit. This non-porous dielectric barrier protects the integrated circuit from breakdown of the least one dielectric region caused by electrical conduction assisted by the presence of defects located in the at least one dielectric region.
US10600734B2

A semiconductor device on silicon-on-insulator (SOI) substrate includes: a first gate line and a second gate line extending along a first direction, a third gate extending along a second direction and between the first gate line and the second gate line, and a drain region adjacent to one side of the third gate line. Preferably, the third gate line includes a first protrusion overlapping the drain region.
US10600727B2

An intelligent power module (IPM) has a first, second, third and fourth die supporting elements, a first, second, third, fourth, fifth and sixth transistors, a connection member, a low voltage IC, a high voltage IC, a plurality of leads and a molding encapsulation. The first transistor is attached to the first die supporting element. The second transistor is attached to the second die supporting element. The third transistor is attached to the third die supporting element. The fourth, fifth and sixth transistor s are attached to the fourth die supporting element. The low and high voltage ICs are attached to the connection member. The molding encapsulation encloses the first, second, third and fourth die supporting elements, the first, second, third, fourth, fifth and sixth transistors, the connection member and the low and high voltage ICs. The IPM has a reduced thermal resistance of junction-to-case (RthJC) compared to a conventional IPM.
US10600710B2

A semiconductor device includes a group III-semiconductor-nitride-based channel layer, a group III-semiconductor-nitride-based barrier layer formed on the channel layer, a two-dimensional electron gas channel formed in the channel layer, a first current electrode and a second current electrode formed on the barrier layer and laterally spaced from each other, and a gate structure formed on the barrier layer between the first and second current electrodes. The barrier layer has a symmetrically shaped recess between the first and second current electrodes, the symmetrically shaped recess including a first recess portion formed in a part of an upper surface of the barrier layer and a second recess portion formed within the first recess portion. The gate structure includes a group III-semiconductor-nitride-based doped layer that fills the symmetrically shaped recess and an electrically conductive gate electrode formed on an upper side of the doped layer that is opposite from the barrier layer.
US10600709B2

A device comprises a first package component, and a first metal trace and a second metal trace on a top surface of the first package component. The device further includes a dielectric mask layer covering the top surface of the first package component, the first metal trace and the second metal trace, wherein the dielectric mask layer has an opening therein exposing the first metal trace. The device also includes a second package component and an interconnect formed on the second package component, the interconnect having a metal bump and a solder bump formed on the metal bump, wherein the solder bump contacts the first metal trace in the opening of the dielectric mask layer.
US10600707B2

A fiber-containing resin substrate includes a thermosetting epoxy resin-impregnated fiber base material, and an uncured resin layer formed on one side thereof formed from a composition containing: (A) a crystalline bisphenol A type epoxy resin and/or a crystalline bisphenol F type epoxy resin, (B) an epoxy resin that is non-fluid at 25° C. other than the component (A), (C) a phenol compound having two or more phenolic hydroxy groups in one molecule, (D) an inorganic filler, and (E) an urea-based curing accelerator. The fiber-containing resin substrate collectively encapsulates a semiconductor devices mounting surface or a semiconductor devices forming surface on a wafer level, even when a large-diameter wafer or a large-diameter substrate is encapsulated, to reduce warpage of the substrate or the wafer and peeling of a semiconductor device from the substrate, and to have the uncured resin layer excellent in storage stability and handleability before curing.
US10600705B2

An electronic switching element includes at least one semiconductor switch inserted into a layer sequence of a conductor structure element; and at least two busbars which are configured to contact-connect the at least one semiconductor switch, wherein the at least two busbars run substantially above one another in the layer sequence of the conductor structure element.
US10600703B2

A method for packaging a circuit component, comprising: forming a first protruding pad on a first copper substrate and a through-hole in the first protruding pad; forming a second protruding pad on a second copper substrate and placing a circuit dice of the circuit component on the second protruding pad having a conductive paste coated thereon wherein a first electrode of the dice facing the second protruding pad; stacking the first copper substrate onto the second copper substrate with the first protruding pad having a conductive paste coated thereon aligned and pressing onto the circuit dice placed on the second protruding pad wherein a second electrode of the dice facing the first protruding pad; inserting a copper rod tightly into the through-hole until contacting with a conductive paste coated on the second substrate; heat-treating the stacked structure for the circuit dice and the copper rod to form secured electrical connection with the first and second copper substrates respectively and further forming a hermetic seal in the space between the first and second copper substrates; and using the hermetic seal as a rigid processing structure, etching the exposed surface of the first and second copper substrates to remove the entire thickness of copper other than in the area of the first and second protruding pads and in the area other than where the copper rod connects to the second copper substrate, thereby forming the device terminals of the circuit component package.
US10600699B2

Embodiments of the present disclosure provide techniques and configurations for inspection of a package assembly with a thermal solution, in accordance with some embodiments. In embodiments, an apparatus for inspection of a package assembly with a thermal solution may include a first fixture to house the package assembly on the apparatus, and a second fixture to house at least a portion of a thermal solution that is to be disposed on top of the package assembly. The apparatus may further include a load actuator, to apply a load to a die of the package assembly, via the thermal solution, and a plurality of sensors disposed around the thermal solution and the package assembly, to perform in situ thermal and/or mechanical measurements associated with the application of the load to the die of the package assembly. Other embodiments may be described and/or claimed.
US10600693B2

A method of forming a fin field effect transistor (finFET) having fin(s) with reduced dimensional variations, including forming a dummy fin trench within a perimeter of a fin pattern region on a substrate, forming a dummy fin fill in the dummy fin trench, forming a plurality of vertical fins within the perimeter of the fin pattern region, including border fins at the perimeter of the fin pattern region and interior fins located within the perimeter and inside the bounds of the border fins, wherein the border fins are formed from the dummy fin fill, and removing the border fins, wherein the border fins are dummy fins and the interior fins are active vertical fins.
US10600687B2

Process integration techniques are disclosed that use a carbon fill layer during formation of self-aligned structures. A carbon layer may be placed over an etch stop layer. A cap layer may be provided over the carbon layer. The carbon layer may fill a high aspect ratio structure formed on the substrate. The carbon layer may be removed from a substrate in a highly selective removal technique in a manner that does not damage underlying layers. The carbon layer may fill a self-aligned contact region that is provided for a self-aligned contact process flow. A tone inversion mask may be used to protect multiple self-aligned contact regions. With the blocking mask in place, the carbon layer may be removed from regions that are not the self-aligned contact region. After removal of the blocking mask, the carbon layer which fills the self-aligned contacts may then be removed.
US10600681B2

Methods of forming staircase structures. The method comprises forming a patterned hardmask over tiers. An exposed portion of an uppermost tier is removed to form an uppermost stair. A first liner material is formed over the patterned hardmask and the uppermost tier, and a portion of the first liner material is removed to form a first liner and expose an underlying tier. An exposed portion of the underlying tier is removed to form an underlying stair in the underlying tier. A second liner material is formed over the patterned hardmask, the first liner, and the second liner. A portion of the second liner material is removed to form a second liner and expose another underlying tier. An exposed portion of the another underlying tier is removed to form another underlying stair. The patterned hardmask is removed. Staircase structures and semiconductor device structure are also disclosed.
US10600676B2

Provided are a group III nitride composite substrate having a low sheet resistance and produced with a high yield, and a method for manufacturing the same, as well as a method for manufacturing a group III nitride semiconductor device using the group III nitride composite substrate. A group III nitride composite substrate includes a group III nitride film and a support substrate formed from a material different in chemical composition from the group III nitride film. The group III nitride film is joined to the support substrate in one of a direct manner and an indirect manner. The group III nitride film has a thickness of 10 μm or more. A sheet resistance of a group III-nitride-film-side main surface is 200 Ω/sq or less.
US10600674B2

Circuits, structures and techniques for independently connecting a surrounding material in a part of a semiconductor device to a contact of its respective device. To achieve this, a combination of one or more conductive wells that are electrically isolated in at least one bias polarity are provided.
US10600671B2

In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
US10600670B2

An apparatus which comprises an expansion unit configured for expanding a foil, and a mounting unit configured for subsequently mounting the expanded foil on a frame and a workpiece, in particular a wafer, on the expanded foil.
US10600669B2

A substrate fixture includes a monopolar chuck main body comprising an insulated plate and an electrode embedded in the insulated plate, a tray placed on the chuck main body, having an upper surface in which a plurality of concave parts for accommodating therein a plurality of substrates is formed, and formed of an insulator having a volume resistivity equal to or lower than a volume resistivity of the insulated plate, and an yttrium oxide layer formed on the upper surface of the tray.
US10600655B2

A process for chemical mechanical polishing a substrate containing tungsten to at least reduce dishing of tungsten features of 100 μm or less. The process includes providing a substrate containing tungsten features of 100 μm or less; providing a polishing composition, containing, as initial components: water; an oxidizing agent; arginine or salts thereof; a dicarboxylic acid, a source of iron ions; a colloidal silica abrasive; and, optionally, a pH adjusting agent; and, optionally, a surfactant; and, optionally, a biocide; providing a chemical mechanical polishing pad, having a polishing surface; creating dynamic contact at an interface between the polishing pad and the substrate; and dispensing the polishing composition onto the polishing surface at or near the interface between the polishing pad and the substrate; wherein some of the tungsten is polished away from the substrate and yet at least reducing dishing of the tungsten features of 100 μm or less.
US10600650B2

A semiconductor device and its manufacturing method, relating to semiconductor techniques. The semiconductor device manufacturing method comprises: forming a patterned first hard mask layer on a substrate to define a position for buried layers; conducting a first ion implantation using the first hard mask layer as a mask to form a first buried layer and a second buried layer both having a first conductive type and separated from each other at two sides of the first hard mask layer in the substrate; conducting a second ion implantation to form a separation region with a second conductive type opposite to the first conductive type in the substrate between the first and the second buried layers; removing the first hard mask layer; and forming a semiconductor layer on the substrate. This inventive concept reduces an area budget of a substrate and simplifies the manufacturing process.
US10600648B2

A method for processing a stack with a carbon based patterned mask is provided. The stack is placed in an etch chamber. A silicon oxide layer is deposited by atomic layer deposition over the carbon based patterned mask by providing a plurality of cycles, wherein each of the cycles of the plurality of cycles, comprises providing a silicon precursor deposition phase, comprising flowing an atomic layer deposition precursor gas into the etch chamber, where the atomic layer deposition precursor gas is deposited while plasmaless and stopping the flow of the atomic layer deposition precursor gas and providing an oxygen deposition phase, comprising flowing ozone gas into the etch chamber, wherein the ozone gas binds with the deposited precursor gas while plasmaless and stopping the flow of ozone gas into the etch chamber. Part of the silicon oxide layer is etched. The stack is removed from the etch chamber.
US10600644B2

Processes for fabricating multi- and monolayer silicene on catalyst metal surfaces by means of plasma-enhanced chemical vapor deposition (PECVD). Silicene is grown by means of PECVD from a starting mixture of H2 and SiH4 having an H2:SiH4 ratio of 100 to 400 on an Ag(111) substrate having a substrate temperature between 20° C. and 290° C., with the deposition being performed for about 10-25 minutes at an RF power between 10 W and 500 W and under a chamber pressure between about 100 mTorr and 1300 mTorr. In most cases, the substrate will be in the form of an Ag(111) film sputtered on a fused silica substrate. A multi-layer silicene film can be formed by extending the deposition time past 25 minutes.
US10600637B2

Methods for depositing silicon oxycarbide (SiOC) thin films on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that does not comprise nitrogen and a second reactant that does not include oxygen. In some embodiments the methods allow for the deposition of SiOC films having improved acid-based wet etch resistance.
US10600634B2

Methods for polishing semiconductor substrates are disclosed. The finish polishing sequence is adjusted based on a measured edge roll-off of an analyzed substrate.
US10600631B2

An ion trap having a segmented electrode structure having a plurality of segments consecutively positioned along an axis, wherein each segment of the segmented electrode structure includes a plurality of electrodes arranged around the axis. A first voltage supply is configured to operate in a radially confining mode in which at least some electrodes belonging to each segment are supplied with at least one AC voltage waveform so as to provide a confining electric field for radially confining ions within the segment. A second voltage supply is configured to operate in a trapping mode in which at least some of the electrodes belonging to the segments are supplied with different DC voltages so as to provide a trapping electric field that has an axially varying profile for urging ions towards and trapping ions in a target segment of the plurality of segments. A first chamber is configured to receive ions from an ion source, wherein a first subset of the segments are located within the first chamber. A second chamber is configured to receive ions from the first chamber, wherein a second subset of the segments are located within the second chamber, and wherein the target segment is one of the second subset of segments. A gas pump is configured to pump gas out from the second chamber so as to provide the second chamber with a lower gas pressure than the first chamber. A gas flow restricting section is located between the first chamber and second chamber, wherein the gas flow restricting section is configured to allow ions to pass from the first chamber to the second chamber whilst restricting gas flow from the first chamber to the second chamber.
US10600629B2

The disclosure herein includes compositions and methods for ionizing targets and methods for making the compositions. In some embodiments, the compositions can include a porous substrate that has been etched for a desired average pore size, a desired porosity, or both for detection of one or more targets of interest. Also disclosed herein are methods for using the composition to ionize targets.
US10600617B1

A plasma processing apparatus includes: a vacuum chamber in which plasma is formed; an inner chamber detachable from the vacuum chamber; a sample stage disposed in the inner chamber; a sample stage ring base disposed in the inner chamber; and a suspension beam coupled to the sample stage ring base in a space between the vacuum chamber and the inner chamber. With the inside of the vacuum chamber hermetically sealed, the inner chamber is placed on the sample stage ring base, and the inside is hermetically sealed. The upper part of the suspension beam is vertically movably held to a sample stage base plate configuring the upper part of the vacuum chamber to cover the inside. The plasma processing apparatus includes a conductive connector sandwiched between the suspension beam made of SUS and the upper part of the member and the sample stage base plate.
US10600614B2

The present invention is to provide a stage device capable of improving field-of-view positioning accuracy of a stage having a Z-axis mechanism. The invention is directed to a sample stage device having a first table that moves a sample in a first direction, a second driving mechanism that moves the first table in a second direction different from the first direction, and a part having a function of moving a laser interferometer optical axis that measures the position of the first table, in the second direction.
US10600609B2

The present specification discloses a high power continuous X-ray source having a rotating target assembly that is cooled by circulation of a liquid material in contact with the target assembly, whereby the target assembly has a front surface being impinged by electrons and a mechanism for rotating the target assembly. The cooling liquid is always in contact with at least one surface of the target for dissipating the heat generated by the energy deposited by the stream of electrons, thereby lowering the temperature of the target to allow for continuous operation.
US10600608B1

An ion source is provided. The ion source includes a plasma generation chamber, a plate member, and an extraction electrode. The plasma generation chamber is supplied with a halogen-containing material. The plate member is provided on an end of the plasma generation chamber located on a side toward which an ion beam is extracted. The extraction electrode is disposed downstream of the plate member. The plate member is formed with a gas supply passage via which hydrogen gas is supplied to the extraction electrode.
US10600600B2

An electromechanical power switch device and methods thereof. At least some of the illustrative embodiments are devices including a semiconductor substrate, at least one integrated circuit device on a front surface of the semiconductor substrate, an insulating layer on the at least one integrated circuit device, and an electromechanical power switch on the insulating layer. By way of example, the electromechanical power switch may include a source and a drain, a body region disposed between the source and the drain, and a gate including a switching metal layer. In some embodiments, the body region includes a first body portion and a second body portion spaced a distance from the first body portion and defining a body discontinuity therebetween. Additionally, in various examples, the switching metal layer may be disposed over the body discontinuity.
US10600599B2

At the time of contact between the contacts, the first movable contact comes into contact with the first fixed contact before contact between the second movable contact and the second fixed contact is made. The first movable contact is located on a leading end side of the contact piece with respect to the second movable contact. The first divided piece includes a body and a projection. The body extends in the lengthwise direction. The projection projects in the widthwise direction of the first divided piece from the body. The projection includes a contact portion pressed by the link member.
US10600593B2

An alternating current vacuum switching device for switching an electrical circuit under load and no load conditions, and optionally short-circuit conditions is disclosed. The switching device comprises: a vacuum evacuated housing; first and second electrodes within the housing; and an actuator for moving the first electrode relative to the second electrode to mechanically engage and disengage the electrodes to perform a switching function, wherein the first electrode is wholly located within the vacuum evacuated housing such that movement of the switching function occurs solely within the housing. By having movement of the switching function solely within the housing, the reliability of the vacuum switching device is improved.
US10600580B2

An explosion-proof apparatus includes a stopper having a hollow cylindrical shape that is open at a first side and closed at a second side, and configured to be combined with an electrolytic condenser to surround an explosion-proof face of the electrolytic condenser and a lateral side connected to the explosion-proof face, through the first side, and a holder provided on the stopper to support the stopper. The first side of the stopper is separated from the explosion-proof face of the electrolytic condenser, a lateral side of the stopper has a stepped structure in which a periphery of a first region connecting to the first side is larger than a periphery of a second region connecting to the second side, and the holder is mounted on the stopper to surround at least part of the periphery of the second region of the stopper.
US10600579B2

An electrolytic capacitor includes an anode body, a first conductive polymer layer, and a second conductive polymer layer. The anode body includes a dielectric layer. The first conductive polymer layer covers at least a part of the dielectric layer. The second conductive polymer layer covers at least a part of the first conductive polymer layer. The first conductive polymer layer includes a first conductive polymer. The second conductive polymer layer includes a second conductive polymer. At least one of the first conductive polymer layer and the second conductive polymer layer further includes a hydroxy compound. The hydroxy compound has two or more alcoholic hydroxy groups or two or more phenolic hydroxy groups, and has a melting point ranging from 40° C. to 150° C., inclusive.
US10600578B2

Provided herein is a capacitor module of an inverter module of an electric vehicle. The capacitor module can include a capacitor housing. The capacitor module can include a plurality of positive terminals coupled with a first surface of the capacitor housing and extending from the first surface at a first angle. The capacitor module can include a plurality of negative terminals coupled with the first surface of the capacitor housing and extending from the first surface at the first angle. The capacitor module can include a divider coupled with the first surface of the capacitor housing. The divider can be disposed between the plurality of positive terminals and the plurality of negative terminals. The divider can electrically isolate the plurality of positive terminals from the plurality of negative terminals. The capacitor module can include a plurality of mounting holes formed on an outer surface of the capacitor housing.
US10600570B2

An element body of a rectangular parallelepiped shape includes a first principal surface arranged to constitute a mounting surface, a second principal surface opposing the first principal surface in a first direction, a pair of side surfaces opposing each other in a second direction, and a pair of end surfaces opposing each other in a third direction. An external electrode is disposed at an end portion of the element body in the third direction. The external electrode includes a conductive resin layer. The external electrode includes a plating layer including a first portion covering the first principal surface and a pair of second portions covering the pair of side surfaces. A thickness of the first portion is smaller than each thickness of the pair of second portions.
US10600557B2

Provided is a reactor in which it is possible to reduce molding failures in inner resin portions when molding the inner resin portions. A reactor includes: a coil having winding portions; and a magnetic core having inner core portions and outer core portions. The reactor further includes: inner resin portions that fill gaps between the winding portions and the inner core portions; and inner interposed members that are interposed between the winding portions and the inner core portions, and form resin flow paths. The inner interposed members have spacers arranged between the winding portions and the inner core portions. The spacers are provided with air discharge paths that are in communication with the resin flow paths, and extend in the axial direction of the winding portions to at least one end face side of the winding portions.
US10600553B2

An inductor includes a body including a coil part therein. The coil part includes a first coil layer electrically connected to a first via; a second coil layer disposed below the first coil layer and electrically connected to a second via displaced laterally from that of the first via; and a via connection layer disposed between the first coil layer and the second coil layer and electrically connected to the first and second vias.
US10600539B2

Apparatus and methods for manufacturing magnets, and magnets, having magnetically oriented grains, and apparatus including such magnets. The field of a permanent magnet may be shaped by applying an external field to the material from which the magnet is made in such a way as to magnetize different regions of the material in different directions. The apparatus may include, and the methods may involve, a metal-powder press that may press metal powder in the presence of a magnetic field. The press may compress the powder in an axial direction. The field may have flux lines that are transverse to the axial direction. The field may have flux lines that are along the axial direction.
US10600536B1

An electrical cable includes a conductor assembly having a first conductor, a second conductor, a first insulator surrounding the first conductor and a second insulator surrounding the second conductor. The first insulator has a first thickness between the first conductor and an outer surface. The second insulator has a second thickness between the second conductor and an outer surface. The first thickness is greater than the second thickness. A cable shield is wrapped around the conductor assembly and engages the outer surface of the first insulator along a first segment and engaging the outer surface of the second insulator along a second segment. The cable shield has an inner edge and a flap covering the inner edge. The cable shield forms a void at the inner edge located closer to the first conductor than the second conductor.
US10600521B2

A device for transferring a given powder or a mixture of given powders contained in a container including a side wall and at least one discharge opening, the container with axisymmetric shape having an axis of rotation being arranged in the transfer device such that the discharge opening thereof is located in a lower portion of the container, the transfer device including rotating the container about the axis thereof, on which the discharge opening is located and control for controlling the rotation such that the to rotation imposes on at least one portion of the side wall of the container, referred to as movable portion, a first moving phase wherein an acceleration no lower than a minimum acceleration is capable of causing the powder to slide relative to the movable portion.
US10600513B2

A system and method is described for printing a label with an RFID tag. The system includes an RFID reader that queries a first RFID tag coupled to a first medicinal container that includes a medication. In response, the system receives a first unique identifier and uses the first unique identifier to determine a status of the medication, associate the first medicinal container with a medical provider and print a second label that includes a second RFID tag for a second medicinal container.
US10600509B2

A system for automatically generating an athletic training schedule includes a wearable device having one or more sensors for determining a quantity of athletic training performed by a user wearing the wearable device and an athletic performance of the user. A processor is configured to receive the quantity of athletic training performed and the athletic performance data from the wearable device, and to estimate a relationship between the quantity of athletic training performed and the athletic performance. A selection of a competitive target is received. A performance level of the selected competitive target is estimated. A minimum level of training needed to meet or exceed the estimated performance level is determined based on the estimated relationship between the quantity of athletic training performed and the athletic performance. The athletic training schedule is automatically generated based on the determined minimum level of training.
US10600505B2

A method of generating a user interface for use in documenting a patient encounter comprises: automatically identifying, with a computing device, at least one documentation protocol based on at least one element of the patient's medical record; and generating a user interface including at least one of the identified documentation protocols, the at least one identified documentation protocols identifying at least one medical finding. A system comprises a data store encoded on a memory device, the data store comprising documentation protocols. The system further comprises an input apparatus. A computing device is in data communication with the data store and the input apparatus. The computing device is programmed to receive findings input through the input apparatus, identify a documentation protocol based on the finding input through the input apparatus, and generate a user interface. The user interface comprising the identified documentation protocol.
US10600502B2

Systems and methods are provided for over the counter statin delivery to a subject. Survey results from the subject are run against a first plurality of filters. When a filter in the first plurality of filters is fired, the subject is deemed not qualified. The survey results are also run against a second plurality of filters. When a respective filter in the second plurality is fired, the subject is provided with a corresponding warning. The method proceeds to a fulfillment process when no filter in the first plurality fires and the subject has acknowledged each warning associated with each fired filter in the second plurality. The fulfillment stores the composition order, communicates a drug facts label for the statin to the subject, and authorizes, upon subject confirmation that the label has been read, provision of the statin to the subject, the authorization including a destination associated with the subject.
US10600498B1

A memory device includes a memory bank accessible via a plurality of memory addresses. The memory device further includes a fuse array including a plurality of fuse banks. A fuse bank of the plurality of fuse banks includes a fuse circuit, which includes a fuse latch having first input circuitry. The fuse latch is implemented to store a first bit of a first memory address received at the first input circuitry. The fuse circuit also includes a matching circuit coupled to the first input circuitry. The matching circuit is implemented to receive a first bit of a second memory address at the first input circuitry and to output, at output circuitry, a comparison result based at least in part on the first bit of the first memory address and the first bit of the second memory address.
US10600491B2

A method for managing a plurality of data blocks of a data storage device includes steps of: reading a plurality of data pages in the data blocks which having valid data; updating a plurality of access counts of the data pages in the data blocks; determining whether an access count of the data block is greater than or equal to an access count threshold, wherein the access count of the data block is selected from one of the access counts of the data pages therein; and when the determination is positive, storing data in the data block into a spare data block of the data blocks. The access count threshold is updated when an erase count of the data block is determined to be greater than or equal to an erase count threshold. A method of data management for a data storage device is also provided.
US10600486B2

Provided herein may be a semiconductor memory device. The semiconductor memory device may include: a memory cell array including a plurality of memory blocks; a peripheral circuit configured to apply an erase voltage to a source line and a plurality of select lines of a selected memory block among the plurality of memory blocks during an erase operation; and a control logic configured to control the peripheral circuit to form a trap in an area below at least one of a plurality of source select transistors included in the selected memory block, before the erase voltage is applied to the selected memory block.
US10600484B2

An improved programming technique for non-volatile memory cell arrays, in which memory cells to be programmed with higher programming values are programmed first, and memory cells to be programmed with lower programming values are programmed second. The technique reduces or eliminates the number of previously programmed cells from being adversely incrementally programmed by an adjacent cell being programmed to higher program levels, and reduces the magnitude of adverse incremental programming for most of the memory cells, which is caused by floating gate to floating gate coupling. The memory device includes an array of non-volatile memory cells and a controller configured to identify programming values associated with incoming data, and perform a programming operation in which the incoming data is programmed into at least some of the non-volatile memory cells in a timing order of descending value of the programming values.
US10600477B2

Various implementations described herein refer to an integrated circuit having a bitcell coupled to a bitline and a column multiplexer device coupled to the bitline between the bitcell and an output of a write driver. The integrated circuit may include a first signal line coupled to a gate of the column multiplexor device that provides a first transition signal. The integrated circuit may include a second signal line coupled to an input of the write driver that provides a second transitioning signal, and the second transition signal transitions substantially similar to the first transitioning signal. The integrated circuit may include a coupling device coupled between the first signal line and the second signal line.
US10600464B2

The present disclosure relates to a semiconductor storage device, a driving method, and an electronic device capable of suppressing a layout area and improving reliability. A semiconductor storage device is provided with one or more selection transistors, a resistance change element one end of which is connected to a bit line and the other end of which is connected to a drain terminal of a selection transistor, the resistance change element a resistance value of which changes by a current of a predetermined value or larger allowed to flow, and a write control unit connected to a connection point between the selection transistor and the resistance change element and controls the current flowing through the resistance change element when data is written in the resistance change element. The present technology is applicable to, for example, a non-volatile memory provided with a storage element configured by a magnetic tunnel junction.
US10600456B2

The present disclosure includes apparatuses and methods related to program operations in memory. An example apparatus can perform a program operation on an array of memory cells by applying a first program signal to a first portion of the array of memory cells that are to remain in a first state in response to the program operation, wherein the first program signal programs memory cells to a second state and then to the first state.
US10600452B2

Row and/or column electrode lines for a memory device are staggered such that gaps are formed between terminated lines. Vertical interconnection to central points along adjacent lines that are not terminated are made in the gap, and vertical interconnection through can additionally be made through the gap without contacting the lines of that level.
US10600444B2

A video image processing device receives information indicating whether an event has occurred in a competition area in which different regions are captured by a plurality of cameras, determines a camera that captured a video image of one of the different regions at which the event has occurred, extracts a partial video image obtained at the time at which the event has occurred from video image information on video images captured by the determined camera and stores the extracted partial video image to the memory.
US10600443B2

A system includes, according to one embodiment, a magnetic head having a plurality of write transducers configured to store data to tracks of a sequential access medium and a plurality of read transducers. Each read transducer is configured to read data from the sequential access medium after being written thereto by a corresponding write transducer. A first of the read transducers is aligned with a first of the write transducers, wherein the output of the first read transducer is produced during read-while-write. The system also includes a controller and logic integrated with and/or executable by the controller. The logic is configured to read, using the plurality of read transducers, encoded data from a plurality of tracks of the sequential access medium simultaneously. The logic is configured to determine that one or more tracks of the sequential access medium are dead within a sliding window and rewrite a set of encoded data from the one or more dead tracks to one or more live tracks in a rewrite area of the sequential access medium. Other systems, methods, and computer program products are described according to more embodiments.
US10600440B2

An FePt-based sintered sputtering target containing C and/or BN, wherein an area ratio of AgCu alloy grains on a polished surface of a cross section that is perpendicular to a sputtered surface of the sputtering target is 0.5% or more and 15% or less. An object of this invention is to provide a sputtering target capable of reducing particles generation during sputtering and efficiently depositing a magnetic thin film of a magnetic recording medium.
US10600432B1

A system configured to perform power normalization for voice enhancement. The system may identify active intervals corresponding to voice activity and may selectively amplify the active intervals in order to generate output audio data at a near uniform loudness. The system may determine a variable gain for each of the active intervals based on a desired output loudness and a flatness value, which indicates how much a signal envelope is to be modified. For example, a low flatness value corresponds to no modification, with peak active interval values corresponding to the desired output loudness and lower active intervals being lower than the desired output loudness. In contrast, a high flatness value corresponds to extensive modification, with peak active interval values and lower active interval values both corresponding to the desired output loudness. Thus, individual words may share the same peak power level.
US10600428B2

An encoder for encoding an audio signal is configured to encode the audio signal in a transform domain or filter-bank domain, is configured to determine spectral coefficients of the audio signal for a current frame and at least one previous frame, and is configured to selectively apply predictive encoding to a plurality of individual spectral coefficients or groups of spectral coefficients which are separated by at least one spectral coefficient.
US10600422B2

A voice recognition device includes a memory and a processor. The processor is configured to store in the memory, digital voice data corresponding to a voice signal input from a voice input unit, recognize a spoken voice utterance from the voice data after a voice input start instruction is received, determine whether to correct the recognition result of the spoken voice utterance based on a time interval from a time when the voice input start instruction is received to a time when the voice signal is input via the voice input unit, and correct the recognition result of the voice utterance based on the time interval.
US10600417B2

The present disclosure generally relates to the field of wearable human interface devices. In one aspect, a human interface device may comprise at least one housing configured to be worn by a user, comprising a transmitter configured to generate a wireless signal and a sensor configured to detect the wireless signal generated by the transmitter, a processing unit, communicatively linked to the sensor and configured to analyze the wireless signal detected by the sensor and calculate the position of a portion of the user wearing the at least one housing based on the wireless signal and a control unit, configured to perform an operation based upon the position of the portion of the user wearing the at least one housing.
US10600415B2

This disclosure provides a method, apparatus, device, and storage medium for voice interaction, where the method is applied to an AI device to determine whether a current scenario of the AI device is a preset scenario and waken a voice interaction function of the AI device to facilitate voice interaction with a user in response to the current scenario of the AI device being the preset scenario. A scenario directly triggers the voice interaction process, thereby avoiding the process of wakening by physical wakening or a wakening word, simplifying the process of using voice interaction, reducing the costs of learning voice interaction, and improving user experience.
US10600413B2

Disclosed are a voice control method, device and terminal, and the method includes: after a terminal has been triggered into voice control mode, receiving input voice data and obtaining corresponding speech text according to the voice data; matching the speech text with an interface word list corresponding to a current operating interface, wherein the interface word list includes text information of the current operating interface; in response to determining that the speech text matches an interface word list successfully, obtaining in the current operating interface an operation link which corresponds to the speech text; and performing an operation corresponding to the operation link.
US10600408B1

Techniques for ensuring content output to a user conforms to a quality of the user's speech, even when a speechlet or skill ignores the speech's quality, are described. When a system receives speech, the system determines an indicator of the speech's quality (e.g., whispered, shouted, fast, slow, etc.) and persists the indicator in memory. When the system receives output content from a speechlet or skill, the system checks whether the output content is in conformity with the speech quality indicator. If the content conforms to the speech quality indicator, the system may cause the content to be output to the user without further manipulation. But, if the content does not conform to the speech quality indicator, the system may manipulate the content to render it in conformity with the speech quality indicator and output the manipulated content to the user.
US10600406B1

Methods and systems for determining an intent of an utterance using contextual information associated with a requesting device are described herein. Voice activated electronic devices may, in some embodiments, be capable of displaying content using a display screen. Entity data representing the content rendered by the display screen may describe entities having similar attributes as an identified intent from natural language understanding processing. Natural language understanding processing may attempt to resolve one or more declared slots for a particular intent and may generate an initial list of intent hypotheses ranked to indicate which are most likely to correspond to the utterance. The entity data may be compared with the declared slots for the intent hypotheses, and the list of intent hypothesis may be re-ranked to account for matching slots from the contextual metadata. The top ranked intent hypothesis after re-ranking may then be selected as the utterance's intent.
US10600403B2

An ultrasonic sensor includes a two-dimensional array of ultrasonic transducers. A signal generator is configured to generate a plurality of transmit signals, wherein each transmit signal of the plurality of transmit signals has a different phase delay relative to other transmit signals of the plurality of transmit signals. A plurality of shift registers is configured to store a beamforming space including a beamforming pattern to apply to the two-dimensional array, wherein the beamforming pattern identifies a transmit signal of the plurality of transmit signals that is applied to each ultrasonic transducer of the beamforming space that is activated during a transmit operation. An array controller is configured to control activation of ultrasonic transducers during a transmit operation according to the beamforming pattern and configured to shift a position of the beamforming space within the plurality of shift registers such that the beamforming space moves within the two-dimensional array.
US10600401B2

A noise reduction device includes a second corrector that generates a correction signal by correcting an output signal or a standard signal by a predetermined parameter and adds the generated correction signal to an error signal, to generate a corrected error signal approximating the error signal to an error signal indicating a residual sound occurring in a sound reception location.
US10600394B2

A cajón percussion instrument includes a mallet mechanism and a pedal mechanism. The mallet mechanism has a first upright frame disposed on a first bottom plate. A first rotating member is insertedly connected to the first upright frame. The first rotating member is provided with a mallet. The pedal mechanism has a second upright frame disposed on a second bottom plate. A second rotating shaft is insertedly connected to the second upright frame. Two ends of a pedal are pivotally connected to the second bottom plate and the second rotating member, respectively. A fixing seat is provided on each of the first bottom plate and the second bottom plate. A sleeve is connected to the second fixing seat. The sleeve is configured to receive a cable therein. Two ends of the cable are connected to the first rotating member and the second rotating member, respectively.
US10600386B2

An image adjusting method is applied to a display apparatus having an ambient light sensor. The image adjusting method includes driving the ambient light sensor to detect surrounding illumination, adjusting PWM values of a plurality of pixels on the display apparatus according to the surrounding illumination, and adjusting intensity offset values of the plurality of pixels according to an offset amending function.
US10600384B2

An electronic system having an assembly of a plurality of electronic devices each driven by a local power unit and a power sequencer control circuit for controlling the power on or off operation of the local power units. The electronic devices can be for example display units of a display wall. An advantage of such an assembly, e.g. a tiled display or display wall, is that a low level or as little energy as possible is dissipated by the local power units such as DC power supplies associated with the electronic devices, e.g. tiles of a display, and the associated “housekeeping” electronics. A further advantage is a limitation of the inrush current at start-up.
US10600380B2

A scanning driving circuit includes a scanning-level-signal-generation module and a scanning-signal-output-module. The scanning-level-signal-generation module is configured to input an (N−1)th stage scanning signal, an (N+1)th stage scanning signal, and a reset signal, generate a scanning level signal based on the (N−1)th stage scanning signal, the (N+1)th stage scanning signal, and the reset signal, and hold the scanning level signal. The scanning-signal-output-module, connected to the scanning-level-signal-generation module, is configured to input a clock signal, and configured to output a scanning signal based in the scanning level signal and the clock signal.
US10600375B2

A method and a circuit for modulating an eye diagram amplitude, a method and a circuitry for data transmission, and a display device are provided. The method for modulating an eye diagram amplitude includes: an eye diagram amplitude setting step, including: setting, by a base eye diagram amplitude setting unit, a base eye diagram amplitude for a source driver; a preset differential signal outputting step, including: outputting, by a preset differential signal outputting unit, a preset differential signal to the source driver; a comparing step, including: comparing, by a comparing unit, a differential signal received by the source driver and the preset differential signal to obtain a comparison result; and a modulating step, including: modulating, by an eye diagram amplitude modulating unit, an eye diagram amplitude of the source driver based on the comparison result.
US10600371B2

A display apparatus includes a display unit configured to display images, an image obtaining unit configured to obtain an image to be displayed in the display unit, a reception unit configured to receive a luminance setting associated with a luminance of a light source included in the display unit, and a controller configured to display a display image obtained by replacing at least a region of the image to be displayed with a colored image in the display unit. The controller sets a first luminance as a luminance of the colored image in a case where a first luminance setting value is set as the luminance setting, and sets a second luminance that is lower than the first luminance as the luminance of the colored image in a case where a second luminance setting value that is higher than the first luminance setting value is set as the luminance setting.
US10600369B2

The disclosure relates to data driver and organic light emitting display device. The data driver includes: an input unit configured to receive an input data; a compensation data generator configured to generate a compensation data by applying a compensation value to the input data; a converter unit configured to convert the input data into an image data voltage and to convert the compensation data into a compensation data voltage; and an output unit configured to separately output the image data voltage and the compensation data voltage to a data line of the organic light emitting display.
US10600368B2

An organic light-emitting display device including a substrate on which a display area is provided, the display area including a central display area including a first pixel unit, a first edge display area extending from the central display area along a first direction, and a second edge display area including a second pixel unit and extending from the central display area along a second direction that intersects the first direction, and a first signal wiring unit overlapping with the first and second edge display areas, the first signal wiring unit being configured to provide a first scan signal having a first turn-on period to the first pixel unit and to provide a second scan signal having a second turn-on period to the second pixel unit, wherein the first edge display area is bent along a first bending line, which extends along the first direction.
US10600367B2

A method for driving a display device is provided. The display device includes a first driving circuit and a pixel array. The driving method includes the following step. In a first mode, by using the first driving circuit, a first light emission start signal is received to drive the pixel array. The first light emission start signal includes a plurality of first pulses, and duration of each of the first pulses is respectively overlapped with at least a part of a period of each of a first frame and at least one second frame. In a second mode, by using the first driving circuit, a second light emission start signal is received to drive the pixel array. The second light emission start signal includes a second pulse. Duration of the second pulse is overlapped with at least a part of a period of the first frame, and the second light emission start signal remains at a first level in a period of the at least one second frame.
US10600362B2

A system uses image data, representing images to be displayed in successive frames, to drive a display having pixels that include a drive transistor and an organic light emitting device by dividing each frame into at least first and second sub-frames, supplying the image data during one of the sub-frames, supplying compensation data during the other of the sub-frames, compensating image data based on the compensation data, and supplying each pixel with a drive current that is based on the compensated image data during each frame. The compensated image data may be supplied from a driver having a preselected data resolution, and the system determines whether the compensated image data is greater than the data resolution of the driver, and if the compensated image data is greater than the data resolution of the driver, transfers the excess compensated image data to a different sub-frame.
US10600352B1

A display device is configured to be operable in a normal mode that blocks ambient light or a see-through mode that allows ambient light to be visible to a user. The display device includes an emission surface configured to output image light, a switchable window configurable to block ambient light in the normal mode or to transmit ambient light in the see-through mode, and an optical assembly. The optical assembly includes a first region configured to receive image light from the emission surface and to direct the image light toward the eyes of a user. The optical assembly also includes a second region configured to receive ambient light from the switchable window and to allow at least a portion of the ambient light to pass through. A method of setting the display device in normal mode or see-through mode is also disclosed.
US10600350B2

A pixel array includes a plurality of repeating units. Each repeating unit includes three first color sub-pixels, three second color sub-pixels, three third color sub-pixels, and three fourth color sub-pixels. The size of one of the first color sub-pixels is greater than the size of each of the other two first color sub-pixels. The size of one of the second color sub-pixels is greater than the size of each of the other two first color sub-pixels. The size of one of the third color sub-pixels is greater than the size of each of the other two third color sub-pixels. The size of one of the fourth color sub-pixels is greater than the size of each of the other two fourth color sub-pixels.
US10600348B2

A scan driver and a driving method of scan driver are provided. The scan driver includes a first shift register and a second shift register respectively receiving a first clock signal and a second clock signal, a first initial pulse signal and a second initial pulse signal and according to a first scanning type or a second scanning type scans scan lines; a selection unit receiving selection signals to select the first shift register or the second shift register for scanning scan lines; a logic control unit receiving an output enable sign controls the outputting; a level shift unit outputting a level signal; an output amplifier amplifying the level signal and outputting to the scan lines. Therefore, it achieves to satisfy requirement of progressive scanning and non-sequential scanning.
US10600345B2

A luminance adjustment system adjusts luminance of image display in a display device. The luminance adjustment system includes a controller that changes the luminance in accordance with a value of illuminance in a target space, The controller has, as operation modes, a gradual change mode in which the luminance with respect to the value of illuminance is changed in a first time, and an abrupt change mode in which the luminance with respect to the value of illuminance is changed in a second time being shorter than the first time. The controller makes switching from the gradual change mode to the abrupt change mode with a sign of an abrupt change in illuminance in the target space taken as a trigger, and then operates in the abrupt change mode for at least a fixed time after the switching.
US10600343B1

A multi-functional advertising sidewalk sign which is affixed into a sidewalk to prevent the sidewalk sign from being moved or stolen. The invention is a large display sign with two large rotatably connected panels, each of which retains a large poster which is visible from one to fifty feet away. The sign is positioned and affixed into a sidewalk adjacent a corner of intersecting traffic so that information on each retained poster is visible to oncoming traffic as a vehicle approaches the intersection traveling in a direction where the poster is visible to oncoming traffic.
US10600341B2

A curved display device and an electronic device using the same, includes a display panel and a bottom cover formed to have a multi-layered clad metal coupling structure, and a heat dissipation layer and a pattern portion are defined in the bottom cover so as to assure improved heat dissipation performance and stiffness.
US10600340B2

An adapter device is described for fastening an information carrier to a support trail provided with two retaining means, wherein the adapter device includes a first leg and a second leg, each of which is supportable on one of the two retaining means. This adapter device is to be refined in such a way that a secure retention of the adapter device on the support rail is ensured, even after repeated mounting of the adapter device on or removal of the adapter device from the support rail and, at the same time, the costs for producing the adapter device are preferably minimal. To achieve this object, it is proposed to connect the first leg and the second leg to one another via a joint, wherein the first leg includes a first connection means for connecting the information carrier to the first leg, and the second leg includes a second connection means for connecting the information carrier to the second leg in such a way that in a mounted state, in which the information carrier is not connected to the adapter device, the first and the second leg are freely pivotable about the joint, and in a blockage state, in which the information carrier is connectable to the adapter device via the first and the second connection means, the joint may be blocked by the information carrier itself.
US10600334B1

Methods and systems for virtual coaching and performance training using a mobile device are disclosed. The methods and systems perform the steps of capturing a training video of a player using a camera on the mobile device; augmenting the training video with a visual cue for a cue period starting from a first time instant; determining whether the player has responded to the visual cue at a second time instant within the cue period, by analyzing a body posture flow of the player between the first time instant and the second time instant, wherein the body posture flow is extracted from the training video by performing a computer vision algorithm on one or more frames of the training video; and in response to determining that the player has responded to the visual cue, generating a feedback to the player.
US10600333B2

A system, method and computer program product for generating normalized activity results. A mobile application is installed on a plurality of computing devices and normalization base data is received for a first user. The first user is assigned to a user population based on the received normalization base data. A comparator population is determined that includes users having normalization base data within a comparator range. Activity results are collected from users in the user population and the comparator population. At least one activity results is received for the user. At least one normalization factor is determined for the user based on the comparator population activity results and the user population activity results. Normalized activity results are determined by adjusting each of the received activity results using the at least one normalization factor. The normalized activity results can then be displayed to the user.
US10600330B2

A method and an apparatus for assessing cardiopulmonary fitness of a user are provided. A method of assessing cardiopulmonary fitness involves measuring a biosignal of a user performing an activity, measuring an exercise intensity of the activity, determining a parameter based on the biosignal and the exercise intensity, estimating a cardiopulmonary fitness index based on the parameter, and assessing the cardiopulmonary fitness of the user based on the cardiopulmonary fitness index.
US10600329B2

In an approach to providing feedback to a user using a wearable computing device, a computer records an activity being performed by a user operating a wearable computing device, and identifies the activity being performed by the user. The computer retrieves performance data corresponding to the activity being performed by the user, and determines, based on the retrieved performance data and the recorded activity being performed by the user, whether the user deviates from the retrieved performance data. Responsive to determining the user deviates from the retrieved performance data, the computer transmits, based on the retrieved performance data, performance feedback to the user.
US10600328B2

An enhanced flight management system and flight management method directed to improved guidance in unstable approach scenarios. The method includes receiving and processing a published arrival procedure (PAP), a published glide path (PGP), landing parameters, and real-time aircraft sensor data to determine a an actual approach profile, and whether the aircraft is following the reference approach profile. Approach stabilization criterion are determined, including, (i) a wind corrected air mass flight path angle (WC FPA) at the IMC; (ii) a vertical speed at the wind corrected air mass flight path angle (VS IMC); (iii) a wind corrected air mass flight path (WC FPA) angle at the VMC; and (iv) a vertical speed at the wind corrected air mass flight path angle (VS VMC). The method also determines whether an IMC criterion profile and a VMC criterion profile stabilizes the actual approach.
US10600326B2

A method for guiding an emergency vehicle to an emergency site includes receiving an emergency dispatch message including a location of an emergency. Present location information is received for an emergency vehicle. A route between the received present location and the received location of the emergency is calculated using area map data. Navigation guidance is provided to the emergency vehicle based on the calculated route. The calculated route and the present location information for the emergency vehicle are transmitted to an unmanned aerial vehicle (UAV). The UAV is automatically piloted ahead of the emergency vehicle, along the calculated route, using the calculated route and present location transmitted thereto. A traffic alert is transmitted from the UAV to influence traffic flow ahead of the emergency vehicle.
US10600324B2

A first limiter limits a first target steering angle correspondence value by a first steering angle correspondence value guard which defines the upper limit value of the steering angle correspondence value and is larger than a steering angle correspondence value guard at lane change time and limits a first target steering angular velocity correspondence value by a first steering angular velocity correspondence value guard which defines the upper limit value of the steering angular velocity correspondence value and is larger than a steering angular velocity correspondence value guard at lane change time. An actuator controller for first yaw angle return control which is configured to control an actuator to operate a steering wheel so that steering angle correspondence value becomes a first target steering angle correspondence value and a steering angular velocity correspondence value becomes a first target steering angular velocity correspondence value.
US10600321B2

In an approach for notifying, a computer receives one or more preemption notifications, wherein the one or more preemption notifications are associated with one or more priority vehicles. The computer identifies a device that is within range of the received one or more preemption notifications, wherein the device includes one or more directional indicators. The computer one or more directions of approach associated with the received one or more preemption notifications relative to the identified device. The computer determines a number of approaching priority vehicles associated with each instance of the identified one or more directions of approach relative to the identified device. The computer initiates to display through the one or more directional indicators of the identified device the identified total number of approaching priority vehicles associated with the one or more identified directions of approach relative to the identified device.
US10600318B1

Disclosed is a blind guiding equipment comprising a directional speaker, a calling transmitter disposed in a crosswalk beginning area of a pedestrian crosswalk, an access status sensor configured to sense a current status of a traffic signal which belongs to the pedestrian crosswalk, and a controller in signal connection with the calling transmitter, the traffic signal state sensor and the directional speaker, wherein the controller is configured to activate the directional speaker, when calling data which is generated by the calling transmitter according to a trigger operation has been received and access status data has indicated that a pedestrian is allowed to cross the pedestrian crosswalk, to guide a visually impaired person to follow a directional guiding sound wave which propagates along the pedestrian crosswalk to cross along the pedestrian crosswalk.
US10600314B1

In a general aspect, a sensitivity setting is adjusted in a motion detection system. In some aspects, a user interface is provided by a motion detection system, and user input data is obtained through the user interface. A wireless communication link is identified based on the user input data; the wireless communication link is provided by a first wireless communication device and a second wireless communication device. Based on the user input data, a value is assigned to a sensitivity setting associated with the wireless communication link in the motion detection system. The motion detection system obtains data for motion detection based on wireless signals communicated through a space on the wireless communication link. Motion of an object in the space is detected based on the data and the value of the sensitivity setting.
US10600307B2

An energy consumption alerting method includes measuring location-specific energy consumption values over a specific period at a sensor deployed at a location of a monitored site, and decomposing the location-specific energy consumption values according to a first characteristic. The method further includes decomposing the location-specific energy consumption values according to a second characteristic, and obtaining a first decomposed energy consumption value. The method additionally includes determining a corresponding first reference value based on the decomposed values, and comparing the first decomposed energy consumption value with the determined corresponding first reference value. Additionally, the method includes notifying a user if the first decomposed energy consumption value and the determined corresponding first reference value differ from each other. Furthermore, an energy consumption alerting system and a cloud-based energy consumption alerting platform is provided.
US10600301B2

A method for monitoring a location performed by one or more processors comprises receiving signals from a smoke sensor; determining one or more minutiae from the received signals; determining a time window based on the at least one determined one or more minutiae; characterizing one or more smoke or fire types in the determined time window based on one or more of the determined one or more minutiae; dynamically determining one or more alarm levels based on the characterized one or more smoke or fire types; evaluating at least one minutiae in the determined time window using the determined one or more alarm levels; and outputting an alarm signal if an alarm condition is determined.
US10600299B2

A removable battery compartment for use with a smoke detector having a first connector portion configured to receive power from a battery. The battery compartment includes an interior chamber configured to house the battery and a second connector portion configured to be removably coupled to the first connector portion. The second connector portion has electrical connections configured to supply power from the battery to the first connector portion of the smoke detector.
US10600297B2

Methods, systems, and apparatus, including computer programs encoded on storage devices, for monitoring, security, and surveillance of a property. In one aspect, a system includes a virtual reality headset, a plurality of cameras, a plurality of sensors that includes a first sensor, a control unit, wherein the control unit includes a network interface, a processor, a storage device that includes instructions to perform operations that comprise receiving data from the first sensor that is indicative of an alarm event, determining a location of the first sensor, identifying a set of one or more cameras from the plurality of cameras that are associated with the first sensor, selecting a particular camera from the identified set of one or more cameras; and transmitting one or more instructions to the particular camera that command the particular camera to stream a live video feed to a user interface of the virtual reality headset.
US10600296B2

Methods, systems, and apparatus, for defining and monitoring an event for a physical entity and the performance of an action in response to the occurrence of the event. A method includes receiving data indicating an event for a physical entity, the event specified in part by a physical environment feature for which the occurrence of the event is to be monitored by the data processing apparatus; receiving data indicating an action associated with the event and to be taken in response to the occurrence of the event; monitoring for the occurrence of the event for the physical entity; and in response to the occurrence of the event, causing the action associated with the event to be performed.
US10600287B2

Various embodiments of the present disclosure are directed to a gaming system and method providing a card game wherein for a plurality of plays of the game, the gaming system enables the player to save cards for a subsequent play of the card game. In one embodiment, for a first play of the card game, the gaming system enables the player to select a first quantity of cards to save for a subsequent play of the game. In this embodiment, for a second play of the card game, the gaming system enables the player to use zero, one or more of the previously saved cards for the current play of the card game. The gaming system also enables the player to select new cards from a displayed second hand of cards to add to and/or replace any previously saved cards to save for a subsequent play of the game.
US10600278B2

Reel-based wagering games comprise displaying a number of game reels; evaluating payout conditions associated with the number of game reels; based on evaluation of the payout conditions, displaying a bonus reel; and evaluating payout conditions associated with the number of game reels and the bonus reel.
US10600268B2

A key fob includes: communicator(s), a battery, memory, and processor(s) configured to: find signal strengths of received polls; determine, based on the signal strengths, that the received polls have: (a) increased, (b) decreased, (c) leveled off; and if (a), issue a poll response; if (c), not issue the poll response.
US10600259B2

Methods and apparatus for operating flight control systems of aircrafts are disclosed. An example apparatus includes a flight control system including a processor to: based on data from first and second sensors, determine first and second values; based on the first and second values, determine a location of a jam in the flight control system, the location of the jam being determined based on a summation of the first and second values.
US10600257B2

An autonomic vehicle control system is described, and includes a vehicle spatial monitoring system including a subject spatial sensor that is disposed to monitor a spatial environment proximal to the autonomous vehicle. A controller is in communication with the subject spatial sensor, and the controller includes a processor and a memory device including an instruction set. The instruction set is executable to evaluate the subject spatial sensor, which includes determining first, second, third, fourth and fifth SOH (state of health) parameters associated with the subject spatial sensor, and determining an integrated SOH parameter for the subject spatial sensor based thereupon.
US10600248B2

The technology disclosed can provide capabilities to view and/or interact with the real world to the user of a wearable (or portable) device using a sensor configured to capture motion and/or determining the path of an object based on imaging, acoustic or vibrational waves. Implementations can enable improved user experience, greater safety, greater functionality to users of virtual reality for machine control and/or machine communications applications using wearable (or portable) devices, e.g., head mounted devices (HMDs), wearable goggles, watch computers, smartphones, and so forth, or mobile devices, e.g., autonomous and semi-autonomous robots, factory floor material handling systems, autonomous mass-transit vehicles, automobiles (human or machine driven), and so forth, equipped with suitable sensors and processors employing optical, audio or vibrational detection.
US10600246B2

A method for presenting a physical environment in a virtual environment includes presenting a virtual environment to a user with a near-eye display, imaging a physical environment of the user, positioning a passthrough portal in the virtual environment, fixing a position of the passthrough portal in the virtual environment relative to the physical environment, and presenting a video feed of the physical environment in the passthrough portal in the virtual environment.
US10600245B1

Systems and techniques are provided for switching between different modes of a media content item. A media content item may include a movie that has different modes, such as a cinematic mode and an interactive mode. For example, a movie may be presented in a cinematic mode that does not allow certain user interactions with the movie. The movie may be switched to an interactive mode during any point of the movie, allowing a viewer to interact with various aspects of the movie. The movie may be displayed using different formats and resolutions depending on which mode the movie is being presented.
US10600242B2

One embodiment of the present application sets forth a computer-implemented method for generating a three-dimensional (3D) surface model. The method includes joining a first 3D object having a first closed surface mesh and a second 3D object having a second closed surface mesh to produce an irregular surface mesh. The method further includes computing a first intersection contour for the irregular surface mesh. The method further includes removing at least one portion of the irregular surface mesh proximate to the first intersection contour to produce a first boundary. The method further includes growing the first boundary towards at least one other boundary. The method further includes connecting the first boundary to the at least one other boundary to produce a portion of a non-manifold surface mesh that comprises at least a portion of the 3D surface model.
US10600234B2

Method and apparatus are disclosed for inter-vehicle cooperation for vehicle self imaging. An example vehicle includes an inter-vehicle communication module and a infotainment head unit. The infotainment head unit determines a pose of the vehicle and, in response to receiving an input to generate a composite image, broadcasts a request for images of the vehicle. The request message includes the pose. The infotainment head unit also generates the composite image of the vehicle based on the images and display the composite image on a display.
US10600231B2

Embodiments provide for a graphics processing apparatus including a graphics processing unit having bounding volume logic to operate on a compressed bounding volume hierarchy, wherein each bounding volume node stores a parent bounding volume and multiple child bounding volumes that are encoded relative to the parent bounding volume.
US10600228B1

Techniques for performing automatic interactive animation by automatically matching objects between multiple artboards, allowing an animator to link multiple artboards in a temporal sequence using time as a trigger and allowing an animator to preview an animation using intuitive drag controls via an input device such as a mouse or touch screen. An automatic animation process is performed by matching objects/nodes between artboards by determining a ranking of similarity between objects based upon a distance metric computed for a set of one or more attributes associated with each object in the artboards. If sufficient match is found, the matched objects can be treated as a single entity to be animated. In another embodiment, dominant direction of movement with respect to the matched objects is determined, and receipt of a drag event (mouse input or touch screen gesture input) in said dominant direction causes a preview of animation of that entity.
US10600206B2

A tracking system and a method thereof are provided in this disclosure. The tracking method includes steps of: capturing first images of the physical environment by a first electronic device; extracting a plurality of first feature points from the first images; generating a plurality of map points according to the extracted first feature points; building a map of the physical environment according to the map points by the first electronic device; capturing a second image of the physical environment by a second electronic device; extracting second feature points of the second image and transmitting the second feature points to the first electronic device; and estimating a pose of the second electronic device according to the map and the received second feature points by the first electronic device.
US10600204B1

A system and a method are described for preventing pressure ulcers in a medical care environment by monitoring adherence to a pressure ulcer prevention protocol. The method also includes identifying a first subset of pixels from the plurality of potential locations as representing a bed and/or a seating platform. The method also includes identifying a second subset of pixels within the field of view of the camera as representing an object (e.g., a subject, such as a patient, medical personnel; bed; chair; patient tray; medical equipment; etc.) proximal to the bed and/or seating platform. The method also includes determining an orientation of the object with respect to the bed and/or seating platform, and determining changes in the orientation and/or position of the object over a period of time. In implementations, the method further includes issuing an electronic communication alert based upon the determined orientation and/or position of the object over the period of time.
US10600196B2

A distance measurement device including a pixel array and a cover layer is provided. The cover layer is covered on the pixel array. The cover layer includes a first cover pattern covering on a first area of a plurality of first pixels and a second cover pattern covering on a second area of a plurality of second pixels. The first area and the second area are rectangles of mirror symmetry along a first direction.
US10600188B2

A method and a system for correcting a field of view (FOV) using tilt information of a user terminal upon playback of a 360-degree image. The method includes requesting to load a 360-degree image, correcting at least one of a tilt of the mobile terminal and a sensing value associated with a gesture input of the mobile terminal, for determining an FOV of the 360-degree image, with respect to the 360-degree image, and playing back the 360-degree image by exposing an FOV depending on at least the corrected tilt or the corrected sensing value.
US10600187B2

A trajectory detection device includes a lens configured to receive an image of a field of view. An array of microlenses is configured to create an array of light field images based on the image. A detector array includes a plurality of photon sensitive photodetectors. The detector array is configured to generate output signals from each photodetector based on the array of light field images. A controller is configured to integrate the output signals over an integration period. At least a portion of the output signals are modulated at a modulating frequency having a modulating frequency cycle time that is smaller than the integration period. A three-dimensional image of motion in the field of view is generated based on the integration of the modulated output signals.
US10600184B2

Systems and methods for automated segmentation of anatomical structures (e.g., heart). Convolutional neural networks (CNNs) may be employed to autonomously segment parts of an anatomical structure represented by image data, such as 3D MRI data. The CNN utilizes two paths, a contracting path and an expanding path. In at least some implementations, the expanding path includes fewer convolution operations than the contracting path. Systems and methods also autonomously calculate an image intensity threshold that differentiates blood from papillary and trabeculae muscles in the interior of an endocardium contour, and autonomously apply the image intensity threshold to define a contour or mask that describes the boundary of the papillary and trabeculae muscles. Systems and methods also calculate contours or masks delineating the endocardium and epicardium using the trained CNN model, and anatomically localize pathologies or functional characteristics of the myocardial muscle using the calculated contours or masks.
US10600172B2

A noise of an image signal generated by mixing a plurality of image signals is accurately estimated. In an image processing apparatus including an input unit and an estimation unit, a mixed image signal is input to the input unit, the mixed image signal being obtained by mixing a plurality of image signals with different exposure times that have been generated by an image sensor, on a basis of a predetermined mix ratio. The estimation unit is configured to estimate a mixed image signal noise being a noise of the mixed image signal, on a basis of the mix ratio, a noise characteristic coefficient indicating a noise characteristic of the image sensor, and a ratio between the exposure times in the plurality of image signals.
US10600169B2

Provided is an image processing system including at least one information processing apparatus and a distribution server. The information processing apparatus includes a clipping unit that performs image processing of clipping a predetermined object from a moving image in which the object is imaged and generates a clipped moving image of the object, and an operation content acquisition unit that obtains operation content of operation performed on the clipped moving image of the object. The distribution server includes an image processing unit that performs, individually for each of the objects, image processing that corresponds to operation content on a clipped moving image of a plurality of objects, and a combining unit that generates a combined moving image in which the plurality of objects is arranged by combining the clipped moving images of the plurality of objects that has undergone image processing.
US10600167B2

A method, computer readable medium, and system are disclosed for performing spatiotemporal filtering. The method includes the steps of applying, utilizing a processor, a temporal filter of a filtering pipeline to a current image frame, using a temporal reprojection, to obtain a color and auxiliary information for each pixel within the current image frame, providing the auxiliary information for each pixel within the current image frame to one or more subsequent filters of the filtering pipeline, and creating a reconstructed image for the current image frame, utilizing the one or more subsequent filters of the filtering pipeline.
US10600164B2

Imaging systems and methods are disclosed that use locally flat scenes to adjust image data. An imaging system includes an array of photodetectors configured to produce an array of intensity values corresponding to light intensity at the photodetectors. The imaging system can be configured to acquire a frame of intensity values, or an image frame, and analyze the image frame to determine if it is locally flat. If the image frame is locally flat, then that image data can be used to determine gradients present in the image frame. An offset mask can be determined from the image data and that offset mask can be used to adjust subsequently acquired image frames to reduce or remove gradients.
US10600159B2

The present invention provides an apparatus and a method for enhancing spatial resolution of a CT image and a CT imaging system, the method comprising: acquiring an original CT projection curve; performing deconvolution for projection data on the original CT projection curve in a tube sampling direction or a texture direction of the original CT projection curve; and reconstructing an image according to the projection data after deconvolution.
US10600155B2

Some embodiments of the invention include methods and systems to generating virtual reality content based on corrections to stitching errors. The method includes receiving at a cloud-based server through a network interface, raw virtual reality video data recorded by camera modules of a camera array. The method further includes stitching the raw virtual reality video data, at the cloud-based server, to generate an initial virtual reality render. The method further includes determining that the initial virtual reality render has stitching errors. The method further includes transmitting the initial virtual reality render from the cloud-based server to a user device. The method further includes receiving a correction to the initial virtual reality render from the user device. The method further includes generating virtual reality content based on the correction.
US10600139B2

A system is provided for downloading an electronic greeting card application to a portable computing device. The system comprising a server, a paper greeting card, and a code printed on the paper greeting card. The electronic greeting card application is downloaded to the portable computing device from the server in response to the portable computing device scanning the code on the paper greeting card. Further herein, a system is provided where a category of greeting cards are contained within the electronic greeting card application, and at least a greeting card within the category of greeting cards. The greeting card comprises a plurality pages, with at least one of the a plurality pages having an option to customize, and each of the a plurality pages being movable by a touch of a finger. The customized greeting card may be previewed and may be sent via various sending mechanisms.
US10600136B2

A method includes identifying medical concepts in identified patient cases that are missing from medical concepts in first electronically formatted medical information as missing medical concepts, and selecting an imaging protocol for an imaging procedure based on a combination of the medical concepts from the first electronically formatted medical information and the missing medical concepts, and generating a signal indicative of the selected imaging protocol. A method includes identifying at least one of one or more medical concepts as a relevant additional concept, and selecting an imaging protocol for the imaging procedure based on a combination of one or more clinical indications and the relevant additional concept, and generating a signal indicative of the selected imaging protocol.