US10660250B2

A mounting device is provided with a first raising and lowering drive section that raises and lowers a syringe member to which a suction nozzle that picks up a component is attached, and a second raising and lowering drive section that raises and lowers the suction nozzle with respect to the syringe member to which the suction nozzle is attached. The mounting device controls a raising and lowering operation of the first raising and lowering drive section based on height information that includes at least one of information of the thickness of the component or information of the stage height of a transfer stage.
US10660249B2

A standalone type reel holding device configured to be set separately to a component mounter provided with a component supply device, the component supply device including multiple feeder devices and a main-body-side reel holding section configured to hold multiple tape reels around in a rotatable and exchangeable manner, wherein the standalone type reel holding device holds separately-located tape reels different to the tape reels held by the main-body-side reel holding section in a rotatable and exchangeable manner, and supplies carrier tapes wound on the separately-located tape reels to the feeder devices. Thus, it is possible to increase the overall quantity of carrier tapes supplied to feeder devices from the main-body-side reel holding section and the standalone type reel holding device.
US10660246B1

An electromagnetic shielding assembly configured to be disposed on a circuit board with at least one electronic component includes a plurality of shielding housings. The shielding housings form a gap therebetween. Each of the shielding housings has a first opening adjoining the gap. The shielding housings are configured to accommodate part of the electronic component. The electronic component is configured to pass through the first openings of the shielding housings and the gap.
US10660245B2

Exemplary embodiments disclosed herein provide a back pan cooling assembly for an electronic display having a rear pan. A cooling back pan is preferably positioned behind the rear pan, the space between the cooling back pan and the rear pan defining a gap. A fan is positioned to cause a flow of ambient air through the gap. An electronic component for driving the electronic display may be placed in conductive thermal communication with the cooling back pan. A rear cover can be placed against the cooling back pan to define a sealed compartment which does not permit ambient air to enter. A port can be provided within the rear cover which allows ambient air to travel between the surroundings, the fan, and the gap.
US10660244B2

A semiconductor unit may include first coolers arranged in parallel; semiconductor modules, each of the semiconductor modules being interposed between a pair of the first coolers arranged adjacently; a coolant discharge pipe provided at one of the first coolers that is located at an end of a stack of the first coolers and the semiconductor modules, the coolant discharge pipe extending along a stacking direction of the first coolers and the semiconductor modules; a second cooler connected with the coolant discharge pipe; and a reactor interposed between the second cooler and the one of the first coolers located at the end of the stack.
US10660242B2

Provided herein are a heat sink module of an inverter module to power an electric vehicle. The heats sink module can include a heat sink body having a plurality of mounting holes, a fluid inlet and a fluid outlet. The heats sink module can include a cooling channel that can be fluidly coupled with the fluid inlet and the fluid outlet. The heats sink module can include an insulator plate having a first surface and a second surface. The second surface of the insulator plate can couple with a joining surface of the heat sink body to seal the cooling channel. The heats sink module can include a heat sink lid disposed over the insulator plate. The heat sink lid can have a plurality of mounting feet to couple with the mounting holes of the heat sink body to secure the heat sink lid to the heat sink body.
US10660237B2

A power supply apparatus includes a battery cell, a voltage conversion circuit connected to the battery cell, a first housing that fixes the battery cell in a manner to enable heat transfer, a second housing that fixes the voltage conversion circuit in a manner to enable heat transfer, and a low thermal conductive layer interposed between mating surfaces of the first housing and the second housing having a thermal conductivity smaller than a thermal conductivity of the first housing. The battery cell and the voltage conversion circuit are accommodated in an internal space formed by the first housing and the second housing.
US10660235B2

A fan (200) includes a housing (201) defining a duct (202). A spindle (203) can be concentrically located about a central axis within the duct. One or more fan blades (205,206,207) extending radially from the spindle toward a surface of the duct. Each fan blade is pivotable about a radial axis (208) between a closed position (400) where the each fan blade is in contact with each adjacent fan blade and an axially displaced open position (300) where the each fan blade is physically separated from the each adjacent fan blade. This prevents recirculation of air if a fan should fail.
US10660225B2

A display module comprises a support structure, a plurality of light-emitting elements mounted to the support structure, and a latch assembly that includes a latch plate comprising a magnetically-engageable material, wherein the latch plate is moveable relative to the module support structure within a range of motion between a first position and a second position. The magnetically-engageable material of the latch plate forms a first magnetic attraction force between the latch plate and a support chassis mating structure when the latch plate is in the first position to at least partially secure the display module to the support chassis. A corresponding magnetic device can generate a second magnetic attraction force between the corresponding magnetic device and the latch plate that overcomes the first magnetic attraction force and moves the latch plate from the first position to the second position.
US10660220B2

In a multi-panel display device in which plural individual display devices are joined, it is possible to guarantee image continuity in panel junction areas of the multi-panel display device by disposing a frame-type optical member, which includes a frame section having plural optical fibers and a central light-transmitting area, on the front surface of the multi-panel display device and optimizing structures of an inner inclined surface of the frame section of the frame-type optical member and optical fibers included in the frame section.
US10660219B2

A resin multilayer substrate includes a stacked body including resin layers, a component, one or more first conductor patterns, and one or more second conductor patterns each disposed in a gap between the resin layers. At least a portion of an outline of each of the one or more first conductor patterns overlaps with the component. An outline of each of the one or more second conductor patterns does not overlap with the component. A resin portion is adjacent to each of the one or more first conductor patterns along a portion of the outline of each of the one or more first conductor patterns that overlaps with the component. The resin portion is made of a resin paste including thermoplastic resin powder as a main material. The resin portion is not disposed in a portion along the outline of each of the one or more second conductor patterns.
US10660216B1

A method of manufacturing an electronic board includes: preparing a substrate in which substrate-side solder parts are provided on electrodes; preparing a mounting sheet having a resin layer in which a plurality of voids is formed in accordance with positions of the electrodes; attaching the resin layer to at least one of a first electronic component and the substrate so that interfaces of the first electronic component or the substrate-side solder parts are located inside the respective voids; causing the interfaces and the substrate-side solder parts to face each other at positions of the respective voids; and melting the substrate-side solder parts by heating to join the interfaces and the electrodes.
US10660211B2

A method for manufacturing an electromechanical structure includes producing conductors and/or graphics on a substantially flat film, attaching electronic elements on the film in relation to a desired three-dimensional shape of the film, forming the film into the substantially three-dimensional shape, and using the substantially three-dimensional film as an insert in an injection molding process by molding substantially on said film.
US10660203B2

A display and a circuit board structure thereof are provided. The circuit board structure includes a first circuit board, a second circuit board and a connection structure. The connection structure is disposed on the first circuit board, the second circuit board has gold fingers, the connection structure has pins corresponding to the gold fingers, and the connection structure conducts the first circuit board and the second circuit board by connecting the pins with the gold fingers. Therefore, an extra FFC and a connector disposed on the second circuit board for connecting the first circuit board and the second circuit board are saved to achieve cost reduction and assembling process simplification.
US10660201B2

An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation between the first and second electrical contacts.
US10660196B2

A filter for electromagnetic noise comprising: a printed circuit board (5) having conductor tracks, having a first side and having a second side opposite the first side; a first busbar (1), which is secured on the first side of the printed circuit board (5) and is electrically connected to at least one of the conductor tracks; and a second busbar (2), which is secured on the second side of the printed circuit board (5) and is electrically connected to at least one of the conductor tracks. The printed circuit board (5) is arranged between the first busbar (1) and the second busbar (2) for the insulation thereof.
US10660195B2

An embodiment provides a printed circuit board and an electronic component package including the same, the printed circuit board comprising: a data line layer; a ground layer disposed on the data line layer; a power line layer disposed on the ground layer; and insulation layers disposed between the data line layer and the ground layer and between the ground layer and the power line layer, respectively, wherein the ground layer comprises a common ground and a chassis ground electrically insulated from the common ground.
US10660189B2

An X-ray diagnosis system comprises an inter-capacitor terminal, a first inter-switching-element terminal, a second inter-switching-element terminal, and a third inter-switching-element terminal, wherein the first inter-switching-element terminal, the second inter-switching-element terminal, and the third inter-switching-element terminal are configured to supply three-phase alternating current power, and the inter-capacitor terminal and two of the first inter-switching-element terminal, the second inter-switching-element terminal, and the third inter-switching-element terminal are configured to supply two-phase alternating current power.
US10660188B2

A discharging device for discharging electrostatic charges from a shaft includes a conductor arrangement having at least two bending elastic conductors arranged on a holder and made of a carbon-fiber arrangement. The holder has two holder legs arranged on a common pivot axis, each holder leg serving to accommodate a terminal section of a conductor. The holder legs are pivotable relative to each other to enable a holder angle (α) formed between the holder legs to be adjusted. The holder legs are lockable in a defined pivoted position.
US10660179B1

A light-emitting diode (LED) luminaire control gear comprising a rechargeable battery and a control and test circuit is adopted to provide an emergency power to operate a luminaire that works only in alternate-current (AC) mains. The luminaire comprises LED arrays and a power supply. The LED luminaire control gear further comprises a current-fed converter circuit, a control and test unit, and a relay switch. When a line voltage from the AC mains is unavailable or when a battery discharging test is initiated, the LED luminaire control gear is automatically started to provide a high DC voltage within an input operating voltage range of the luminaire and a low-voltage conversion circuit to control the power supply to operate the LED arrays without strobing. The relay switch is configured to couple either the line voltage or the high DC voltage to the power supply to operate thereon.
US10660176B2

A system for driving a light source includes a power converter and control circuitry coupled to the power converter. The power converter converts input power to an output voltage to power the light source. The control circuitry senses the output voltage and senses current of the light source. The control circuitry generates a control signal based on a voltage feedback signal indicative of a combination of said output voltage and said current of said light source, and controls the power converter by the control signal to adjust the output voltage.
US10660171B2

A discharge lamp drive device includes a discharge lamp driver adapted to supply a drive current to a discharge lamp having a first electrode and a second electrode, a control section adapted to control the discharge lamp driver, and a storage section adapted to store a plurality of drive patterns of the drive current. The control section is configured to select one drive pattern of the plurality of drive patterns based on machine learning, and execute the selected drive pattern. In a case in which a predetermined condition is fulfilled, the control section executes a predetermined drive pattern of the plurality of drive patterns without selecting and executing the drive pattern based on the machine learning.
US10660169B1

Provided is control method and a lighting system having a plurality of lighting elements that includes a power supply for supplying power, a lighting driver having a microcontroller and configured to receive power from the power supply and output power to the plurality of lighting elements for operation thereof, a control system in electrical or wireless communication with the microcontroller, and configured to communicate with the microcontroller, to control an operational mode of the plurality of lighting elements via the lighting driver, wherein the microcontroller is configured to transmit an output reference signal as a control signal, and a peak detection circuit that receives the output reference control signal from the microcontroller, and generates a standby control signal from the output reference control signal received, to thereby operate the plurality of lighting elements in an on or standby mode.
US10660168B2

A lighting device includes light emitting element groups (HSB) including a light emitting element group (HS2) that emits light when being applied with a voltage at a light emission reference voltage (VH2), and a light emitting element group (HS12) that emits light when being applied with a light emission reference voltage (VH12) higher than the light emission reference voltage (VH2), the light emitting element groups (HSB) emitting light when being applied with a voltage equal to or higher than a light emission reference voltage (VHa); a semiconductor chip (IC1) including a light emission control unit (HC1) arranged to perform light emission control to cause light emission of a light emitting element group (HS) if a drive voltage (Vk) is higher than the light emission reference voltage (VHa), and to perform light emission stop control to stop the light emission if the drive voltage (Vk) is lower than the same; and a semiconductor chip (IC2) including a light emission control unit (HC2) arranged to perform light emission control to cause light emission of a light emitting element group (HSa) if the drive voltage (Vk) is higher than the light emission reference voltage (VHa), and to perform light emission stop control to turn off the emitting element group (HSa) if the drive voltage (Vk) is lower than the same.
US10660166B2

The microwave heating apparatus of the present invention enables microwaves to be propagated onto an object to be heated through a waveguide such that the microwaves propagate to a microwave space reduced by a wavelength controller which is arranged, as a solid-state object, to occupy a predetermined space in the waveguide. Thus, the microwave heating apparatus of the present invention heats the object to be heated which has been placed in the reduced space. The microwave heating apparatus of the present invention utilizes the effects of lengthening the wavelength of the microwaves propagating to the reduced space so as to be longer than the wavelength before entering the reduced space by a predetermined multiple depending on a near-cutoff condition.
US10660164B2

A cooktop device, in particular an induction cooktop device, includes a base component and an articulated arm having a first arm part and a second arm part, with the articulated arm bearing exactly one heating element. A joint supports the second arm part for movement relative to the first arm part, and a suspension connects the first arm part to the base component.
US10660157B2

A public safety analytics gateway includes a front-end processor configured to communicate with a network gateway and a public safety enterprise server and a data collector in communication with the front end processor, wherein the front end processor is configured to receive public safety data from the public service enterprise server and forward the public safety data to both the network gateway and the data collector.
US10660155B2

Concepts and technologies are disclosed herein for collecting and analyzing data in a distributed sensor network. The distributed sensor network can include a number of distributed sensor systems having data sources such as sensors, communication equipment, and/or other systems and components. The distributed sensor systems also can include lighting systems, if desired. The distributed sensor systems can collect data from the data sources and provide the data to a local or remote entity such as a data analysis engine. The data analysis engine can request data from the distributed sensor systems, receive the data, and analyze the data for various purposes.
US10660151B2

A radio terminal (1) determines (201) (a) a pathloss level between the radio terminal (1) and a base station (2), (b) a coverage enhancement level based on the pathloss level, or (c) a coverage enhancement mode configured in the radio terminal (1). The radio terminal chooses (202) between non-truncated first information and truncated first information, having a smaller bit length than the non-truncated first information, to be included in an initial uplink Radio Resource Control (RRC) message transmitted within a random access procedure, based on the determined pathloss level, the determined coverage enhancement level, or the determined coverage enhancement mode. This contributes to, for example, enabling a base station to easily know the Msg3 size desired by a radio terminal.
US10660148B1

A device includes a wireless communication circuit and one or more processors operable with the wireless communication circuit. The wireless communication circuit receives one or more local area wireless communication signals identifying one or more external electronic devices operating within an environment of the device. The one or more processors select a local area wireless communication signal having a power magnitude experiencing a highest amount of change from the one or more local area wireless communication signals and perform a pairing operation with an external device identified by the local area wireless communication signal.
US10660134B2

The present invention provides an MTC UE random access method and device. The method comprises: receiving indication information sent by a network side, the indication information being used for indicating at least one coverage enhancement level (CE LEVEL) and a physical random access channel (PRACH) resource corresponding thereto; selecting one CE LEVEL from a CE LEVEL of an MTC UE and the CE LEVEL indicated by the network side, and determining a PRACH resource corresponding to the CE LEVEL; and carrying out random access on the PRACH resource corresponding to the selected CE LEVEL. The present invention provides a mechanism of how to select a PRACH resource when a network side triggers an MTC UE to initiate a contention-free random access (CFRA) process.
US10660133B2

A random access method may include receiving a random access preamble that is uniquely allocated to a User Equipment (UE) from the UE on an extended-Physical Random Access Channel (e-PRACH) and identifying the UE based on the random access preamble.
US10660130B2

This disclosure provides systems, methods and apparatuses for coordinating access to a shared wireless medium among multiple master devices operating on the same frequency band. In some implementations, master devices may contend for access to the shared medium during a medium reservation window (MRW). During the MRW, master devices may advertise their intent to reserve at least a portion of the shared medium for one or more timeslots within a subsequent medium utilization period. The reservation messages may be broadcast to other master devices in the vicinity to prevent other master devices from accessing the wireless medium during a reserved timeslot. In some implementations, the owner of a timeslot may share at least a portion of its timeslot with other master devices. For example, the timeslot owner may enable other master devices to utilize an unused portion of the wireless medium, such as unused channels, spatial streams, or time.
US10660127B2

The present disclosure provides a method and an apparatus for determining a Listen Before Talk (LBT) mode, as well as a method for LBT mode switching. The method includes: determining (100) an LBT mechanism and/or an LBT mechanism parameter set based on related indication information and/or priority information and/or measurement information; and performing (101), by a transmitting device, contention-based channel access based on the determined LBT mechanism and/or LBT mechanism parameter set. With the present disclosure, an LBT mode can be determined. With the selection of the LBT mode, it is possible to avoid waste of channel resources and indication information due to an improper LBT mode, thereby improving an efficiency of contention-based channel access.
US10660126B2

Provided is a communication device, even in a case that many communication devices are connected in a radio communication network constituted of a plurality of different radio communication technologies, that suppresses data transmission of one communication technology from delaying due to data transmission situation of another communication device and enables coexistence of different radio communication technologies. A communication device for transmitting and/or receiving a signal using a plurality of radio communication systems, the communication device includes transmitting a signal configured to reserve a first frequency indicating that a radio wave of a prescribed frequency band is used using a first radio communication system among the plurality of radio communication systems; and transmitting, after transmitting the signal indicating that the radio wave is used, a signal configured to request transmission of data to another communication device using a second radio communication system that is different from the first radio communication system.
US10660123B2

The present invention discloses a method and an apparatus for obtaining configuration information of a grant-free transmission unit. A centrally configured network element sends configuration information of a grant-free transmission unit of an access device to the access device, where the grant-free transmission unit refers to a transmission resource used for grant-free transmission, and the configuration information of the grant-free transmission unit includes at least one or more of the following information: information about the grant-free transmission unit or information about a grant-free transmission control mechanism. By using the method and the apparatus for obtaining configuration information of a grant-free transmission unit, an access device can obtain configuration information of a grant-free transmission unit.
US10660117B2

A first device senses scheduling assignment (SA) and received power of a second device, and a total received energy of each subband. The first device determines a reference value of received power of the second device and a reference value of total received energy, based on a sensing result of the second device. The first device selects a resource, based on the reference value of received power and reference value of total received energy, the first device transmits data. By adopting the method of the present disclosure, decoding performance of SA is improved, and accuracy for measuring received power of the SA is also enhanced. Subsequently, on the basis of SA and received power, performances for selecting/re-selecting channel resources are improved.
US10660110B2

A user equipment (UE) device may communicate according to a new device category satisfying specified QoS (quality of service) requirements while also satisfying specified link budget requirements, and additional optimization requirements. The new device category may identify the UE device as a wearable device. According to some embodiments, LTE category M may be extended to support non-MTC operations performed by wearable devices. For example, the new device category may support UE mobility and may disallow access barring. Additional extensions may be implemented in response to an indication by the UE that the UE is implementing a specific application, such as VoLTE or a near real-time application, such as audio streaming. In some scenarios, the indication may include the UE indicating a specific QCI value. In some scenarios, the indication may include the UE attaching to a specific APN.
US10660108B2

A communication method for a terminal is disclosed, including creating a radio link failure (rlf)-report including information associated with an rlf with a first base station; connecting to one base station from among base stations including the first base station; and transmitting the rlf-report to the one base station. Furthermore, a communication method for a base station is also disclosed, including connecting to the terminal; and receiving an rlf-report including information associated with a previous rlf between the terminal and another base station. In an aspect, information including channel information is transmitted to a base station to which a terminal is initially connected even when the terminal has failed in performing random access thereto, to thus enable the efficient transmission of information, and the base station may control scheduling or the like in accordance with the information reported by the terminal, thereby enabling efficient communication.
US10660107B2

Bluetooth apparatus includes a control unit and a Bluetooth communication unit. The control unit divides Bluetooth channels into divided groups including a first group, a second group, and a third group and selects one from among the divided groups. The Bluetooth communication unit uses channels included in the selected divided group, in which the selected divided group does not include a frequency band of a Wi-Fi channel in use.
US10660106B2

A radio resource management system is disclosed and can include a receiver to receive a plurality of registration requests, each of the registration requests being from a separate one of a plurality of radio communication devices. The receiver is configured to further to receive, prior to receiving a spectrum assignment request from a first radio communication device among the plurality of radio communication devices, location information and radio information from the plurality of radio communication devices. The radio resource management system can also include a transmitter and a processor. The processor is configured to determine available spectrum based on the radio information and the location information and to cause the transmitter to transmit a spectrum assignment to the first radio communication device based on the available spectrum.
US10660102B1

In wireless communications systems, a client terminal performs cell search procedure to find a suitable cell and camp on it to receive service from the network. In 3GPP LTE wireless communication system, the cell search involves the decoding of the Physical Broadcast Channel (PBCH) which may take relatively long time to decode under poor channel conditions which in turn may affect the time it takes to receive service from a cell after cell reselection or handover. A method and apparatus are disclosed that perform the PBCH decoding across multiple instances that carry partly different and partly common PBCH information. This method enables a client terminal to receive service from a cell faster than conventional methods.
US10660099B2

A communication control device including: an acquisition unit configured to acquire band use information indicating which cell of a macro cell and a small cell partially or entirely overlapping with the macro cell uses each of a plurality of frequency bands used by one of the macro cell and the small cell; and a communication control unit configured to notify a terminal device of the band use information. The communication control device improves radio communication of a terminal device when a small cell is disposed.
US10660096B2

A method for accessing a channel in a wireless local area network is provided. An access station receives a physical layer protocol data unit (PPDU) in a channel. The access station determines a Clear Channel Assessment (CCA) sensitivity level based on a basic service set for the received PPDU and determines whether the channel is idle or busy based on the determined CCA sensitivity level.
US10660086B2

A method and an apparatus for processing scheduling information in a terminal into which a plurality of forward carriers and reverse carriers are aggregated are provided. The method includes receiving a control message from a base station, the control message including information on a reverse carrier added by the carrier aggregation, and determining a new buffer state table to be used for reporting the state of buffers to the base station, based on the information included in the control message.
US10660084B2

[Object] To provide a terminal device capable of efficiently performing communication in a communication system in which a base station device and the terminal device communicate with each other.[Solution] A terminal device that communicates with a base station device, including: a higher layer processing unit configured to perform SPDSCH setting through signaling of a higher layer from the base station device; and a receiving unit configured to receive a PDSCH in a case in which the SPDSCH setting is not performed and receive an SPDSCH in a case in which the SPDSCH setting is performed. The SPDSCH is mapped to any one of one or more SPDSCH candidates set on a basis of the SPDSCH setting. A number of symbols of a resource used for mapping of the SPDSCH is smaller than a number of symbols of a resource used for mapping of the PDSCH.
US10660079B2

A method includes: communicating, by a base station, first UE specific information of UE with the UE in a UE source operating bandwidth resource; and sending, by the base station, information about a UE target operating bandwidth resource of the UE to the UE in a UE calibration bandwidth resource of the UE, where the UE target operating bandwidth resource is used by the base station to communicate second UE specific information of the UE with the UE, and the UE source operating bandwidth resource is not completely the same as the UE calibration bandwidth resource.
US10660071B2

A wireless communication base station apparatus that allows the number of times of blind decodings at a mobile station to be reduced without increasing the overhead caused by notifying information. In this apparatus, a CCE allocation part allocates allocation information allocated to a PDCCH received from modulation parts to a particular one of a plurality of search spaces that is corresponding to a CCE aggregation size of the PDCCH. A placement part then places the allocation information in one of downstream line resources, reserved for the PDCCH, that is corresponding to the CCE of the particular search space to which the allocation information has been allocated. A radio transmission part then transmits an OFDM symbol, in which the allocation information has been placed, to the mobile station from an antenna.
US10660065B2

Provided are a method of transmitting a paging message and a device supporting the method. According to one embodiment of the present invention, a method for transmitting a paging message in a wireless communication system includes: receiving a paging information from a Central Unit (CU) of the base station; and transmitting the paging message based on the paging information to a User Equipment (UE), wherein the DU is a lower layer of the base station, and the CU is a higher layer of the base station.
US10660060B1

Systems and apparatuses for determining location of a wireless arbitrary device are disclosed herein. In one example, an asynchronous system for localization of a wireless arbitrary device in a wireless network architecture includes a plurality of wireless anchor nodes each having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture. The one or more processing units of at least one wireless anchor node are configured to receive instructions to prepare for localization of the wireless arbitrary device, to change a RF channel to be the same as an RF channel of the wireless arbitrary device based on the received instructions, to receive a communication including data traffic from the wireless arbitrary device, and to obtain ranging information including a receive timestamp and channel sense information (CSI) from the data traffic.
US10660052B2

A method for signal transmission and reception on an unlicensed band by a terminal in a wireless communication system, according to an embodiment of the present invention, comprises the steps of: receiving a reference signal that has been generated from a scrambling sequence having initial values that vary every 10 subframes; and receiving a downlink signal on the basis of the reference signal, wherein the seed value of the variation pattern of the initial values are determined on the basis of an operator of a base station that transmits the downlink signal on the unlicensed band.
US10660047B2

A method, in a first subset of a sequence of transmission intervals, including communicating, on a radio link of a cellular network and according to a resource mapping, pilot signals having a non-zero first transmit power. The method includes, in a second subset of the sequence of transmission intervals, communicating, on the radio link and according to the resource mapping, the pilot signals having a non-zero second transmit power which is larger than the first transmit power.
US10660044B2

Apparatuses, methods, and systems are disclosed for transmission power control. One method includes receiving a first configuration indicating a plurality of bandwidth parts on a first serving cell and configuration information corresponding to the plurality of bandwidth parts. The configuration information comprises an open-loop power control configuration, a closed loop power control configuration, or a combination thereof corresponding to each bandwidth part of the plurality of bandwidth parts. The method comprises receiving scheduling information for a first uplink transmission on a first bandwidth part of the plurality of bandwidth parts. The method comprises determining a first transmission power for the first uplink transmission based on the configuration information and the scheduling information. The method comprises performing the first uplink transmission with the first transmission power.
US10660042B2

A method, a user equipment, a 5G core network device, an apparatus, and a computer program product for wireless communication are provided. Battery life and network efficiency of the user equipment are improved through the usage of a polled-mode power saving technique, wherein the user equipment periodically awakens to poll the 5G core network device regarding whether a communication is available for the user equipment. If the communication is available, the user equipment receives the communication. If the communication is delayed, the user equipment performs discontinuous reception to save power until the communication is available. If the communication is unavailable, the user equipment resumes a sleep mode.
US10660038B2

This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for generating wake-up radio (WUR) frames formats and implementing WUR communications between transmitting and receiving wireless devices. A transmitting wireless device may identify one or more intended receiving wireless devices for which to send a WUR frame. The transmitting wireless device may generate the WUR frame, where the WUR frame has a first portion that includes a first field. The first field may indicate whether the WUR frame is a fixed length frame or a variable length frame. The transmitting wireless device may also determine a frame check sequence (FCS) type for use with a WUR frame for transmission. The FCS portion may be capable of being one of a plurality of FCS types. The transmitting wireless device may transmit the WUR frame to the one or more intended receiving wireless devices.
US10660034B2

Disclosed is a wireless communication base station device capable of reducing the power consumption of a terminal when broadband transmission is performed with only an uplink. With this device, a setting unit sets mutually different terminal IDs per a plurality of uplink unit bands for a terminal that communicates using a plurality of uplink unit bands and prescribed downlink unit bands which are fewer in number than the uplink unit bands; a control unit that respectively allocates resource allocation information per a plurality of uplink unit bands to a PDCCH arranged in a prescribed downlink unit band; and a PDCCH creation unit that creates a PDCCH signal by respectively masking the resource allocation information per a plurality of uplink unit bands with the terminal ID that has been set per a plurality of uplink unit bands.
US10660030B2

A system and method for controlling uses of respective tester points of access (PoAs) during wireless testing of one or more radio frequency (RF) signal transceiver devices under test (DUTs) in which one or more device identifiers are used to determine whether a DUT requesting access to one of multiple wireless PoAs is eligible to interact with the PoA receiving such request or, instead, eligible to interact with another one of the multiple PoAs and is to be redirected to such other PoA. Access by the requesting DUTs to respective PoAs may be predetermined so as to control loading of the PoAs during testing.
US10660017B2

A first communications device (1002) and a method therein for Device-to-Device (D2D) communication with a second communications device (1004) using a first Radio Access Technology (RAT) or a second RAT. The first and second communications devices are operating in a communications network (1000). The first communications device transmits 5 the second communications device, by means of the first RAT, information relating to a proximity service provided by the second RAT. Thereby the information enables the second communications device to determine whether to use the first RAT or the proximity service provided by the second for D2D communication with the first communications device.
US10660015B2

A system (10) and method (30) comprises a detector that is configured to enable a mode of a first device (14) and/or to enable a mode of a second device (15) responsive to a detection that a proximity criterion is satisfied between the first device and an entity (Entity 1) and responsive to at least one of a position, velocity and a Time-of-Day and where the second device is not the entity and is not associated with the entity, and where the entity is not involved in providing a communications service to the first and/or second device.
US10659999B2

A wireless terminal can communicate with two radio access networks (RAN) (304, 306) of different types. The wireless terminal can register simultaneously with a RAN of the first type and a RAN of the second type and can wirelessly connect to a RAN of either the first type or the second type in a connected state. The wireless terminal when registered with both a first RAN and a second RAN and when wirelessly connected to the first RAN in the connected state, receives a mobility signal via the first RAN indicating a RAN of the second type and, in response to receiving the mobility signal and in response to being so registered with the first RAN and second RAN, transmits an access trigger signal (417). The access trigger signal indicates that the wireless terminal is to be connected to the second RAN in the connected state.
US10659997B2

A mobile communication device and method including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from an advanced network and a legacy network. The controller receives a message from the advanced network via the wireless transceiver for redirecting the mobile communication device from the advanced network to the legacy network in response to a request for a call, searches for a suitable cell in the legacy network via the wireless transceiver in response to receiving the message, and camps on the suitable cell for making the call via the wireless transceiver regardless of the suitable cell being of a low priority and whether there is another suitable cell of a normal priority or not.
US10659995B2

Systems and methods for recommending a data rate on an uplink or downlink communication channel between the network node and a wireless device in a wireless communications system are provided. In one exemplary embodiment, a method performed by a wireless device (105, 200, 300, 400, 1100) for recommending a data rate on an uplink or downlink communication channel (107, 109) between the wireless device and a network node (101) in a wireless communications system (100) comprises determining (501, 1701) to request (113) that the network node recommend a data rate on the uplink or downlink communication channel for the wireless device. Further, the method includes generating a first information element (111) that indicates the request. Also, the first information element is sent via a protocol layer on the uplink communication channel.
US10659988B2

The present specification relates to a communication method and a communication device, and a random access method of a user equipment (UE), according to one embodiment of the present specification, comprises the steps of: sensing a random access trigger in a connected state; determining the type of the random access trigger when the random access trigger is sensed; and performing congestion control if the type of the random access trigger is a preset type.
US10659984B2

Provided are a measurement reporting method of a terminal in which a primary cell is set and a terminal apparatus using the measurement reporting method. The method comprises: a step for adding a secondary cell; a step for determining whether the secondary cell is applicable to related measurement; and a step for determining whether the secondary cell is included in a cellsTriggeredList, wherein when the secondary cell is not applicable to the related measurement and the secondary cell is included in the cellsTriggeredList, the secondary cell is removed from the cellsTriggeredList.
US10659981B2

A method, system, and device for transmitting a preamble signal and for signal measurement, for use in solving the problem found in the prior art that the transmission power of each antenna unit is greatly reduced as a result that each antenna unit transmits one preamble signal and that the complexity of a user equipment is increased when the antenna units are of a great number. The method of embodiments of the present disclosure comprises: a network side device transmits to the user equipment determined CSI feedback configurations, where one CSI feedback configuration corresponds to one CSI-RS resource, and the preamble signal corresponding to each port of the one CSI-RS resource is transmitted via one set of antenna unit corresponding to the port. Employment of the solution of the embodiments of the present disclosure increases the transmission power of the antenna units, allows the user equipment to correctly perform signal measurement, increases the performance of data transmission, and reduces the complexity of the user equipment when the antenna units are of a great number.
US10659980B2

Methods and systems for monitoring the performance of an access network utilizing mobile network equipment are provided. In some aspects, a network performance monitoring unit is installed within a vessel receiving network service from a network service provider. The network performance monitoring unit measures various aspects of network performance experienced by the vessel as it moves and provides the information to an aggregation facility. The aggregation facility aggregates the network performance data collected from a plurality of vessels and organizes the information based on one or more network service areas associated with the plurality of vessels. By aggregating the vessel specific performance data for vessels associated with a particular network service area, insight into network performance particular to a network service area is improved.
US10659978B1

A mechanism for controlling configuration of dual connectivity for a UE that has a first connection with a first access node. The first access node could make a determination what type of UE the UE is, such as whether the UE is a relay-UE or rather an end-user UE for instance. Based on the determined type, the first access node could then control whether to apply blind addition or rather threshold-based addition in adding for the UE a second connection with a second access node. For instance, if the UE is an end-user UE rather than a relay-UE, then the first access node could apply blind addition rather than threshold-based addition, and if the UE is a relay-UE rather than an end-user UE, then the first access node could apply threshold-based addition rather than blind addition.
US10659967B2

Techniques and described for wireless communication. One method includes generating a channel usage beacon signal (CUBS) at a wireless device, wherein a waveform of the CUBS is based at least in part on a scheduled uplink transmission by the wireless device; and transmitting, by the wireless device, the CUBS over an unlicensed radio frequency spectrum band to occupy the unlicensed radio frequency spectrum band prior to the scheduled uplink transmission.
US10659966B2

A method for converting a conventional cellular network e.g. having nodes equipped with conventional modems operating in accordance with a cellular communication protocol e.g. LTE and storing first orthogonal sequences, into a private cellular network, including coupling an (e.g. external) device to only nodes sought for the private cellular network, the device storing second orthogonal sequences not hard-coded in the modems, the device storing a one-to-one correspondence enabling translation of each second orthogonal sequence, to one of the first sequences. at least when in a private network supporting mode, a device associated with a transmitting node sought for the private network, uses a processor to determine which first orthogonal sequence is being used, translate that sequence using the one-to-one correspondence into a second orthogonal sequence, and use the translated sequence to transmit a synchronization signal.
US10659960B2

The disclosure relates to a security method and system in a telecommunications network comprising a radio access network system and a core network system. The radio access network system is configured to provide a wireless radio interface for at least one user device, wherein a shared secret key is stored in both the user device and the core network system. At least one vector is received from the core network system comprising one or more values derived from the shared secret key. At least one of an authentication procedure and a key agreement procedure is performed in the radio access network system for the user device over the wireless radio interface using the one or more values of the received vector for establishing a connection between the user device and the radio access network system.
US10659957B2

A system that incorporates teachings of the subject disclosure may include, for example, a method for facilitating, at a system including at least one processor, establishment of a communication session with a device coupled to a Universal Integrated Circuit Card (UICC) by way of network equipment of a default Mobile Network Operator (MNO), receiving, at the system, information descriptive of an MNO selection, selecting, at the system, from a database of credentials of a plurality of MNOs first credential information according to the received information, wherein the first credential information is associated with a first MNO of the plurality of MNOs, and transmitting, from the system, the first credential information to the UICC over the communication session by way of the device to cause the UICC to facilitate establishment of communications with network equipment of the first MNO according to the first credential information. Other embodiments are disclosed.
US10659954B2

A system for use with a mobile cellular device comprising an Internet browser and an embedded subscriber identity module (“eSIM”) card. The eSIM card stores an application and a first profile. The system includes a web server configured to generate a web portal comprising a plurality of service plans. The first profile establishes communication over a first network with the web server, which transmits the web portal to the Internet browser over the first network. The web portal receives a selection of one of the service plans from the Internet browser. The web server sends the selection to a subscription manager configured to select an operational profile based on the selection and cause the operational profile to be transmitted to the application. The mobile cellular device is configured to communicate over a second network using the operational profile after the operational profile has been received and activated by the application.
US10659950B2

The present disclosure relates to a 5G or a pre-5G communication system to be provided in order to support a higher data transmission rate than a 4G communication system such as LTE. The present invention provides a method for receiving, by a terminal, a mobile end service in a communication system, the method including: a step of ascertaining whether there exists a continuously available service among services which have been provided from a serving base station, on the basis of a list of supported services received from a target base station; and in the case that there exists a continuously available service, a step of transmitting a service area update request to the target base station via a connection layer if the continuously available service supports a mobile end service.
US10659944B2

A method for a wireless device (12) to facilitate personnel accountability is provided. Incident data is received. The incident data includes a location of an incident. A determination is made whether confirmation has been received that a user of the wireless device (12) agrees to respond to the incident. In response to determining confirmation has been received: a location of the wireless device (12) is determined, a first estimated time of arrival to the location of the incident from the location of the wireless device (12) is determined, transmission of the first estimated time of arrival is caused, a virtual region around the location of the incident is generated, a determination is made if the wireless device (12) enters the virtual region, transmission of a first update is caused in response to determining the wireless device (12) enters the virtual region.
US10659940B2

The present application describes a computer-implemented device on a network including a non-transitory memory having instructions stored thereon for registering a node with a router on the network. The device also includes a processor, operably coupled to the non-transitory memory, configured to execute the instructions of receiving, from the node over the network, a solicitation with context information including a registration start time request. The processor is also configured to execute the instructions of evaluating, at the router, whether to accept the solicitation based upon neighbor space and the received start time request. The processor is even further configured to execute the instructions of sending, to the node, an advertisement including an approved registration start time based upon the determining step.
US10659932B2

Various systems, mediums, and methods herein describe mechanisms that enable client devices to have access to data based on various address configurations. A smart phone system may be configured to receive a request. The smart phone system may also be configured to determine an address based at least on the request received, where the address provides access to data on a website. The smart phone system may also determine the address based on a receipt of the address generated by a server system. The smart phone system may also determine a timestamp associated with a transfer of the address at a geolocation. The smart phone system may also determine one or more time periods from the timestamp associated with the transfer of the address at the geolocation. The address may provide access to the data on the website during the one or more time periods.
US10659929B2

Techniques are described for providing location-based information and functionality to people and computing devices in various ways. In at least some situations, the techniques include enabling multiple people in a common geographic area to interact in various ways, such as via devices capable of communications (e.g., cellular telephones, computing devices with wired and/or wireless communications capabilities, etc.). In addition, the techniques include enabling the creation and maintenance of location-based virtual groups of users (also referred to as “clouds”), such as for users of mobile and/or fixed-location devices. Such clouds may enable various types of interactions between group members, and may be temporary and/or mobile.
US10659926B1

Systems and techniques for a sensor platform for a geometric physical area are described herein. The sensor platform combines sensors installed in the physical area with transient sensors on people and articles within the area. This collaborative sensor data may then be used to identify interactions between people and articles and react by using these interactions to locate documents based on the person, the article, and the interaction within the geometric physical area.
US10659915B2

An anti-disaster system, comprising: disaster detection apparatuses detecting an occurrence of disaster; position processing apparatuses generating distribution information; base stations communicating with the mobile station; and a control apparatus. The control apparatus determines a disaster region concerned among a plurality of regions, based on a message from the disaster detection apparatus located in the disaster region concerned. The control apparatus instructs the position processing apparatus located in the disaster region concerned to generate the distribution information based on information from the base station located in the disaster region concerned.
US10659911B1

Methods, systems, and computer program products relate to deduplication of points of interest (POIs) from different sources. In some embodiments, a method is disclosed. According to the method, a first set of POIs are obtained from a first source and a second set of POIs are obtained from a second source. The first set of POIs are divided into a plurality of groups of POIs including a first group of POIs. A second group of POIs to be matched with the first group of POIs are determined from the second set of POIs. Duplicated POIs are identified from the first and second sets of POIs by matching the first group of POIs and the second group of POIs. In other embodiments, a system and a computer program product are disclosed.
US10659909B1

A method may include receiving, from a customer device, contextual location information about a customer and an interaction type, determining a location-based recommendation and an urgency level for the customer using the contextual location information, generating a routing protocol for communication with the customer based on the interaction type and the urgency level, and providing a communication to the customer according to the routing protocol, the communication including the location-based recommendation.
US10659900B2

An apparatus for generating one or more audio channels is provided. The apparatus comprises a metadata decoder for generating one or more reconstructed metadata signals from one or more processed metadata signals depending on a control signal, wherein each of the one or more reconstructed metadata signals indicates information associated with an audio object signal of one or more audio object signals, wherein the metadata decoder is configured to generate the one or more reconstructed metadata signals by determining a plurality of reconstructed metadata samples for each of the one or more reconstructed metadata signals. The apparatus comprises an audio channel generator for generating the one or more audio channels depending on the one or more audio object signals and depending on the one or more reconstructed metadata signals. The metadata decoder is configured to receive a plurality of processed metadata samples of each of the one or more processed metadata signals. The metadata decoder is configured to receive the control signal.
US10659898B2

A method provides binaural sound to a person through electronic earphones. The binaural sound localizes to a sound localization point (SLP) in empty space that is away from but proximate to the person. When an event occurs, the binaural sound switches or changes to stereo sound, to mono sound, or to altered binaural sound.
US10659890B2

A method for operating a hearing device. In the hearing device a first directional signal and a second directional signal are generated from an ambient sound signal. The first directional signal and the second directional signal are used to determine at a first response time a first adaptation coefficient for a first superposition of the first directional signal with the second directional signal for the purpose of noise suppression. It is intended here that the first directional signal and the second directional signal are used to determine at a second response time a second adaptation coefficient for a second superposition of the first directional signal with the second directional signal for the purpose of noise suppression. The first adaptation coefficient and the second adaptation coefficient are used to determine an output adaptation coefficient for forming an output signal by superposition of the first directional signal and the second directional signal.
US10659885B2

A vibration module for applying vibrational tractions to a wearer's skin is presented. Use of the vibration module in headphones is illustrated for providing tactile sensations of low frequency for music, for massage, and for electrical recording and stimulation of the wearer. Damped, planar, electromagnetically-actuated vibration modules of the moving magnet type are presented in theory and reduced to practice, and shown to provide a substantially uniform frequency response over the range 40-200 Hz with a minimum of unwanted audio.
US10659861B2

An earphone cushion includes a body formed of a partially reticulated polymeric foam and including a front surface configured to engage or surround the ear of a user, and a rear surface, a snap ring at least partially embedded in and integrally formed with the body and including a periphery configured to engage one or more retention elements of an earcup of a headphone, and a non-porous film on the front surface of the body.
US10659857B1

The invention discloses a rapidly mountable ceiling loudspeaker device comprising a loudspeaker housing, a ceiling locking assembly, a woofer module and a dustproof assembly. The loudspeaker housing comprises a basket, a speaker inner frame and a surface frame ring body; the ceiling locking assembly comprises a locking sleeve body, a ceiling locking piece and a locking member; the woofer module is arranged in the basket; and the dustproof assembly is arranged on the speaker inner frame. After the scheme is employed, the ceiling loudspeaker device can be efficiently assembled and disassembled without the aid of a mounting tool.
US10659850B2

The various implementations described herein include methods and systems for displaying information related to content playing. In one aspect, a method is performed at a device with a display. The device: (1) determines whether media content is playing at a second device in its proximity; (2) in accordance with a determination that media content is playing, displays on the display a first affordance with a first user-selectable election; (3) receives a selection of the first election; (4) samples at the device program information from a media content item playing at the second device; (5) sends the information to a server; (6) receives from the server an identification of the media content item and second user-selectable elections; (7) displays second affordances providing the second elections; (8) receives a selection of a first one of the second elections; and (9) displays information regarding an entity relevant to the identified media content item.
US10659849B2

A device may be configured to receive a low level signaling emergency alert message fragment from a broadcast stream. The device may parse syntax elements included in the emergency alert message fragment. The device may determine whether to retrieve a media resource associated with the emergency alert message based on the parsed syntax elements.
US10659842B2

This document describes techniques using, and devices embodying, integral program content distribution. These techniques and devices enable a request for program content to be received from an end-user device. In response to the request, an integral version of the requested program content is determined using an indication of a program content transition that corresponds to an apparent broadcast time of the requested program content. The program content can be transmitted to the end-user device as part of a cloud-based digital video recorder (DVR) system.
US10659839B2

The present invention relates to an encoding device and a method, a decoding device and a method, an editing device and a method, a storage medium, and a program which can perform encoding and decoding so that buffer failure does not occur. Information, such as a minimum bit rate, a minimum buffer size, and a minimum initial delay time, is contained in a random access point header contained in an accessible point in a bitstream. A bitsteam analyzing unit 72 analyzes an input bitstream, sets the above-mentioned information, and outputs the resulting information to a buffer-information adding unit 73. The buffer-information adding unit 73 adds the input information to the input bitstream and outputs the resulting bitstream. The present invention is applicable to an encoding device and a decoding device which process bitstreams.
US10659834B2

Embodiments described herein provide various techniques for backing up and restoring data and programs at television receiver devices. In some embodiments, various types of data stored locally by television receiver devices may be backed up by uploading the data to a television provider server, cloud-based storage system, and/or other remote storage locations. In the event of a device failure, or other rebuilt or reinstallation process at the television receiver, a receiver set-up process may be implemented to retrieve the receiver backup data from the backup server, and to initiate various set-up processes in which the replacement receiver may use the backup data to implement the various configuration preferences and settings on the new device, re-create the DVR timers, establish new network connections, configure the home device/appliance settings, and the like, automatically based on the receiver backup data.
US10659832B1

A method for dynamic bitrate selection for streaming media includes receiving one or more chunks from a first media stream of a plurality of bitrate media streams of a media file at a streaming buffer of the processing device, the plurality of bitrate media streams comprising a first subset of bitrate media streams including the first media stream and a second subset of bitrate media streams having a bitrate higher than a first bitrate of the first media stream. The method further includes monitoring a status of the streaming buffer by determining a buffer duration of the one or more chunks from the first media stream being buffered at the streaming buffer, calculating an expected download time for a subsequent chunk of the media file to be received at the streaming buffer in each bitrate media stream, selecting a bitrate media stream of the second subset of bitrate media streams based on expected download times calculated for the second subset of bitrate media streams and the playing time of the one or more chunks from the first media stream being buffered at the streaming buffer, and downloading the subsequent chunk from the selected bitrate media stream.
US10659829B2

A method, system, and computer-readable medium for synchronizing video are described. The system captures video data with a camera, the video data including a first video data segment and a second video data segment. When a network between the camera and a hub is insufficient to allow downstream real-time streaming of the video data, the system stores the first video data segment on a first storage. When the network is sufficient to allow downstream real-time streaming of the video data, the system transfers the second video data segment from the camera to the hub, reads the first video data segment from the first storage, and transfers the first video data segment to the hub. The system stores the video data segments onto a second storage such that a non-real-time playback from the second storage shows the first video data segment and the second video data segment in sequence.
US10659827B2

Provided are methods and systems for controlling data such as content and/or application data transmitted to one or more user devices. One method can comprise receiving a request for first content and generating, in response to the request for the first content, a first transport stream comprising the first content and application data relating to a first application. At least a portion of the first transport stream is transmitted to a recipient device. An interruption in the transmission of the first transport stream is detected and a determination is made that only a first portion of the application data has been transmitted to the recipient device. A second transport stream including second content and a second portion of the application data is generated and transmitted.
US10659826B2

A cloud streaming service system, an image cloud streaming service method using an application code, and a device therefor are disclosed. A still-image-based cloud streaming service can be performed by receiving a first code corresponding to an application result screen image from a web application server, generating a capture image by using image region attribute information included in the first code, still-image-encoded capture image and a second code generated so as to include animation information by converting the first code, such that the user terminal can generate the application result screen image. A cloud streaming server does not have to perform unnecessary rendering and does not perform animation processing, thereby enabling the number of web containers operable in the server to increase.
US10659825B2

The invention relates to a method for providing a description of a program to a user equipment, comprising: receiving a set of text fields associated with the program; selecting a subset of text fields from the set of text fields based on a profile of a user and/or a profile of the user equipment; ordering the selected subset of text fields based on the profile of a user and/or the profile of the user equipment; editing the description of the program based on the ordered subset of text fields; and providing the description of the program to the user equipment.
US10659822B2

An information processing apparatus specifies that material data for generating a virtual-viewpoint content at what time is stored in a storage device that stores a plurality of material data for generating a virtual-viewpoint content; and outputs, based on a result of the specification, information for causing an image to be displayed, the image indicating a time at which a virtual-viewpoint content can be generated.
US10659821B2

A system and method for providing awareness in a hospitality environment are presented. In one embodiment, a vertical and horizontal array of set-top boxes is provided and each set-top box includes an identification corresponding to the room in which the set-top box is placed. Each set-top box includes a wireless transceiver that periodically transmits an identification beacon that is received by a proximate wireless-enabled interactive device. The proximate wireless-enabled interactive device, in turn, broadcasts data packets including an indication of the strength of set-top box identification signals received. The broadcasts are received by a server via an array of wireless routers. The location of the proximate wireless-enabled interactive device is determined based on the signal strength information in the data packets.
US10659820B2

Provided is an image coding method that partitions an input image signal into processing units, and that codes the partitioned image to generate a code sequence. In particular, the image coding method determines a partitioning pattern for hierarchically partitioning the input image signal in order starting from a largest unit of the processing units, generates partition information indicative of the partitioning pattern, and codes partition information. The partition information includes maximum used hierarchy depth information indicative of a maximum used hierarchy depth which is a hierarchy depth of a deepest processing unit of the processing units included in the partitioning pattern.
US10659809B2

The present disclosure relates to deblocking filtering which is applicable to smoothing the block boundaries in an image or video coding and decoding. In particular, the deblocking filtering is either strong or weak, wherein the clipping is performed differently in the strong filtering and the weak filtering.
US10659804B2

The present disclosure relates to a method and apparatus for improving the encoding efficiency by adaptively changing the resolution of the motion vector in the inter prediction encoding and inter prediction decoding of a video. The apparatus includes: a predicted motion vector calculator for calculating a predicted motion vector of a current block to be encoded using motion vectors of one or more surrounding blocks; and a skip mode encoder for encoding a result of performing a prediction of the current block and information indicating that the current block is a skip block when the predicted motion vector satisfies a skip condition, wherein at least one motion vector among the motion vectors of the surrounding blocks and the motion vector of the current block has a resolution different from resolutions of the other motion vectors.
US10659793B2

Described tools and techniques relate to signaling for DC coefficients at small quantization step sizes. The techniques and tools can be used in combination or independently. For example, a tool such as a video encoder or decoder processes a VLC that indicates a DC differential for a DC coefficient, a FLC that indicates a value refinement for the DC differential, and a third code that indicates the sign for the DC differential. Even with the small quantization step sizes, the tool uses a VLC table with DC differentials for DC coefficients above the small quantization step sizes. The FLCs for DC differentials have lengths that vary depending on quantization step size.
US10659789B2

An encoder includes a processor and a memory. The encoder may perform a method of progressive compression. In one example implementation, the method may include determining a priority value for each edge of a plurality of edges, the priority value of an edge of the plurality of edges determined based on an error metric value and an estimated encoding cost associated with the edge. The method may further include determining a set of edges for collapse, the set of edges determined from the plurality of edges based on the priority values and collapsing the set of edges and generating vertex split information. In some implementations, the method may include entropy encoding the vertex split information.
US10659787B1

Techniques are generally described for enhanced compression of video data. In various examples, the techniques may include receiving first video data representing a scene in an environment. The techniques may further include generating illumination map data representing illumination of the scene in the first video data. The techniques may further comprise generating reflectance map data representing a reflectance of at least one object in the first video data. In some examples, the techniques may include sending, to a second computing device, the illumination map data and the reflectance map data. The techniques may further include receiving second video data representing the scene. The techniques may include determining a first illumination difference between the second video data and the first video data. The techniques may comprise sending, to the second computing device, the first illumination difference.
US10659780B2

A de-blocking method is applied to a reconstructed projection-based frame having a first projection face and a second projection face, and includes obtaining a first spherical neighboring block for a first block with a block edge to be de-blocking filtered, and selectively applying de-blocking to the block edge of the first block for at least updating a portion of pixels of the first block. There is image content discontinuity between a face boundary of the first projection face and a face boundary of the second projection face. The first block is a part of the first projection face, and the block edge of the first block is a part of the face boundary of the first projection face. A region on a sphere to which the first spherical neighboring block corresponds is adjacent to a region on the sphere from which the first projection face is obtained.
US10659775B2

A video decoding device, in the case where a video of the progressive format is inputted, processes a frame as a picture, in the case where a video of the interlace format is inputted, processes a field as a picture. A video decoding device performs display control corresponding to a format of the both video by analyzing display control information in display control information analyzer. The display control information includes sequence unit display control information which is commonly used in a display process of all pictures that belong to a sequence to be decoded and picture unit display control information which is individually used in a display process of a picture to be decoded. A second code string analyzer acquires each of the sequence unit display control information and the picture unit display control information from an extended information area in units of pictures.
US10659767B2

A camera and a method for extracting depth information by the camera having a first lens and a second lens are provided. The method includes photographing, by the first lens, a first image; photographing, by the second lens, a second image of a same scene; down-sampling the first image to a resolution of the second image if the first image is an image having a higher resolution than a resolution of the second image; correcting the down-sampled first image to match the down-sampled first image to the second image; and extracting the depth information from the corrected down-sampled first image and the second image.
US10659764B2

Apparatuses, methods and storage media for providing a depth image of an object are described. In some embodiments, the apparatus may include a projector to project a light pattern on an object, and to move the projected light pattern over the object, to swipe the object with the light pattern, and a camera coupled with the projector. The camera may include a dynamic vision sensor (DVS) device, to capture changes in at least some image elements that correspond to an image of the object, during the swipe of the object with the light pattern. The apparatus may further include a processor coupled with the projector and the camera, to generate a depth image of the object, based at least in part on the changes in the at least some image elements. Other embodiments may be described and claimed.
US10659762B2

The present invention provides a stereo camera in which it is possible to improve the precision of correcting vertical offset between a first image captured by a first image-capture unit and a second image captured by a second image-capture unit. In the present invention, an image-capture system unit 100a captures a benchmark image. An image-capture system unit 100b captures a reference image. A geometry correction unit 125 generates a plurality of geometry-corrected reference images having differing amounts of vertical-direction movement from the reference image. A parallax calculation unit 126 generates a plurality of parallax images from the combination of the benchmark image and each of the reference images. A parallax image evaluation unit 131 calculates evaluation values pertaining to the reliability of each of the parallax images. A vertical offset correction unit 132: calculates, on the basis of a correspondence relationship between vertical offset and the evaluation values pertaining to reliability, an evaluation value pertaining to the maximum reliability and a vertical offset that corresponds to this evaluation value; and sets the vertical offset that corresponds to the evaluation value pertaining to the maximum reliability as a vertical offset correction amount.
US10659758B2

A video decoding method that includes: receiving information for deriving motion information of a current block; deriving the motion information of the current block based on the received information for deriving the motion information; and performing prediction to generate predicted pixels of the current block based on the motion information of the current block, wherein the motion information of the current block is determined by using motion information of a reference block, wherein the reference block is determined based on a specific disparity vector, wherein the specific disparity vector is determined for an area in a picture to which the current block belongs, wherein the area which the specific disparity vector is determined is split based on a quad tree structure, and wherein the current block is a block of a texture picture and the reference block is a block in a reference view is disclosed.
US10659756B2

There is provided an image processing apparatus which is connected to a camera head capable of imaging a left eye image and a right eye image having parallax on one screen based on light at a target site incident on an optical instrument, the apparatus including: an image processor that performs the signal processing of the left eye image and the right eye image which are imaged by the camera head; and an output controller that outputs the left eye image and the right eye image on which the signal processing is performed to a monitor, in which the image processor adjusts an extraction position of at least one of the left eye image and the right eye image in accordance with a user operation based on the left eye image and the right eye image which are displayed on the monitor.
US10659755B2

There is provided an information processing device, an information processing method, and a program that can facilitate a user to perceive a stereoscopic vision object, the information processing device including: a display control unit configured to perform movement control of a stereoscopic vision object perceived by a user from a start depth that is different from a target depth to the target depth on a basis of mode specifying information that specifies a mode of the movement control that supports stereoscopic vision by the user, and an information processing method including: performing movement control of a stereoscopic vision object perceived by a user from a start depth that is different from a target depth to the target depth on a basis of mode specifying information that specifies a mode of the movement control that supports stereoscopic vision by the user.
US10659753B2

A photogrammetry system and method is provided. The photogrammetry system a two-dimensional (2D) camera operable to acquire a 2D image at a first resolution and a second resolution, and a 2D video image at the second resolution. A controller performs a method that includes acquiring a first 2D image of an object with the 2D camera at the first resolution. At least one feature on the object in the first 2D image. An image sequence is determined having a second position. A plurality of second 2D images are acquired with the 2D camera at the second resolution. The 2D camera is tracked. A direction of movement is indicated on the display. A third 2D image of the object is acquired when the 2D camera reaches the second position. Three-dimensional coordinates of the object are determined based on the first 2D image and the third 2D image.
US10659751B1

In one embodiment, a method includes accessing first image data generated by a first image sensor having a first filter array that has a first filter pattern. The first filter pattern includes a number of first filter types. The method also includes accessing second image data generated by a second image sensor having a second filter array that has a second filter pattern different from the first filter pattern. The second filter pattern includes a number of second filter types, the number of second filter types and the number of first filter types have at least one filter type in common. The method also includes determining a correspondence between one or more first pixels of the first image data and one or more second pixels of the second image data based on a portion of the first image data associated with the filter type in common.
US10659750B2

The disclosure relates to a method and system for presenting at least part of an image of a real object in a view of a real environment, comprising providing a first image of at least part of a real object captured by a first camera, determining at least part of the real object in the first image as an object image area, determining a first 3D plane relative to the first camera, the first camera being at a position where the first image is captured, providing at least one image feature related to the real object in the first image, providing at least one first ray passing an optical center of the first camera being at a position where the first image is captured and the at least one image feature, determining, according to a first plane normal direction of the first 3D plane, at least one first angle between the first 3D plane and the at least one first ray, providing a second image of a real environment captured by a second camera, determining a second 3D plane relative to the second camera, the second camera being at a position where the second image is captured, mapping at least part of the object image area to a target space in a view of the real environment captured at a viewpoint, wherein the at least one image feature is mapped to at least one target position in a coordinate system of the view, determining at least one second angle between the second 3D plane and at least one second ray passing the viewpoint of capturing the view and the at least one target position according to a second plane normal direction of the second 3D plane, wherein the at least one image feature is mapped to the at least one target position such that a difference between the at least one first angle and the at least one second angle is minimized.
US10659743B2

An image projection device includes: a first mirror oscillating to scan an image light beam forming an image projected onto a retina of a user; a light source emitting the image light beam and a detection light beam to the first mirror at different timings; a second mirror having a first region reflecting the image light beam reflected by the first mirror to the retina and a second region reflecting the detection light beam reflected by the first mirror in a direction different from a direction in which the image light beam is reflected, and scanning neither the image light beam nor the detection light beam reflected by the first mirror; a detector detecting the detection light beam reflected by the second region; and a controller adjusting oscillation of the first mirror and an emission timing of the image light beam based on a detection result by the detector.
US10659742B2

An image generating apparatus generates a panoramic image by transforming at least one divided area including a range onto which a scene viewed from an observation point is projected, out of eight divided areas obtained by dividing the surface of a sphere having at least a partial range onto which the scene is projected, with three planes that pass through the center of the sphere and are orthogonal to each other, into such an area that the number of pixels corresponding to mutually equal latitudes is progressively reduced toward higher latitudes, and placing the transformed area on a plane, and outputs the generated panoramic image.
US10659741B2

Systems and methods for detecting and projecting obstructed content over touch screen obstructions are disclosed. In embodiments, a computer-implemented method, includes: displaying, by a computing device, content on a touch screen of the computing device; detecting, by the computing device, an obstruction of the content on one or more areas of the touch screen; determining, by the computing device, obstructed content in the one or more areas; determining, by the computing device, a display configuration for a portion of the obstructed content, wherein the display configuration defines a manner in which the portion of the obstructed content is to be projected by at least one wearable projector device; and sending, by the computing device, the display configuration to the at least one wearable projector device adapted to project the portion of the obstructed content over at least one object causing the obstruction of the content.
US10659737B2

One variation of a method for monitoring occupancy in a work area includes, at a sensor block: transitioning from an inactive state into an active state when an output of a motion sensor indicates motion in a work area; during a scan cycle in the active state, recording an image through an optical sensor at a time, detecting a set of humans in the image, detecting a second set of human effects in the image, predicting a second set of humans occupying but absent the work area based on the second set of human effects, and estimating a total occupancy in the work area at the time based on the set of humans and the second set of humans; and transmitting the total occupancy to a remote computer system for update of a scheduler for the work area.
US10659736B2

An alignment apparatus performs alignment of a substrate is provided. The apparatus comprises a stage that moves while holding a substrate, an imaging device that captures an image of a mark on the substrate, and a processor that obtains a position of the mark based on the image of the mark. The imaging device includes an image sensor and a storage device that stores image data obtained by the image sensor. The imaging device performs next image capturing after the image sensor performs accumulation of charge and transfer of image data to the storage device is completed. The apparatus moves the stage for next image capturing concurrently with transfer of the image data to the storage device when capturing an image of the mark using the imaging device at a plurality of positions while moving the stage.
US10659734B2

Handheld communications devices include a communications port, at least one battery, and processing circuitry configured to automatically determine a network address of a network node connected to the communications port, to communicate with the network node using the determined network address, and to consume energy stored by the battery. Communications methods include using a handheld communications device connected to a network node, automatically determining a network address of the network node; using the handheld communications device, communicating with the network node using the determined network address; and based on the communicating and using the handheld communications device, verifying that the network node is operational.
US10659732B2

An apparatus for providing multi-party conference and a method for assigning an encoder in the apparatus are provided. The apparatus for providing multi-party conference according to one embodiment of the present disclosure includes: an image quality determination module configured to determine an image providing quality for a terminal connected to a multi-party conference created in the apparatus; and an encoder assignment module configured to assign an encoder to the terminal based on the image providing quality, wherein when an assignable encoder does not exist at the time of assigning the encoder, the encoder assignment module retrieves one encoder among previously assigned encoders and assigns the retrieved encoder to the terminal.
US10659728B2

Provided is an information processing apparatus including a receiving section that receives a captured image of a video communication partner from a communication destination apparatus and a control section that controls a display of the received captured image on a display section. The control section executes image processing to display the captured image such that a line of sight of a communication partner appearing in the captured image appears to point towards a user looking at the display section, on a basis of information indicating that the communication partner appearing in the captured image is looking at the user being displayed on the communication destination apparatus.
US10659726B1

A system for inspecting pipelines utilizing a wireless device preferably includes a push cable inspection system, a data display unit, an interface software program and a WiFi transmitter. The push cable inspection system includes a push cable, a distance encoder and a cable reel. A video camera is attached to an end of the push cable. The distance encoder measures the distance traveled by the push cable. The data display unit receives an output from the distance encoder and the video camera. The data display unit overlays a changing numeric distance on the video feed to create a numeric video feed. The numeric video feed is transmitted by the WiFi transmitter to the wireless device. The interface software program is installed on the wireless device. The interface software program receives the numeric video feed from the data display unit and stores the numeric video feed on the wireless device.
US10659725B2

The present invention discloses an image processing device and an image processing method. The image processing method includes steps of: referring to multiple frames or an auxiliary data associated with the frames to determine whether the frames contain substantially the same frames; selecting the frames according to whether the frames contain substantially the same frames to generate multiple selected frames; and performing video processing on the selected frames. When the frames do not contain substantially the same frames, the selected frames are the same as the frames, and when the frames contain substantially the same frames, the selected frames are part of the frames.
US10659724B2

A method and apparatus adaptively creates a dropped frame rate converted frame from a plurality of source frames using at least one alternate support frame in lieu of a neighboring source frame, in response to corrupted picture identification information. Stated another way, a frame rate converter, in response to corrupted picture indication information, replaces at least one corrupted source frame with a temporally modified frame created from at least one alternate source frame. The corrupted picture identification information indicates that a source frame, or segment thereof, includes at least one corrupted or dropped source frame (or segment thereof).
US10659722B2

A video signal receiving apparatus receives a first and second video signals for transmitting a same video content. When determining a size adjustment amount of a second video included in the second video signal, the video signal receiving apparatus performs scaling processing on a second image included in the second video signal to generate a scaling image and performs shift processing on the second image to generate a shift image. The video signal receiving apparatus calculates a similarity degree between a first image included in the first video signal and the scaling image, calculates a similarity degree between the first image and the shift image, and uses the scaling image or the shift image having the higher calculated similarity degree as an image to be subjected to the next scaling processing and the next shift processing.
US10659720B2

An image sensing system includes a pixel array, an analog-to-digital converter circuit, and a memory. The pixel array includes a first pixel, a second pixel, and a third pixel interposed between the first pixel and the second pixel. During a first sensing time, the analog-to-digital converter circuit converts a first image signal received from the first pixel to first image data and converts a second image signal received from the second pixel to second image data. During a second sensing time, the analog-to-digital converter circuit converts a third image signal received from the third pixel to third image data. The first image data and the second image data are written in the memory during a first write time, and the third image data are written in the memory during a second write time.
US10659710B2

An A/D conversion device includes a phase-difference clock generation unit configured to use a plurality of phase interpolators to generate multi-phase clock signals, of which phases are shifted with respect to an input clock signal, from the input clock signal and a signal obtained by delaying the input clock signal; and an A/D conversion unit configured to perform A/D conversion on an input analog signal using the multi-phase clock signals generated by the phase-difference clock generation unit.
US10659708B2

A solid-state imaging device includes a pixel array unit in which a plurality of imaging pixels configured to generate an image, and a plurality of phase difference detection pixels configured to perform phase difference detection are arranged, each of the plurality of phase difference detection pixels including a plurality of photoelectric conversion units, a plurality of floating diffusions configured to convert charges stored in the plurality of photoelectric conversion units into voltage, and a plurality of amplification transistors configured to amplify the converted voltage in the plurality of floating diffusions.
US10659703B2

An illumination radiates a visible light or a near-infrared light. A lens images a light from a subject. A beam splitter disperses the visible light and the near-infrared light. A color imaging device images a reflecting light from the subject illuminated with the visible light and includes an imaging device having a red filter. A black-and-white imaging device images the near-infrared light dispersed by the beam splitter. A pixel pitch of the black-and-white imaging device that images the near-infrared light dispersed is larger than a pixel pitch of the color imaging device. A sampling position for the near-infrared light is displaced in a pixel arrangement horizontally or vertically with respect to a sampling position for red in a color image.
US10659702B2

An image capturing apparatus includes a plurality of imaging units arranged in a circumferential manner and movable in a circumferential direction, and a plurality of illumination units arranged in such a manner that each of the plurality of illumination units corresponds to a different one of the plurality of imaging units. In a case where the plurality of imaging units moves in the circumferential direction, each of the plurality of imaging units integrally moves with a corresponding one of the plurality of illumination units.
US10659700B2

The present disclosure provides a mobile terminal and a method for filling light for same, and relates to the field of electronic technologies. The method includes: upon receiving an activating instruction for a target camera, activating the target camera; displaying an image acquired by the target camera on a display screen which is located on a surface different from a surface where the target camera is located; detecting brightness of present ambient light, and in response to that the brightness of the present ambient light is less than a preset brightness threshold, illuminating the display screen on the same surface where the target camera is located.
US10659696B2

A display control device of the invention accepts a predetermined operation of switching an image to an image moved by a predetermined number of images among multiple images arranged in predetermined order. When a single-image that is not one of group images is displayed on a display unit of the display control device and single-images are arranged from the currently displayed image to an image moved by a predetermined number of images, the image moved by the predetermined number of images is acquired in accordance with a predetermined operation. When one of group images is displayed on the display unit and the group images are arranged within the predetermined number of images, a process of acquiring an image arranged beyond the group images without displaying images included in the group images is performed in accordance with a predetermined operation. Next, the acquired image is displayed on the display unit.
US10659692B2

According to an aspect of the invention, an image blur correction device includes: a memory; and at least one processor operating in accordance with a program stored in the memory. The at least one processor comprises: a detection unit configured to detect motion amounts of images on the basis of imaged images; a calculation unit configured to calculate a motion amount of an object on the basis of the motion amounts of the images detected by the detection unit and a detection signal of blur detected by a blur detection unit; and a control unit configured to control the image blur correction unit on the basis of the motion amount of the object calculated by the calculation unit.
US10659689B2

An image capture apparatus capable of charging a battery. The image capture apparatus includes a connection unit that receives power from a power supply device, a charging control unit that charges the battery by using power received from the power supply device, a power supply control unit that supplies power to components of the image capture apparatus by using power received from the power supply device, and a control unit that controls charging of the battery and power supply to the components of the image capture apparatus by using power received from the power supply device, according to whether or not an operating mode of the image capture apparatus is restricted due to heat from the battery.
US10659687B2

An image processing apparatus including an interface that receives an input identifying a subject, and a processor that controls a display to display information indicating a position of the subject in a graphic representation corresponding to a panoramic image based on an orientation of a device capturing image data for generating the panoramic image.
US10659685B2

In some implementations, a 360-degree camera includes two wide-angle lenses that provide a spherical view of a scene. The 360-degree camera is configured to be connected to a computing device (e.g., a smart phone) for rendering the captured images. The user interface provides options to set camera orientations during playback in order to present a selected orientation in the view while the video is displayed. Additionally, specific orientations may be set in some frames and the video processor provides for smooth transitions from the orientation in one frame to the orientation in the next specified frame. This way, the user may follow the action on a particular sequence during playback. The resulting video playback may be saved as a movie. The user interface also provides the option to set user-defined landmarks and follow these landmarks, for a user-configured amount of time, during playback.
US10659680B2

Disclosed is a method of processing an object in an image and a system for the same. According to an embodiment of the present disclosure, there is provided a method of processing an object in an image, the method including: detecting a first object from a first image obtained by a first network camera; detecting a second object from a second image obtained by a second network camera; checking similarity between the first and second objects in consideration of feature information of the first and second objects, installation location information of the first and second network cameras, and location information of a terminal device; and determining whether the first object is equal to the second object on the basis of the similarity between the first and second objects.
US10659661B2

An image processing method includes the steps of acquiring a captured image generated through image capturing using an optical system, performing first shaping processing so as to reduce a difference between a maximum value and a non-maximum value for data generated using information of a point spread function of the optical system corresponding to an image capturing condition of the captured image, performing rotating processing according to a position of the captured image for the data after the first shaping processing, and performing sharpening processing of the captured image using the data after the rotating processing.
US10659660B2

Systems and methods for analyzing printed images are provided. One system includes a processing circuit configured to: determine a set of one or more locations on the printed image on the substrate to measure color values; determine a set of input tone values for the at least one ink; receive a set of measured color values corresponding to the set of locations on the printed image from a sensor; and determine a tone value increase error based on the set of measured color values and the set of input tone values. The at least one processing circuit is configured to determine the tone value increase error without requiring measured color values from an area having solid ink.
US10659656B2

According to examples, area coverage vectors for each pixel on each slice of a digital representation of an object may be determined and a two-dimensional halftone matrix including threshold values may be subdivided into a plurality of sub-matrices, each sub-matrix including threshold values of the halftone matrix in a respective value sub-range. In addition, for each of the slices, a sub-matrix of the plurality of sub-matrices may be selected and the area coverage vectors for the pixels in the slice may be halftoned using respective threshold values of the selected sub-matrix.
US10659655B2

An image reading apparatus including an image reading chip for reading an image, wherein the image reading chip includes: a terminal; a pixel portion that outputs a pixel signal and includes a light-receiving element that receives and photoelectrically converts light from the image; an output circuit that can output a signal based on the pixel signal with one of a plurality of drive capabilities including a first drive capability and a second drive capability that is larger than the first drive capability; and an output selection circuit that, based on a signal input to the terminal, selects the drive capability of the output circuit.
US10659653B2

There is provided a scanner that combines images read by a first sensor array and a second sensor array, in which the first sensor array and the second sensor array have read regions which are overlapped partially, and includes a combining section that combines a straight line as an image of a non-straight line in a case where the straight line which is non-parallel and non-perpendicular in a main scanning direction is read in an overlapped manner by the first sensor array and the second sensor array.
US10659648B2

In S210, a character size and an inter-column size are calculated using a virtual body size in S206, and the character size and an inter-character size (inter-column size) are reflected in properties of each text box. In step S301, a position and a size of each text box are set, in step S302, the character size is set in the property of each text box, and in the following step S304, the inter-character size is set in the property so that characters do not overlap in each text box. Thereafter, in S306, the text boxes are superimposed so that reference frames of adjacent characters are in contact with each other.
US10659642B2

A medium feeding device includes: a placement unit on which a medium is placed; a feeding section that feeds the medium placed on the placement unit; a wrinkle detection section that is provided on a further upstream side than the feeding section in a feeding direction and outputs a detection value in accordance with a wrinkle in the medium; and a control section that performs predetermined control on the basis of the detection value of the wrinkle detection section and stops the feeding section in a case in which the detection value output from the wrinkle detection section exceeds a predetermined allowable value.
US10659639B2

An image reading apparatus includes a document sheet table, an image reading portion, a detection processing portion, and a determination processing portion. A document sheet is placed on the document sheet table. The image reading portion reads linear image data representing an image of a linear area that extends along a main scanning direction of the document sheet that is placed on the document sheet table. The detection processing portion detects, based on the linear image data, a size of the document sheet in the main scanning direction. The determination processing portion determines, when the size of the document sheet in the main scanning direction detected by the detection processing portion meets a specific condition, that the document sheet is a predetermined card-shaped document sheet.
US10659636B2

Provided is an image forming apparatus including a charge processing section and an operation section that are brought closer in height to each other, thus improving the operability of a user. The image forming apparatus (100) includes a coin insertion processing section (110), an operation panel (120) and an electrophotography printer (130). The coin insertion processing section (110) is configured to accept money and then execute charge processing so as to permit image formation by the image forming apparatus (100). The operation panel (120) is configured to, when the coin insertion processing section (110) executes the charge processing, accept setting of image formation by the image forming apparatus (100). The electrophotography printer (130) is configured to form an image of the read image data based on setting at the operation panel (120). The coin insertion processing section (110) is disposed at a height equal to a height of the operation panel (120).
US10659631B2

An information processing apparatus includes an acquisition unit that acquires, from a terminal apparatus, control information including model identification information for identifying a model of the terminal apparatus and setting information concerning display setting of a screen of the terminal apparatus; and a controller that causes a screen on which fewer display items than an ordinary screen are displayed to be displayed on a display in a case where the model identification information included in the control information indicates a specific model or in a case where the setting information included in the control information indicates specific setting.
US10659629B2

An information processing apparatus that communicates directly with an external apparatus using wireless communication includes a plurality of network interfaces, a storage unit that stores a plurality of pieces of different network information respectively assigned to the plurality of network interfaces, an identification unit that identifies a user who logged in the information processing apparatus, a selection unit that selects, as network information to be transmitted directly to the external apparatus using the wireless communication, at least one network information corresponding to the identified user from among the stored plurality of pieces of network information, and a transmission unit that transmits the selected network information directly to the external apparatus using the wireless communication.
US10659626B2

An information processing apparatus according to one embodiment of the present invention includes a storage unit configured to store a template group for assigning image data, an acquisition unit configured to acquire identification information of a photographing area in which the image data is photographed inside a facility, and a selection unit configured to select a template with a design corresponding to the identification information of the photographing area inside the facility from the template group stored in the storage unit.
US10659622B2

An image forming apparatus, includes: an image former that forms an image on a sheet; an inspector that inspects an object; and a feed path that conveys the object to the inspector, wherein the feed path is installed to bypass the image former.
US10659618B2

Methods and systems are described for monitoring communications in a packet-switched network. More specifically, the system initiates a communication between a network endpoint associated with a call mediator and at least a second network endpoint; records, at the call mediator, information associated with the communication; and upon termination of the communication, communicates, from the call mediator to an enterprise gatekeeper, the information associated with the communication.
US10659615B1

Various example implementations are directed to methods and apparatuses for facilitating conferenced communications. An example method can include receiving from a plurality of participants of a digital audio conference, audio signals from respective audio input circuits for each respective participant. A subset of the plurality of participants may be identified, as corresponding to loudest audio input compared to a remainder of the participants. At least one encoder pool may be generated by assigning each of the remainder of the participants to an encoder pool associated with a codec used by the respective audio input circuits. For each participant in the subset, digital audio packets of the loudest audio input may be separately encoded to remove feedback. Digital audio packets of the loudest audio input may be separately encoded using the at least one encoder pool, and the encoded data packets may be broadcast to the plurality of participants.
US10659614B1

A method for providing haptic feedback to participants of multi-party phone conversations that includes opening a communications session with a conference system for at least two users each having user specific communications devices, user specific conduct measuring devices, and user specific haptic feedback device registered with the conference system. Analyzing content of the communications session from content received by the conference system through the user specific communications device for at least one of the users; and capturing status for said at least two users from data measured by the user specific conduct measuring device for the at least two users. Determining with the conference system if the content of the communications session and the status of said at least two users calls for input by the user through said user specific communications device. Sending a feedback signal from the conference system to the user specific haptic feedback device.
US10659607B2

A process for updating a second agent about a call in a contact center comprises receiving a call at the contact center and connecting the call to a device associated with a first agent of the contact center. A processor is used to configure a list of keywords to detect during the call, and when a key word is detected (e.g., using a speech analyzer), a snippet of the call based on the detected keywords is identified. The snippets are presented to a second agent through a device associated with the second agent. The call is then connected to the device associated with the second agent.
US10659606B2

A mechanism for filtering communication including receiving an incoming call from a calling party, the incoming call being directed to a called party. The mechanism further comprises obtaining calling party information comprising a value of at least one descriptive parameter of the calling party and obtaining historical called party information relating to past activities of the called party. One or more call-handling rules are generated based on the historical called party information, each call-handling rule defining how to handle an incoming call based on a descriptive parameter of a calling party. The calling party information is processed according to the one or more call-handling rules to determine how to handle the received incoming call.
US10659605B1

The disclosure herein describes automatically unsubscribing from automated calls based on automated call audio patterns. Audio data of an incoming call is accessed and an incoming call audio pattern is generated based on the audio data of the incoming call. The incoming call audio pattern is compared to an automated call audio pattern set by a call screening engine. Based on the comparison, the user is prompted for a call response instruction. Based on the call response instruction from the user, the call screening engine identifies an unsubscribe operation indication in the incoming call audio pattern, performs an unsubscribe operation associated with the identified unsubscribe operation indication, and updates the automated call audio pattern set based on the incoming call audio pattern. The disclosure enables efficient handling of automated calls and reduces user interaction necessary to unsubscribe from associated call lists.
US10659603B2

A communication apparatus includes a user signal transmission unit that transmits a user signal required for an end user to perform communication; a manager function implementing unit that implements a function provided to a manager of the present apparatus; a license monitoring unit that monitors a license of the present apparatus, and outputs a function limitation signal when the license has expired; and a function limitation unit that limits the function implemented by the manager function implementing unit when receiving the function limitation signal. In a communication apparatus that transmits a user signal required for an end user to perform communication, a function of the apparatus is limited when a relevant license has expired, while preventing an influence of the limitation upon the end user.
US10659592B2

For switching a communication mode based on the preference of the communication recipient, methods, apparatus, and systems are disclosed. One apparatus a processor and a memory that stores code executable by the processor. Here, the processor determines that a user is initiating communication with a recipient via a first communication channel and receives a communication channel preference of the recipient. Additionally, the processor prompts the user to switch to a second communication channel in response to the first communication channel not matching the communication channel preference.
US10659591B2

A computer-implemented method for managing calls in a collaboration environment is provided. The method includes receiving, by a processor, a call into a collaboration session of the collaboration environment. The method also includes identifying, by the processor, a user from a plurality of users associated with the collaboration session, based on at least one of contextual information regarding the call and information regarding the plurality of users. The method further includes providing, by the processor, an interface on a device associated with the identified user, wherein the interface enables the identified user to instruct the device to handle the call within the collaboration session.
US10659590B2

An electronic system for indirect intercommunication messaging includes at least one central processing unit acting as a server, and one or more user terminals adapted to be bidirectionally connected to the central processing unit, wherein each one of the user terminals includes components for preparing and sending to the central processing unit a request for contact with another one of the user terminals, the contact request including data relating to at least one interaction genre and to the identification of the other user terminal; components for receiving and displaying a contact request sent by the central processing unit and coming from another one of the user terminals; the central processing unit includes components for receiving and storing the contact requests coming from each one of the user terminals; comparing the data contained in the contact requests; sending to a pair of the terminals the requests for contact with the other terminal of the pair only if and when coincidence is verified between the interaction genre data of the contact requests and the terminals have been mutually identified, so that the contact between the pair of terminals can only be activated upon the coincidence verification.
US10659583B2

A mobile terminal includes a housing having a front side, a rear side and lateral sides; a cover window disposed on the front side of the housing and defining a display area and a bezel area, wherein the bezel area includes printed color under an edge of the cover window; an OLED display unit disposed between the cover window and the front side of the housing; and a sensing unit disposed under the OLED display unit. Further, the OLED display unit includes a substrate having a hole below the display area of the cover window; a transistor layer including thin film transistors and being disposed on the substrate and having a hole corresponding to the hole of the substrate; an organic light emitting layer disposed on the transistor layer and having a hole corresponding to the hole of the transistor layer; and an encapsulation layer disposed on the organic light emitting layer and having a hole corresponding to the hole of the organic light emitting layer. In addition, the sensing unit senses a light transmitted through the holes.
US10659582B2

The present disclosure provides a display screen, a terminal display screen assembly, and a mobile terminal. The display screen defines a first through hole which penetrates the display screen in a thickness direction of the display screen, and may include: a frame, a display module and a positioning structure. The frame may include a first face and a second face opposite to the first face. The display module may be arranged on the first face of the frame. The positioning structure may be arranged on the second face of the frame. The first through hole may include a first sub-through hole defined in the display module and penetrating the display module in a thickness direction of the display module, and a second sub-through hole defined in the frame and penetrating the frame in a thickness direction of the frame and communicating to the first sub-through hole. The positioning structure is disposed to surround the second sub-through hole.
US10659577B2

A hinge module including a first body; a second body arranged with respect to the first body; a hinge configured to hinge in response to an angle variation between the first body and the second body; and a display disposed on the first body and the second body. Further, the hinge includes a first hinge housing including an accommodating portion; a second hinge housing having a first end inserted in the accommodating portion; an arc-shaped hinge hole in the second hinge housing; a hinge pin projecting from an inner surface of the accommodating portion of the first hinge housing and penetrating the arc-shaped hinge hole in the second hinge housing; a guide pin coupled to the first hinge housing and inserted into a second end of the second hinge housing; and an elastic member provided in the second end of the second hinge housing and including a curved surface contacting the guide pin.
US10659572B2

A method and system for differentiating different Protocol Data Units (PDU) in a D2D communication network. The type of PDU to be differentiated is assigned/associated with a unique data/value and transmitted to the destination, by a transmitting User Equipment. At the receiving end, the receiving User Equipment differentiates between different types of PDU packets received, based on the unique data associated with the collected data. Further, the received PDU data is processed based on a suitable packet processing function that matches the PDU type of the PDU data received.
US10659570B2

The method of the invention envisages estimation and learning of the state of the system using the data traffic of the network itself, with co-ordination of a node, selected as collector, which, in addition to its normal data-collection role, determines and changes dynamically the network-protocol stack used, for optimizing the performance of interest, where for this purpose said node, with a processing unit thereof, implements a computer program referred to as “protocol selector”, which: executes monitoring of the network state and collection of the data on the performance of the network itself; evaluates at periodic intervals the performance of the protocol in the last interval and executes a step of a reinforcement-learning algorithm at the end of which it evaluates whether to change or not the protocol for the next interval and resumes the main execution flow.
US10659566B1

A system includes a data storage system, and a processor and program logic. The program logic includes a management console, including interface logic configured to provide a user interface. The interface logic is also configured to receive a request to record a demo of a Web application via the user interface. The program logic also includes a recording utility. The recording utility includes recording logic configured to, upon receiving the request to record, capture a first instance of underlying client-side code and assets utilized to render the Web application. The program logic further includes data consolidation and storage logic configured to save the first instance to a database. Further yet, the program logic includes demo editing logic configured to create a demo of the Web application based on the first instance.
US10659537B2

At design time, cross-jurisdiction workload controls may be presented by a process platform server to a user (e.g., a workload creator or process builder) who is using the process platform to create or update an application having a workload functionality with zero, one, or more applicable regulation controls. If no regulation control is selected, or if there is no exception provided, the process platform server may operate to block the user from proceeding to complete the workload creation process. The application with the workload thus created/updated is delivered to end user(s). Responsive to a user request to open the application on a client device, a server (the process platform server or an application gateway server) may operate to automatically determine whether a target location associated with the user request is permitted in accordance with a cross-jurisdiction workload control associated the workload defined in the application.
US10659534B1

Disclosed are an apparatus and method of operating and allocating a shared memory between various applications operating via a processing computing platform. One example may include receiving a first buffer context switch request message from a first application operating via a processor, transmitting a first buffer context switch flag to the processor operating the application confirming the first buffer context switch request was received, receiving a second buffer context switch request from a second application with a different processing cycle operating via the processor and transmitting a second buffer context switch flag to the processor operating the second application confirming the second buffer context switch request was received. Once the applications have been identified and confirmed, a synchronization operation may be performed to create a shared number of memory units between at least two different buffers and provide the shared memory units to the first application and the second application.
US10659533B1

An apparatus in one embodiment comprises a plurality of container host devices of at least one processing platform. The container host devices implement a plurality of containers for executing applications on behalf of one or more tenants of cloud infrastructure. The containers have associated layer structures each characterizing container images of respective different ones of the containers. Movement of container data between different storage devices by at least one of the container host devices for at least one of the containers is controlled based at least in part on one or more characteristics of a corresponding one of the layer structures. For example, controlling movement of container data between the different storage devices may comprise assigning at least one of different prefetching priority weights and different cache-swapping priority weights to different layers of the given layer structure.
US10659531B2

Embodiments of the present disclosure relate to IO initiator aware data migration. A set of statistical metrics for a replica of a data block on a first node of a plurality of nodes is obtained. The first set of statistical metrics is associated with read operations on the replica. The read operations are operations initiated by a second node of the plurality of nodes. If it is determined that a first statistical metric in the set of statistical metrics exceeds a predefined threshold, the replica is migrated from the first node to the second node.
US10659522B2

Cloning a local environment is described. Cloning a local environment can enable sharing the environment during pair programming. Cloning can have other uses as well. A server or other computer may maintain a clone environment of a first client apart from a second client such that the cloned computing environment, mimicking the environment of the first client, may be maintained on behalf of and used by a second client.
US10659518B2

This application is directed to enabling interaction between computer devices. An application is executed at a first computer device to access Internet-based media content sources and display media items provided thereby on a display device coupled to the first computer device. The first computer device transmits an information item and a command to a second computer device. In some implementations, the information item includes a selectable display element corresponding to one of the Internet-based media content sources, and the second computer device is configured to display the selectable display element of the information item. In response to a user selection of the selectable display item at the second computer device, the first computer device receives the command from the second computer device, and executes the command in relation to the Internet-based media content sources.
US10659514B2

In an electronic video monitoring system for security and surveillance, a recording device can adaptively change a bit rate at which a video stream is transmitted so that image quality is prioritized, including above maintaining a continuous real-time transmission. In this way, image quality suitable for security and surveillance can be guaranteed close to real-time, despite changes in video transmission requirements and/or network demands. In one aspect, a frame rate can be lowered to no less than a minimum frame rate, a resolution can be lowered to no less than a minimum resolution, and the frame rate and resolution can be lowered to the minimum frame rate and the minimum resolution, respectively, before allowing an increase of compression of the video stream in view of the change in video transmission requirements and/or network demands. This allows sustaining image quality suitable for security and surveillance.
US10659507B2

Systems, methods, and devices of the various embodiments enable HTTP servers, such as HTTP servers providing segments to DASH clients according to the various embodiments, to pass incomplete versions of segments in response to segment requests from the DASH clients. The various embodiments may enable clients, such as DASH clients, to parse incomplete versions of segments.
US10659498B2

A method of configuring a network security device includes receiving a changed set of network rules to replace a current set of network rules; using a plurality of network traffic events to perform a first simulation of according to the current set of network rules and a second simulation according to the changed set of network rules; comparing the results of the first and second simulation to identify changes in network traffic allowed and denied between the current set and the changed set of network rules; displaying the changes in allowed and denied traffic for review of the changed set of network rules; receiving an instruction to implement the changed set of network rules based on the review; and filtering network traffic according to the changed set of network rules.
US10659486B2

A universal link to extract and classify log data is disclosed. In various embodiments, a set of candidate data values that match a top level pattern that is common to two or more types of data value of interest is identified. The candidate data values are processed through a plurality of successive filtering stages, each stage of which includes determining which, if any, of said candidates match a more specific pattern associated more specifically with a specific data value type. Candidates, if any, which match the more specific pattern are classified as being of a corresponding specific data type and are removed from the set of candidate data values. A structured data record that associates each candidate data value determined to be of a corresponding one of said types of data value of interest with said corresponding one of said types of data value of interest is generated and stored.
US10659478B2

A host computer system contains a software module that monitors and records network communications that flow through the legitimate network channels provided by the operating system and reports this information to a central processing server. A computer system acting as a central processing server compares network communications data received from the host computer system with the overall network traffic. Network traffic that is not reported from the host computer system is likely the result of stealth network traffic produced by advanced malware that has hidden its communications by circumventing the legitimate network channels provided by the OS. Detection of this stealth network traffic can be accomplished by using just the packet header information so the data payload does not need to be recorded, thereby reducing the memory requirements and reducing the need to save any potentially sensitive information.
US10659473B2

Various embodiments relate to a method and apparatus for using blockchains as an integrity tracking tool for network elements, the method including the steps of receiving, by a blockchain network, a patch request from a patch initiator, validating, by the blockchain network, the patch request and writing the patch request on the blockchain, transmitting, by the blockchain network, the patch request to a network element, receiving, by the blockchain network, a patch report from the network element, and validating, by the blockchain network, the patch report and writing the patch report on the blockchain.
US10659470B2

Methods and systems are disclosed herein for establishing communication with users based on biometric data. For example, in response to determining that a user has a particular biometric state, the media guidance application may present an option to contact another user that is associated with that biometric state.
US10659461B2

An authentication system includes: a first terminal; a second terminal; and an authentication subsystem, wherein the first terminal transmits first identification information and a first request for push authentication to the authentication subsystem, the authentication subsystem matches the first identification information against second identification information stored in association with a unique ID of the second terminal, and if the second identification information matching the first identification information exists, transmits a push authentication operation start request to the second terminal based on the stored unique ID of the second terminal, and upon receiving the push authentication operation start request, the second terminal prompts a user to perform a predetermined operation other than inputting any of knowledge authentication information, ownership authentication information, and biometric authentication information, and when the predetermined operation is performed by the user, transmits a push authentication operation completion notification to the authentication subsystem.
US10659440B2

Certain embodiments described herein are generally directed to methods and apparatus for providing a security parameter index (SPI) value for use in establishing a security association between a source tunnel endpoint and a destination tunnel endpoint. In some embodiments, utilization of the SPI bit space is optimized to allow the scaling of key policies within a network. In some embodiment, using an SPI derivation formula, a server in the network is able to generate SPI values whose bit spaces are optimized to allow key policies to scale out.
US10659430B2

The invention presented herein is a system and method for automatically discovering communication capabilities for direct communication between endpoints across one or more unknown networks, the system comprising: a plurality of network enabled endpoints configured with a module in wireless communication with a management database, the module configured to establish a communication path for direct communication between the network-enabled endpoints, independent of a NAT router. Also disclosed is a system and method for indirect connectionless bi-directional messaging over an unknown network infrastructure for communicating a message communication between a querying device and a database, wherein communication is enabled without the requirement for direct access to the database for either obtaining or placing information; and where the message communication comprises an unlimited amount of discreet and selectable information elements; and without requiring or issuing a direct acknowledgement of a receipt from the database of the communication message received.
US10659429B2

An information processing apparatus which can reduce the trouble of operation since a user does not have to irregularly operate a reconnection operation.A printing device 100 as the information processing apparatus includes a DHCP server function and distributes different IP addresses to external devices respectively. If a number of external devices connected to the printing device 100 in the IP layer level has reached a first connection number, when an IP address distribution request is sent from a first external device after a connection to the first external device in the wireless link layer level is established, an IP address is not controlled to be distributed to the first external device. If not, the IP address is controlled to be distributed to the first external device so that the connection to the first external device in the IP layer level becomes available.
US10659421B2

A method for forwarding an e-mail message from an e-mail server to a mobile terminal is provided. An e-mail address of the mobile terminal is associated with an identifier and encryption information, receiving the e-mail message associated with the e-mail address and sent by the e-mail server. The method includes encrypting the e-mail message using the encryption information associated with the e-mail address and transmitting the encrypted e-mail message to the mobile terminal.
US10659410B2

A method for message delivery to a transaction processor is presented. The method may include receiving a message having transaction information. The method may also include determining if the received message is prohibited from delivery based on comparing the transaction information with a blacklist, wherein the blacklist is used to block messages. In response to determining that received message is prohibited from delivery, the method may then include refusing message delivery or delaying message delivery. In response to determining that the received message is not prohibited from delivery, the method may further include enqueuing the message in a request queue. The method may also include receiving a reply message with a transaction status update from the transaction processor. The method may then include updating the blacklist based on the received reply message with the transaction status update.
US10659409B1

Systems, devices, media, and methods are presented for providing access to media content within a networked system. The systems and methods receive a notification indicating dispensing of an image capture device by a dispersal machine. In response to receiving the notification, the systems and methods generate a media distribution session associated with the identifier. Media instances or content are published to the media distribution session by associating the media distribution session and the identifier with the media instances or content. The systems and methods receive access requests for the media distribution session and, responsive to the access requests, transmit at least a portion of the media instances or content to a requesting device.
US10659408B2

The present disclosure relates to a media information releasing method performed by a mobile terminal. The mobile terminal receives a media information releasing message associated with a second application while running a first application. The mobile terminal generates a media information releasing message interface corresponding to the media information releasing message, the media information releasing message including a corresponding media information releasing configuration, and then presents, by using a floating window, the media information releasing message interface on a current display interface of the first application. After obtaining a first user operation performed on the media information releasing message interface, the mobile terminal submits a media information obtaining request associated with the second application to a remote server, so that the server shares media information according to the media information releasing configuration, thereby improving media information obtaining efficiency.
US10659406B2

A method and a system to suggest a content item to be included in a message based on a determined context are provided. A context of a message that user is composing via a composition interface is determined based on one or more properties of the message. One or more inputs to the user composition interface are identified, the one or more inputs indicating at least a portion of intended content of the message. One or more suggested content items are provided for inclusion in the message based on the context of the message and the one or more inputs. A suggested content item of the suggested content items are added in the message based at least in part on the one or more properties of the message.
US10659404B2

An information processing method used in an information processing device, the information processing method includes acquiring, using a processor of the information processing device, biological information of a user, accepting, using the processor, input by the user of message information indicating a message to be transmitted to another information processing device that is different from the information processing device used by the user, determining, using the processor, based on the biological information whether the user is in a bad mood, and when it is determined that the user is in a bad mood, stopping, using the processor, transmission of the accepted message information, and storing, using the processor, the message information, in a memory, that has not been transmitted.
US10659387B2

The present disclosure describes a method for cloud resource placement optimization. A resources monitor monitors state information associated with cloud resources and physical hosts in the federated cloud having a plurality of clouds managed by a plurality of cloud providers. A rebalance trigger triggers a rebalancing request to initiate cloud resource placement optimization based on one or more conditions. A cloud resource placement optimizer determines an optimized placement of cloud resources on physical hosts across the plurality of clouds in the federated cloud based on (1) costs including migration costs, (2) the state information, and (3) constraints, wherein each physical host is identified in the constraints-driven optimization solver by an identifier of a respective cloud provider and an identifier of the physical host. A migrations enforcer determines an ordered migration plan and transmits requests to place or migrate cloud resources according to the ordered migration plan.
US10659385B2

The present disclosure involves systems, software, and computer implemented methods for provisioning insight services in a data provider landscape. A method includes presenting an algorithm description of an algorithm provided by an algorithm provider that is to be executed in a landscape of a data provider. Selection of the algorithm is received from a data consumer. The selected algorithm is provided to an agent at the data provider. The agent is configured to provision resources in the landscape of the data provider, according to the algorithm description, to enable execution of the selected algorithm in the landscape of the data provider. The agent is configured to execute the selected algorithm in the landscape of the data provider, using data included in the landscape of the data provider, producing one or more outputs. The agent is configured to enable monitoring of the execution of the selected algorithm.
US10659382B2

Systems and methods for addressing a vehicle condition are provided. In one example embodiment, a method includes receiving data indicative of a condition associated with an autonomous vehicle. The autonomous vehicle is associated with a service provider that provides a service to a plurality of users of the service. The method includes identifying at least a subset of the plurality of users of the service based, at least in part, on a respective location associated with each user of the subset of users and a location of the vehicle. The method includes determining a selected user from the subset of users to address the condition associated with the vehicle based at least in part on one or more parameters. The method includes providing, to the selected user, a communication. The communication including a request that the selected user address the condition associated with the vehicle.
US10659381B2

Various solutions for handling data duplication with respect to user equipment and network apparatus in mobile communications are described. An apparatus may establish a first link and a second link with a network. The apparatus may generate a first protocol data unit (PDU) to transmit on the first link. The apparatus may generate a second PDU to transmit on the second link. The apparatus may transmit the first PDU on the first link. The apparatus may determine whether to discard the second PDU according to a condition. The second PDU may be duplicated from the first PDU.
US10659379B2

The disclosed embodiments relate to implementation of a transaction processing system having improved equity among the communications paths between the ingress/egress points of the trading system network, where electronic data transaction messages originated from, or are destined, for different sources/destinations, effectively enter or exit the trading system, to/from the transaction processing component thereof, i.e., the match engine, market data feed generator, where those messages are ultimately processed and outbound messages reflective thereof are generated. The disclosed embodiments attempt to compensate for variances in latencies as between different network communications routes between the electronic ingress/egress points of the electronic trading system and the internal processing components which implement the functions of the trading system.
US10659371B1

Systems and methods for manage throttling limits in a distributed system are disclosed herein, according to some embodiments. A system includes a plurality of server nodes to perform a service. The system includes one or more processors a memory. The memory stores instructions that, when executed by the one or more processors, cause the one or more processors to perform operations. The operations include receiving a request for the service. The operations also include calculating whether accepting the request would exceed a service throttling limit for the plurality of server nodes for the service and whether accepting the request would exceed a node throttling limit for a server node of the plurality of server nodes. The operations also include accepting the request for processing at the server node responsive to calculating that the service throttling limit and the node throttling limit would not be exceeded.
US10659369B2

The present invention extends to methods, systems, and computing system program products for decrementally calculating autocorrelation for Big Data. Embodiments of the invention include decrementally calculating one or more components of autocorrelation at a specified lag for an adjusted computation window based on the one or more components of an autocorrelation at the specified lag calculated for a previous computation window and then calculating the autocorrelation at the specified lag based on one or more of the decrementally calculated components. Decrementally calculating autocorrelation avoids visiting all data elements in the adjusted computation window and performing redundant computations thereby increasing calculation efficiency, saving computing resources and reducing computing system's power consumption.
US10659367B2

An appliance for controlling data transmission is described. The appliance includes a packet engine configured to acquire data regarding a flow of first data packets over a link and to determine transport communication protocol (TCP) characteristics for the flow. The appliance also includes a data transmission controller configured to receive second data packets, determine a rate of transmission based on the TCP characteristics, and determine, based on one or more criteria, whether to use a rate-based data transmission control to control a transmission of the second data packets. The data transmission controller is also configured to, responsive to determining that a rate-based data transmission control is to be used to control a transmission of the second data packets, cause the packet engine to transmit the second data packets in groups, wherein transmission times of each group of second data packets are determined based on the rate of transmission.
US10659366B1

Network devices, such as load balancers may be configured to forward client metadata to back-end nodes using defined fields of a security protocol. For example, client metadata may be inserted into an extension field or certificate defined by a security protocol that is used for a secure connection between the load balancer and the back-end node. In some instances, a source IP address based on a received request may be inserted into the extension field or certificate defined by the security protocol before the request is forwarded to the back-end node. The back-end node may extract the client metadata and use the client metadata for any of a number of processes (e.g., billing, tracking, security, logging, etc.).
US10659360B2

Embodiments of the present invention provide a routing method, a near field communication controller, a device host, and a terminal, where the method is used in a first terminal, the first terminal includes a device host DH, a near field communication controller NFCC, and at least one near field communication execution environment NFCEE, and the method includes: receiving, by the NFCC, a data frame sent by a second terminal; determining, by the NFCC, whether a default-NFCEE-based routing manner is used to search for a matched routing entry for the data frame; if yes, determining, by the NFCC, a target NFCEE according to the default-NFCEE-based routing manner, so that the NFCC routes the data frame to the target NFCEE.
US10659342B2

A flow entry configuration method, apparatus, and system are disclosed. The method includes: reporting, by a switch, information about a data packet of a first service to a controller, receiving a flow entry delivered by the controller according to the information and a flow table structure, determining a first target service path matching the flow entry of the first service, determining a target hardware flow table according to a preconfigured correspondence between the service path and a hardware flow table of the switch, and configuring a flow entry of the target hardware flow table according to the flow entry of the first service. Therefore, no matter to which controller the switch is connected, the switch can successfully configure, in the hardware flow table, the flow entry used to implement the first service, so as to successfully process the first service, thereby reducing a probability of failure in service processing.
US10659340B2

System and method for supporting virtual machine migration in a high performance computing environment. In accordance with an embodiment, when a virtual machine migrates from a first subnet to a second subnet, a gateway port at the first subnet can, upon receiving packets addressed to the migrated virtual machine, consult a memory lookup table to discover the virtual machine's new addresses. The gateway port can update the packet accordingly. The memory lookup table can be addressed based on a GUID of the virtual machine.
US10659336B1

Example implementations relate to server access times. A computing device may comprise a processing resource; and a memory resource storing non-transitory machine-readable instructions to cause the processing resource to: determine a media access control (MAC) address of a server; poll a top of rack (TOR) switch connected to the server to capture a packet; determine a source MAC address using the captured packet; determine, based on the source MAC address, an identity of a user computing device; and log, based on a time included in the captured packet, a time the user computing device last accessed the server.
US10659328B2

A packet of data and a packet-identification value are transmitted to a network device having an identifier. The stored packet-identification value and the identifier are recorded. The stored packet-identification value is then increased and the process repeats. To receive data, an expected identification value is stored in association with the identifier. A packet and a packet-identification value are received from the network device. The identifier and an indication of receipt are stored. If the received value does not match the expected value for the identifier, the received value is stored. If the values match, the stored packet-identification value and identifier are recorded. If the received value exceeds the expected value, the stored packet-identification value, the identifier and the received identifier are recorded. Subsequently, the stored expected value is increased. The process repeats. Network devices and systems are described.
US10659327B2

In one embodiment, a method includes receiving, at a network endpoint device, a traffic analysis query from a network controller, the traffic analysis query including one or more query parameters, where the one or more query parameters are provided to select portions of traffic analysis data. The method also includes identifying a portion of traffic analysis data stored in a buffer that satisfies the one or more query parameters, where the traffic analysis data characterizes traffic data that has traversed the endpoint device, and where the endpoint device provides network access to one or more client devices. The method further includes providing the identified portion of the traffic analysis data to the network controller in response to the traffic analysis query.
US10659322B2

A monitoring system comprises an equipment management device, a relay server, and monitoring terminals. The equipment management device is configured to establish with the relay server first communication for notifying the monitoring terminals of the states of equipment items. Furthermore, the equipment management device is configured to establish with the relay server second communication, which is different from the first communication, for monitoring equipment information regarding the equipment items from each of the monitoring terminals. The monitoring terminals establish the first communication and second communication with the relay server. The relay server is configured to relay the first communication and second communication.
US10659321B2

A method and an electronic apparatus for converting debugging information to a binary form and providing more information in the same capacity memory are disclosed. A control method of the electronic apparatus which records debugging information, the method includes: obtaining debugging information using a source code; adding index information corresponding to the debugging information to the debugging information and storing the debugging information in a buffer; and converting a plurality of pieces of index information stored in the buffer to a binary file.
US10659312B2

Mechanisms for anomaly detection in a network management system are provided. The mechanisms collect metric data from a plurality of network devices and determine metric types for the metric data using metric type reference data. The mechanisms determine and apply properties from the metric type reference data to metrics of the determined metric types. The mechanisms monitor subsequent metric data for anomalies that do not conform to the applied properties.
US10659306B2

An information processing device includes a communication unit, a storage unit, and a processor. The communication unit is connected to a network. The storage unit stores environment setting information indicating the environment of the device. The information is set according to the type of the network and the presence or absence of a virtual network created through the network. The processor sets the environment of the device based on the environment setting information in at least one of the following cases: when the network is switched to another network and when the presence or absence of the virtual network is changed.
US10659305B2

A method and a server system for identifying a device connected to a server system are provided. The method comprises: establishing a connection between the server system and a plurality of target devices; and acquiring device information of each of the plurality of target devices based on the connection. The connection is one of a data connection and a device connection.
US10659303B2

A hosted client instance includes a performance analytics module to present an internal key performance indicator and an external key performance indicator on a performance analytics dashboard. A query is executed to a connection to an external data source over a network to obtain a result set of data associated with the external key performance indicator. REST APIs associated with the performance analytics module are executed to: store the result set of data in a performance analytics storage device on the hosted client instance, the performance analytics storage device storing both the data associated with external and internal key performance indicators; and render, via a UI rendering engine of the performance analytics module, one or more widgets on the performance analytics dashboard. The REST APIs interact with the data associated with the internal and external indicators in the storage device to render the one or more widgets.
US10659302B2

In the described embodiments, a device configuration file is used to set configuration settings on a computing device during a configuration operation (e.g., an initial configuration or a re-configuration of the computing device). The device configuration file is retrieved from a location where the device configuration file is hosted using a reference to the location from a bootstrap configuration. The bootstrap configuration is provided by a bootstrap configuration server and is retrieved by the computing device from the bootstrap configuration server during the configuration operation.
US10659298B1

Systems, methods, and computer-readable media for identifying and categorizing epoch events between a first epoch and a second epoch. Epoch event data for a first epoch and a second epoch is retrieved. The retrieved epoch event data is categorized to determine event category, specific event, and respective object identification. The categorized first and second epoch event data is then labeled to identify new, resolved, and persistent epoch events over multiple epochs.
US10659296B2

Systems and methods for admitting new nodes into an existing network, for example a MoCA network. As a non-limiting example, various aspects of the present disclosure provide systems and methods for adding a new node to an existing network without requiring on-site manual configuration, for example utilizing communication between the new node and a network coordinator of the existing network prior to admission of the new node to the existing network.
US10659294B2

Disclosed are various examples for facilitating enrollment of a client device into more than one management framework. A client device can be enrolled with a management service as a fully managed device. The client device can also be enrolled with the management service as a personal or bring-your-own-device (BYOD), which causes a workspace to be created on the device that is segregated from the rest of the client device. Both enrollments can be managed by a remotely executed management service.
US10659292B2

An arbitration method, apparatus, and system, relates to the field of computer technologies, where the arbitration method, executed by a first data center, includes viewing a preset arbitration policy when determining that communication between the first data center and a second data center is interrupted, and an arbitration device cannot perform arbitration, and continuing providing a service when determining, according to the arbitration policy, that the first data center is a preferred data center, or stopping providing the service when determining, according to the preset arbitration policy, that the first data center is not the preferred data center, where the first data center and the second data center are active-active data centers. Hence, the arbitration method, apparatus, and system solve a problem of a service interruption caused by a fault of the arbitration device, therefore an uninterrupted service is provided for a user.
US10659291B2

Techniques are described for detecting and correcting mis-programming of label information in a router of a label switched path (LSP) without initially triggering a tear-down of the LSP. For example, techniques described in this disclosure enable an ingress router to determine whether label information is correctly programmed between a routing engine (e.g., control plane) and a forwarding engine (e.g., forwarding plane) of a router in the LSP, and to correct any mis-programming of label information by informing the router to reprogram the forwarding engine with original forwarding label information associated with the LSP.
US10659272B2

Provided are an apparatus and method for a sending end and a receiving end of a wireless communication system, and a soft information estimator. The apparatus for the sending end of the wireless communication system comprises: an interleave division multiple access unit configured to perform interleave processing on information to be sent; and a filter bank multi-carrier unit configured to use a specific sub-carrier chosen in advance to transmit the interleaved information in a parallel manner.
US10659264B2

A digital transmission system includes a transmitter configured to transmit an orthogonal frequency division multiplexing (OFDM) signal along a signal path, a receiver for receiving the OFDM signal from the transmitter and extracting OFDM symbols from the received OFDM signal, and a diagnostic unit configured to (i) demodulate the received OFDM signal to create an ideal signal, (ii) compare the received OFDM signal with the ideal signal to calculate an error signal, (iii) cross-correlate the error signal with the ideal signal, and (iv) determine a level nonlinear distortion from one of the transmitter and the signal path based on the correlation of the error signal with the ideal signal.
US10659255B1

Devices, computer-readable media, and methods for routing traffic of a network service via a virtual private network that is configured in accordance with a virtual private network configuration preference of an identified user are described. A method may determine a network service that an endpoint device is attempting to access and may detect an identity of a user of the endpoint device. The processing system may obtain a plurality of virtual private network configuration preferences of the user, each of the plurality of virtual private network configuration preferences matching a virtual private network configuration preference with one or more of a plurality of network services, and route traffic of the endpoint device for the network service via a virtual private network that is configured in accordance with a virtual private network configuration preference of the plurality of virtual private network configuration preferences.
US10659247B2

A system and method for extracting uncoupled information from a user interface output that includes collecting image data; processing the image data associated with the device interface source; and exposing the result to the extracted interface representation.
US10659246B2

The disclosure generally relates to various methods to discover, configure, and leverage relationships in Internet of Things (IoT) networks. More particularly, the methods disclosed herein may support automated processes to create configurable sub-divisions and access controls in an IoT network based on usage associated with objects that are registered in the IoT network and interactions among the registered objects. Furthermore, in one embodiment, relationships between IoT devices that belong to different users may be implicitly discovered and/or ranked based on meetings (e.g., interactions) between the IoT devices, and relationships between the different users may likewise be implicitly discovered and/or ranked. Moreover, locations and interactions associated with IoT devices may be tracked over time to further discover user-specific and potentially asymmetric relationships among the IoT devices and/or the users associated therewith (e.g., where one user considers another user a close friend and the other user considers the first user an acquaintance).
US10659241B2

In a Power over Ethernet (PoE) system, a Powered Device (PD) having circuitry to measure the load current from a Power Sourcing Equipment (PSE) in the PD. Circuitry compares the measured load current with a first threshold. Circuitry automatically generates load pulses for signaling the PSE. The pulse widths of the load pulses are measured and the widths are automatically adjusted, that power to the PD should be maintained.
US10659240B2

The present invention includes a mobile data power and lighting distribution station (10) and a data, power and lighting distribution system (250). The Station (10) has a plurality of power over ethernet sources (114, 136, 156) for powering LED lights (178, 190, 192, 204) and for providing 240 V AC power via charging station 216 and conversion module 228. Station 10 also communicates data/network connectivity for communicating with IP enabled devices including cameras (196), sensors (198, 166, 200) and for communicating and controlling access control systems (202). Station 10 is controlled via touchscreen (116) or remotely via web based interface made available via local wireless network (118) or via a telecommunications network (126) including the internet (128). The invention also encompasses driverless LED light fixtures controlled directly from the station (10) as well as DALI enabled Ethernet powered LED light fixtures.
US10659234B2

In one embodiment, a computing device receives an image that has been signed with a first key, wherein the image includes a first computational value associated with it. A second computational value associated with the image is determined and the image is signed with a second key to produce a signed image that includes both the first and second computational values. Prior to loading the dual-signed image, the computing device attempts to authenticate the dual-signed image using both the first and second computational values, and, if successful, loads and installs the dual-signed image.
US10659228B2

A method is provided for establishing a secure communication session in a communications system. The method includes providing a handshake layer functional block and providing a record layer functional block separate from the handshake layer functional block. A first ephemeral key pair is generated by the record layer functional block of a first communication peer. A public key of the first ephemeral key pair is transmitted to a second communication peer. The handshake layer functional block of the first communication peer generates a second ephemeral key pair. A public key of the second ephemeral key pair is transmitted to the second communication peer. The second communication peer generates a third ephemeral key pair. A handshake key is generated from the public key of the second communication peer and a private key of the handshake layer block of the first communication peer. A session key is generated from the public key of the second communication peer and a private key of the record layer block of the first communication peer
US10659224B2

An apparatus and method for performing operation being secure against side channel attack are provided. The apparatus and method generate values equal to values obtained through an exponentiation operation or a scalar multiplication operation of a point using values extracted from previously generated parameter candidate value sets and an operation secure against side-channel attack, thereby improving security against side-channel attack without degrading performance.
US10659214B2

A clock and data recovery (CDR) circuit includes first through ninth samplers, a clock recovery circuit, a level finding circuit, an offset voltage generator, and a data recovery circuit. Each of the first through ninth samplers samples a data signal based on one of first through ninth reference offset voltage levels to generate first through ninth intermediate signals, respectively. The clock recovery circuit generates the first through fourth clock signals based on the first, second, fifth, and eighth intermediate signals. The level finding circuit generates a band level signal by varying the third intermediate signal. The offset voltage generator generates one of: the fourth and seventh reference offset voltage levels, the fifth and eighth reference offset voltage levels, and the sixth and ninth reference offset voltage levels based on the band level signal. The data recovery circuit detects an output data signal based on the fourth through ninth intermediate signals.
US10659212B2

Aspects of the subject disclosure may include, for example, a repeater device having a first coupler to extract downstream channel signals from first guided electromagnetic waves bound to a transmission medium of a guided wave communication system. An amplifier amplifies the downstream channel signals to generate amplified downstream channel signals. A channel selection filter selects one or more of the amplified downstream channel signals to wirelessly transmit to the at least one client device via an antenna. A second coupler guides the amplified downstream channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves. Other embodiments are disclosed.
US10659203B2

Data, transmission comprises when sending data to a receiver through a channel, receiving, through the channel, at least one reference signal sent by the receiver; and resending the data according to the at least one reference signal. The present application further discloses other methods and apparatuses for transmitting data. Using the various embodiments, an issue that quality of service (QoS) cannot be ensured due to a lag of a reference signal in conventional data transmission is avoided, and the quality of data transmission can be improved.
US10659202B2

A receiver (202) receives the same downlink data over one or more subframes through a downlink resource within a narrow band for MTC terminal. A response signal generator (210) generates a response signal as a response to the downlink data. A transmitter (217) transmits the response signal through an uplink resource a predetermined number of subframes after the last subframe of the one or more subframes, the uplink resource being associated in one-to-one correspondence with the number of a downlink resource to which the downlink data is allocated in the last subframe.
US10659194B2

This application relates to the field of wireless communications technologies, and discloses a polar code encoding method and apparatus, to improve accuracy of reliability calculation and ordering for polarized channels. The method includes: obtaining a first sequence used to encode K to-be-encoded bits, where the first sequence includes sequence numbers of N polarized channels, the sequence numbers of the N polarized channels are arranged in the first sequence based on reliability of the N polarized channels, K is a positive integer, N is a mother code length of a polar code, N is a positive integer power of 2, and K≤N; selecting sequence numbers of K polarized channels from the first sequence in descending order of reliability; and placing the to-be-encoded bits based on the selected sequence numbers of the K polarized channels, and performing polar code encoding on the to-be-encoded bits.
US10659189B1

A first communication device determines an amount of data queued at the first communication device for transmission. When a control field is to be generated according to a first format, the first communication device determines a scaling value (SV) and an unscaled value (UV) corresponding to the determined amount of data queued for transmission such that a result of SV multiplied by BV indicates the determined amount of data queued for transmission, and generates the control field to include i) a scaling factor subfield set to indicate the SV, and ii) an unscaled queue size subfield set to indicate the BV. When the control field is to be generated according to a second format, the first communication generates the control field to include a queue size subfield set to indicate the determined amount of data queued for transmission and such that the control field does not include the scaling factor subfield.
US10659187B2

A method for securely providing a receiver unit with a replica pseudo-random noise code is provided. The replica pseudo-random noise code is provided in a restricted manner based on a result of an admissibility check. In order to carry out the admissibility check, values are recorded and are compared with predefined threshold values.
US10659184B2

An optical transmission device that is provided at a first site includes: an optical transmitter that transmits a first optical signal that includes first ID information to a second site using a first wavelength; and an optical receiver that receives a second optical signal that includes second ID information and that is transmitted using the first wavelength from the second site. When the first ID information matches the second ID information, the optical transmitter transmits a wavelength report that indicates a second wavelength to the second site using the first wavelength. When the optical receiver receives a completion report that indicates the wavelength report has been received at the second site, the optical transmitter transmits an optical signal to the second site using the second wavelength, and the optical receiver ceases to receive an optical signal of the first wavelength from the second site.
US10659179B2

A system may comprise a sensor device. The sensor device may be configured to determine a received signal strength indicator (RSSI) of a signal received from another device. The sensor device may be configured to determine, based on the RSSI and a sensitivity threshold, a transmission power level. The sensor device may be configured to send a second signal using the determined transmission power level.
US10659164B2

The present invention relates to an optical link, comprising an optical converter circuit (16) having an optoelectronic device (18) and circuitry (20) connected to the optoelectronic device (18). The optoelectronic device (18) has a plurality of individual optoelectronic segments (18a-18i). The optical link further comprises an elongated optical guide (14) having a single optical fiber optically connected at a first end to the optoelectronic device (18) and configured to transmit light away from the optoelectronic device (18), wherein the individual optoelectronic segments (18a-18i) have different positions relative to the first end of the optical fiber so that light beams emitted by the optoelectronic segments (18a-18i) are coupled into the optical fiber under different angles. The optoelectronic device (18) is configured to receive from the circuitry (20) on at least some of the segments (18a-18i) a plurality of data streams and optically send the plurality of data streams as spatially diverse data streams into the optical guide (14). The optical link further comprises a photo detector arrangement (28) optically connected to a second end of the optical guide (14) and having a plurality of photo detector segments (28a-28i) arranged to optically receive the plurality of data streams from the optoelectronic device (18), and a processing unit (30) associated with the photo detector arrangement (28) and configured to extract the plurality of data streams from the photo detector arrangement (28).
US10659161B2

A system for transmission of an optical signal, the system including an optical coupler for splitting said signal into a first copy and a second copy. The optical coupler has an input for receiving the optical signal, a first output for the first copy and a second output for the second copy. The system also includes a first optical guide connected to the first output, a second optical guide connected to the second output and a superposition module for coherently superimposing the first copy and the second copy of the signal.
US10659153B2

The application provides a method for measuring a dispersion coefficient of an optical fiber. A network device sends a first optical supervisory channel (OSC) measurement signal and a second OSC measurement signal, where wavelengths of the first OSC measurement signal and the second OSC measurement signal are different. The network device receives the returned first OSC measurement signal and second OSC measurement signal, where the first OSC measurement signal and the second OSC measurement signal are transmitted through a first optical fiber and a second optical fiber to return to the network device, and the first optical fiber and the second optical fiber are a to-be-tested optical fiber. The network device determines a delay difference between the received first OSC measurement signal and second OSC measurement signal. The network device determines a dispersion coefficient of the to-be-tested optical fiber based on the delay difference.
US10659145B2

In one implementation, a method includes receiving simulated RF transmission data indicative of anticipated RF transmissions from a plurality of transmitters, wherein individual anticipated RF transmissions carry corresponding messages, and simulated position data indicative of an anticipated position of each of the plurality of transmitters. The method further includes modeling characteristics of a communications channel expected between a satellite-based receiver and at least some of the transmitters, wherein the satellite-based receiver is configured to define one or more beams for receiving anticipated RF transmissions. The method additionally includes determining a likelihood of the receiver successfully extracting one or more components of a message from one of the anticipated RF transmissions based on at least the simulated RF transmission data, the simulated position data, and the modeled characteristics of the communications channel.
US10659135B2

A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives reference timing information, determines one or more timeslots for transmitting a beacon based on the reference timing information, and transmits the beacon during a timeslot of the one or more timeslots. The beacon is transmitted in one or more directions respectively corresponding to a number of subslots of the timeslot. In another aspect, the apparatus determines a timeslot for receiving at least one beacon respectively from at least one connection point based on the reference timing information, wakes during the timeslot, monitors for the at least one beacon in one or more directions respectively corresponding to a number of subslots of the timeslot, and receives the at least one beacon in the at least one timeslot in at least one direction of the one or more directions.
US10659117B2

Methods, systems, and devices for wireless communications are described. In some wireless communications systems, a base station may precode downlink signals to be transmitted to a user equipment (UE) using a precoding matrix. The precoding matrix may be selected by a UE from a number of precoding matrices (e.g., a codebook) and reported to the base station in a channel state information (CSI) report. As described herein, a base station may support techniques for limiting a number of precoding matrices that a UE may evaluate to identify a preferred precoding matrix to be indicated to the base station. In addition, the techniques described herein allow a base station to dynamically indicate an appropriate set of precoding matrices for the UE to evaluate based on the channel conditions at a given time.
US10659114B2

Apparatuses, methods, and systems for precoding multi-carrier signals are disclosed. One method includes obtaining a transmission channel matrix between a terminal and a plurality of separate users, wherein the transmission channel matrix includes channel estimates for a plurality of subcarriers of the multi-carrier signal, wherein the terminal is one of a plurality of terminals interfaced with a central processing unit, and wherein the terminal communicates with the plurality of spatially separate user with the multi-carrier signals. The method further comprises determining a precoding for the terminal based on a distribution of user signal power across the transmission channel between the terminal and the plurality of spatially separate user, and determining a precoding for the central processing unit based on the precoding for the terminal and based on the transmission channel matrix, wherein a precoding matrix for the central processing unit is multi-carrier signal dependent.
US10659107B2

An illustrative embodiment disclosed herein is a method including estimating, by an endpoint, a first rate of change of a Doppler frequency offset during a downlink reception from a satellite associated with the Doppler frequency offset and applying, by the endpoint, a second rate of change of the Doppler frequency offset to an uplink transmission to the satellite. The second rate of change of the Doppler frequency offset compensates the first rate of change of the Doppler frequency offset.
US10659104B2

A method for diagnosing the status of a communication link between an interior relay antenna and an exterior relay antenna of a motor vehicle. The method includes measuring a first voltage value defined between the midpoint of the electrical circuit and the second ground when the switch is in the open position, measuring a second voltage value defined between the midpoint of the electrical circuit and the second ground when the switch is in the closed position, calculating the value of the variable resistor from the first measured voltage value, from the second measured voltage value, from the value of the voltage defined across the terminals of the voltage source and from the values of the first resistor and of the second resistor, and diagnosing the status of the communication link on the basis of the calculated value of the variable resistor.
US10659103B2

Systems and methods are provided for synchronizing multiple channels in an access network, where the multiple channels are neighboring channels such that a guard band between them or use of a diplexer to prevent inter-channel interference is not required. Synchronization is achieved by defining channel MAP (media access plan) cycle structures such that all channels work in the same direction (upstream US or downstream DS) at any given time. Moreover, the network controller of channel may send out a beacon to allow new nodes to join. A long MAP cycle (402) may be followed by three consecutive regular MAP cycles (404, 406), and (408). These MAP cycles are repeated between beacon transmissions. Synchronization allows multiple channels to be configured contiguous (without a guard band between neighbouring channels) and without utilizing diplexers. A plurality of customer premises equipment may operate on each of the communications channels.
US10659102B2

Described techniques provide for transmission of synchronization signals using frequency hopping across a number of hopping frequencies in unlicensed or shared radio frequency spectrum. A base station may identify a set of hop frequencies for transmitting synchronization signals, and transmit synchronization signals using a hopping pattern over the hop frequencies. A user equipment (UE) seeking to identify the base station may monitor one or more of the hop frequencies to identify one or more synchronization signals on the hop frequency. A system timing may be identified in some cases, and one or more base station IDs may be identified. In some cases, a hop frequency may be monitored for a duration that may span the transmission of two or more synchronization signals of a particular base station, based on a periodicity of synchronization signal transmissions on each hop frequency.
US10659100B2

A method of generating a channel hopping sequence for a link in a wireless sensor network is provided that includes receiving performance quality data for respective frequency channels of a plurality of frequency channels in the link in a monitoring system, determining a channel quality indicator (CQI) by the monitoring system for each frequency channel based on the respective performance quality data, and determining a repetition factor by the monitoring system for each frequency channel based on the respective CQI, wherein a repetition factor for a frequency channel indicates a number of times the frequency channel is repeated in the channel hopping sequence.
US10659098B2

A duplexing apparatus comprises a hybrid junction module having an antenna port, a transmit port, a receive port and a balance port. The apparatus also comprises a feedforward circuit arranged to be responsive in respect of a first transmit band of frequencies and a second transmit band of frequencies, the feedforward circuit having an input operably coupled to the transmit port of the hybrid junction module and an output. The hybrid junction is arranged to isolate substantially the receive port from the transmit port in respect of the first transmit band of frequencies and substantially not to isolate the receive port from the transmit port in respect of the second transmit band of frequencies. The feedforward circuit is also arranged to favour propagation therethrough of signal frequencies in the second transmit band over signal frequencies in the first transmit band, thereby rendering a compensation signal at the output.
US10659094B1

A microwave radiometer with reduced volume, mass, phase noise, and power requirements and increased harmonic rejection, includes a fixed number of frequency banks configured to provide signals within separate, non-overlapping local oscillation frequency bands, a detection circuit configured to detect one or more microwave RF signals, and an RF downconverter configured to mix the signals within the separate, non-overlapping local oscillation frequency bands with the one or more microwave RF signals to provide a continuous range of down converted frequencies.
US10659093B2

A system that incorporates aspects of the subject disclosure may perform operations including, for example, obtaining uplink information that describes a configuration for uplink wireless communications by a communication device, wherein the uplink information comprises a first assignment of a first resource block to the communication device for transport of control information as a physical uplink control channel (PUCCH); performing a first Signal to Interference plus Noise Ratio (SINR) measurement of the PUCCH; initiating a first corrective action responsive to detecting the first SINR measurement being below a first SINR threshold; and initiating a second SINR measurement of the PUCCH to confirm the second SINR measurement is above the first SINR measurement. Other embodiments are disclosed.
US10659088B2

A system that incorporates teachings of the present disclosure may include, for example, a communication device having a controller to provision a matching network that controls one or more operational characteristics of one of a receiver portion and a transmitter portion of the communication device according to a profile describing one or more characteristics of a communication system from which the communication device operates. Additional embodiments are disclosed.
US10659063B2

Aspects of the present invention are directed to techniques for improving the efficiency of power supply schemes by continuously and adaptively scaling voltage and frequency levels in an integrated circuit based on measured conditions in real-time, without resorting to a reliance on excessive pre-computed margins typical of conventional schemes. Embodiments of the present invention employ a self-tuning dynamic voltage control oscillator (or other similar clock signal generator) that sets the frequency for components in the integrated circuit. When a requested frequency exceeds a maximum allowed frequency for a given voltage level (accounting for other age and temperature related conditions), a look-up table is dynamically referenced to determine a new voltage level that is sufficient to safely and efficiently generate the requested frequency. The look-up table continuously receives updates on the operating conditions, and new voltage requests can be generated dynamically as necessary based on the system's current needs.
US10659049B2

The present disclosure provides a level shifting circuit which includes a boost subcircuit and a first phase-inverting subcircuit. The boost subcircuit has a first terminal being coupled to an input terminal of the level shifting circuit, a second terminal being coupled to a first high level signal terminal, a third terminal being coupled to a low level signal terminal, a fourth terminal being coupled to a first terminal of the first phase-inverting subcircuit; the first phase-inverting subcircuit has a second terminal being coupled to the first high level signal terminal, a third terminal being coupled to the low level signal terminal, a fourth terminal being coupled to a first output terminal of the level shifting circuit, the first phase-inverting subcircuit is configured to cause the third terminal to be electrically coupled to the fourth terminal when the first terminal thereof receives a high level signal.
US10659047B2

The output driving circuit include a pull-down driver, an input/output (IO) control logic, a gate control logic, and an inverter. The pull-down driver includes first, second, and third transistors that are sequentially coupled between a pad and a ground node. The IO control logic is configured to receive a clock signal and an enable signal, and transfer a first control signal to the third transistor. The gate control logic is configured to receive a voltage of the pad and output a feedback voltage to a gate electrode of the first transistor. The inverter is configured to invert the enable signal and transfer an inverted enable signal to the gate control logic. Therefore, the reliability of the output driving circuit can be improved.
US10659034B2

An integrated electronic device includes a silicon-on-insulator (SOI) substrate. At least one MOS transistor is formed in and on the SOI substrate. The at least one MOS transistor has a gate region receiving a control voltage, a back gate receiving an adjustment voltage, a source/drain region having a resistive portion, a first terminal coupled to a first voltage (e.g., a reference voltage) and formed in the source/drain region and on a first side of the resistive portion, and a second terminal generating a voltage representative of a temperature of the integrated electronic device, the second terminal being formed in the source/drain region and on a second side of the resistive portion. Adjustment circuitry generates the adjustment voltage as having a value dependent on the control voltage and on the voltage generated by the second terminal.
US10659012B1

Embodiments of an oscillator and a method of operating an oscillator are disclosed. In an embodiment, an oscillator can include a ring oscillator core, a control circuit, and a timer that coordinates timing of the control circuit to avoid a current resulting from a voltage level associated with an output of the ring oscillator core during a startup and to allow the ring oscillator core to operate with a low startup current and a low operational power.
US10659006B2

A resonator element includes: a base portion including a first end surface that faces a first direction and a second end surface that faces a direction opposite to the first direction, a first vibrating arm that is provided integrally with the base portion and is connected to the first end surface; and a second vibrating arm that is provided integrally with the base portion along the first vibrating arm and is connected to the first end surface. When the shortest distance between the first end surface and the second end surface is Wb and an effective width between the shortest distance Wb and the base portion is We, 0.81≤Wb/We≤1.70 is satisfied.
US10659001B2

An elastic wave device includes a lamination layer film including a piezoelectric thin film on a support substrate. The lamination layer film is not partially present in a region located in an outer side portion of a region where IDT electrodes are provided. A first insulation layer extends from at least a portion of a region where the lamination layer film is not present to an upper portion of the piezoelectric thin film. A wiring electrode extends from the upper portion of the piezoelectric thin film to an upper portion of the first insulation layer, and extends onto a section of the first insulation layer in the region.
US10658993B2

A multiplier circuit can be fabricated within an integrated circuit and can draw a product output node to a voltage proportional to a product of first and second binary numbers received at two sets of inputs. The multiplier circuit includes a set of scaled capacitors, each capacitor of the set connected to an output of a multiplexor and to a local product output node. Each multiplexor is connected to the output of a multiplexor configured to generate an analog voltage in proportion to the value of the first binary number. Each scaled capacitor has a capacitance proportional to a significance of a respective bit of the second binary number. The multiplier circuit includes a reference capacitor connected to ground and the product output node, and a reset circuit configured to draw, in response to a RESET signal, the product output node to ground.
US10658987B2

The embodiments herein describe technologies of an amplifier circuit that is designed for wideband communication with superconductive components in cryogenic applications, including Josephson Junction integrated circuits, operating in a cryogenic temperature domain (e.g., 4K). The amplifier circuit operates in a temperature domain (e.g., 77K) that is higher than the cryogenic temperature domain of the superconductive components.
US10658981B2

Circuits and methods for achieving high linearity, high efficiency power amplifiers, including digital predistortion (DPD) and pulse cancellation in switched-state RF power amplifier systems are described.
US10658980B2

A circuit that receives AC power for rectification and analog DC control signals for processing. Two voltages may be noted. A first voltage may be between a supply ground and an internal device ground of a rectifier. A second voltage may be between a terminal of an input control signal source and the internal device ground. To get a control signal value, one may need a differential of those two voltages that can be accomplished with an operational amplifier configured as differential amplifier. A range of an input control signal may be from zero to a particular magnitude of voltage. A reasonably priced operational amplifier might not have an ability provide an output to zero. However, a linearized transistor output stage, having an output that can go to zero, may be connected to an output of the operational amplifier so as to effectively provide an output that goes to zero.
US10658976B1

A crystal oscillator with a configuration that allows for reduction of power consumption includes a crystal element, a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, an eighth transistor, a ninth transistor, a crystal element. The crystal element includes a first terminal coupled to a control terminal of the seventh transistor and a second terminal coupled to a first terminal of the seventh transistor. The second transistor includes a control terminal coupled to an output terminal of the crystal oscillator and a first terminal of the ninth transistor.
US10658974B2

A quadrature oscillator includes a first oscillator that outputs a first differential signal, and a second oscillator that outputs a second differential signal having phases that are different from those of the first differential signal, wherein the first oscillator includes a first LC resonator having an inductor and a capacitor coupled in parallel, a first cross-coupled circuit having a first pair of cross-coupled transistors coupled to the first LC resonator, a first tail current source coupled to the first pair of transistors, first input differential pair transistors to which the second differential signal is to be input, and a first pair of harmonic resonators disposed in input sections of the first input differential pair transistors, the first pair of the harmonic resonators have a resonance frequency of an odd multiple of a resonance frequency of the first oscillator.
US10658966B2

Provided is a motor driving apparatus used for driving a motor including a first winding group and a second winding group to which three-phase alternating-current voltages are applied. The motor driving apparatus includes a first inverter and a second inverter; the first inverter applies an alternating-current voltage to the first winding group; and the second inverter applies an alternating-current voltage to the second winding group. A first induced voltage detector, a second induced voltage detector, and a third induced voltage detector are provided as voltage detectors for detecting induced voltages induced either in the first winding group or in the second winding group.
US10658964B2

A motor driving apparatus drives an electric blower including a single-phase PM motor. The motor driving apparatus includes: a single-phase inverter that applies an alternating-current voltage to the single-phase PM motor; a rotor position detecting unit that outputs, to an inverter control unit, a position detecting signal corresponding to a rotational position of a rotor of the single-phase PM motor; a motor current detecting unit that outputs, to the inverter control unit, a signal corresponding to a motor current flowing to the single-phase PM motor; and the inverter control unit that outputs a driving signal to corresponding switching elements of the single-phase inverter on the basis of the position detecting signal and the motor current. The single-phase inverter performs control to increase or decrease effective electric power supplied to the single-phase PM motor. The air blower changes an air volume by the increase or decrease in effective electric power.
US10658960B2

Disclosed are a motor control system and a motor control method that allow the balance of evaluation values in a trade-off relationship to be easily adjusted. The motor control system includes: an inverter (5) that applies AC voltage to a motor (1); a control unit (3, 4) that generates a voltage command for AC voltage in response to a control command; and a feedback unit (6, 7, 8) that applies a correction value to the control unit. The feedback unit estimates a plurality of evaluation values from a state quantity using a plurality of regression formulas, where at least one state quantity (x1, x2) of the motor is an input variable and a plurality of evaluation values (y1, y2) of the motor or a motor-driven object (2) are output variables, calculates an evaluation function with the estimated plurality of evaluation values as arguments, and generates a correction command on the basis of a calculation value resulting from the evaluation function.
US10658959B2

A power supply has first and second ac voltage generators. Both of the first and second ac voltage generators are connected to one or more loads and a respective 6-pulse rectifier unit for rectifying ac voltage from each of the first and second power generators to a dc voltage output for the loads, Both of the first and second ac voltage generators includes two 3-phase voltage sources separated by a phase shift. The voltage output from each rectifier unit is coupled to the loads via a respective interphase inductor.
US10658957B2

A power tool includes a brushless motor, a supplying circuit, and a controller. The brushless motor is configured to drive and rotate when a voltage applied to the brushless motor is larger than or equal to an induced voltage. The supplying circuit is configured to apply a driving voltage to the brushless motor. The controller is configured to control the supplying circuit. The supplying circuit includes a rectifying circuit, a capacitor, and a switching circuit. The rectifying circuit is configured to rectify an alternating voltage and output a rectified voltage. The capacitor is configured to smooth the voltage inputted via the rectifying circuit. The switching circuit is configured to perform a switching operation based on a PWM signal to adjust a period during which the driving voltage is applied. The controller is configured to set a duty ratio within a prescribed range, and output the PWM signal of the set duty ratio to the switching circuit to control the switching operation. The controller is configured to perform a constant-number-of-rotation control for controlling the brushless motor to rotate at a target rotation number by changing the duty ratio. The capacitor has a capacitance allowing a smoothed voltage to be always larger than or equal to the induced voltage during the constant-number-of-rotation control.
US10658954B2

A 3-phase motor driver circuit has a first input to be coupled to an output of a first phase current sensor, and a second input that represents a zero reference. A controller adjusts one or more of a first phase voltage, a second phase voltage, and a third phase voltage, until a comparison between the first input and the input indicates that the first input has reached the zero reference, and in response the controller captures an output of a second phase current sensor and an output of a third phase current sensor. The controller then stores, in memory, calibration data that is based on the captured outputs of the second and third phase current sensors. Other aspects are also described.
US10658951B2

An electric working machine according to one aspect of the present disclosure comprises a motor, a rectifier circuit, a capacitor, a series switching element, a resistive element, a drive circuit, a peak voltage value acquirer, and a controller. The capacitor smooths power rectified by the rectifier circuit. The series switching element is coupled in series with the capacitor. The resistive element is coupled in parallel with the series switching element. The controller brings the series switching element into conduction in a case where AC power is inputted to the rectifier circuit and where a specified conducting condition based on a peak voltage value acquired by the peak voltage value acquirer is satisfied.
US10658943B2

An input power conditioning circuit (PCC) for a switched-mode power converter includes a hybrid full wave rectifier. Hybrid rectification is provided by a main rectifier and a matched virtual junction (VJ) rectifier, both with four-transistor gate fully cross-coupled. The VJ rectifier includes a voltage divider (such as a resistive voltage divider) to generate a virtual junction reference voltage VJ_ref (which can be less than transistor Vth). A power conversion controller (such as a boost controller) includes circuitry (such as an error amplifier) to regulate the input voltage VIN (main rectifier) to be substantially equal to VJ_ref from the VJ rectifier. Hybrid rectification, with VIN regulation, can be used to eliminate reverse (flow back) current, improving power conversion efficiency.
US10658940B2

A power converter including an inverter for converting electric power output from a power supply, a first power feeding bus connected to the inverter and to the positive side of the power supply, a second power feeding bus connected to the inverter and the negative side of the power supply, and a plurality of connection circuits including a resistant member and a capacitive member which are connected in series, connected between the first power feeding bus and the second power feeding bus, and having at least two or more different impedances.
US10658938B2

The present disclosure relates to an initial charging system for a medium-voltage inverter and a method for controlling the system. The initial charging system comprises: a first switch for switching between a medium-voltage inverter and a power supply thereto; a second switch for switching between an output stage of the medium-voltage inverter and an electric motor; a first initial charging unit disposed between and connected to the first switch and the medium-voltage inverter for limiting an initial excitation current to be applied to the phase-shift transformer; and a second initial charging unit disposed between and connected to an input stage of each power cell and the direct current (DC) link capacitor for limiting an initial charging current in the direct current (DC) link capacitor.
US10658935B2

A method of controlling an on-board charger (OBC) and an OBC system are capable of improving efficiency of the OBC by controlling a DC link voltage such that a DC-DC LLC converter of an ecofriendly vehicle always operates at a resonance frequency. The method includes: detecting a switching turn-on time of a switching unit and a conduction time of a diode, comparing the switching turn-on time with the conduction time, comparing a point of time when the switching unit is turned on with a point of time when the diode becomes conductive, determining an operating frequency region of the switching unit, and controlling a voltage of an input terminal of the LLC converter such that a switching frequency of the switching unit is in a resonance frequency region of the LLC converter according to the determined operating frequency region.
US10658927B1

Regulation systems and methods use a first regulator and a tracking second regulator. The first regulator receives a reference voltage and generates a first voltage output based upon the reference voltage, which is coupled as a back-bias voltage to a first load region within the integrated circuit. The first regulator also receives a sampled version of the first voltage output as feedback. A second regulator receives the first sampled voltage output and generates a second voltage output. The second regulator also receives a sampled version of the second voltage output as feedback. During operation, the second voltage output tracks (e.g., by a symmetry ratio) the first voltage output and is coupled as a back-bias voltage to a second load region within the integrated circuit. Further, switched-capacitor operation can be implemented, and clock frequency can be adjusted based upon the first sampled voltage output to reduce power consumption.
US10658925B2

A printed circuit board (1) for converting an input phase to at least one output phase (U,V,W), which has an input phase surface area with at least one conductive DC+ layer (28) and one conductive DC− layer (29) for each conductive DC+ layer (28), for conducting the input phase. There is at least one high-side power semiconductor (6) for each output phase (U, V, W) and one low-side power semiconductor (7) for each high-side power semiconductor (6), for switching the input phase. The at least one DC+ layer (28) corresponding to a respective DC− layer (29) is formed in a cover surface area (2), which covers at least 75% of the input phase surface area.
US10658914B2

A magnetic balance guided linear vibration motor comprising a housing (1, 2), a vibrator, and a stator fixedly connected with the housing. The vibrator comprises a counterweight (31) and a vibrating block embedded and fixed in the counterweight, wherein a pair of first balancing magnets (61a, 61b) are respectively arranged on vertical sidewalls at two ends of the counterweight, second balancing magnets (62a, 62b) corresponding to the first balancing magnets are respectively arranged on the housing at positions corresponding to the two ends of the counterweight, and the second balancing magnets and the corresponding first balancing magnets are attracted to each other. The vibration motor provides the vibrator with vibration balance in a motor vibration space, overcomes the problem of wearing, deformation and balance error and the like due to motor mechanical balance means, and reduces motor noise, thus increasing the product quality and stability of the motor.
US10658912B2

A shock wave generating unit includes a housing and a disk in the housing. The disk includes a vibration plate, which corresponds to a shock wave transmission member covering a first opening of the housing and includes an insulating thin elastic plate and a thin metal plate. The insulating thin elastic plate, with one side corresponding to the shock wave transmission member and the opposite side provided with the thin metal plate, has a hollow portion for partially exposing the thin metal plate and forms an accommodating cavity together with the exposed portion of the thin metal plate and the shock wave transmission member. A shock wave transmission medium can circulate through the accommodating cavity via a channel in the housing and is in contact with the exposed portion of the thin metal plate to facilitate dissipation of the heat generated by the disk during operation.
US10658911B2

The present invention belongs to the field of motors, and specifically relates to a switched reluctance motor of a novel structure. The switched reluctance motor includes stator tooth poles and rotor tooth poles, the rotor tooth poles are in rotation fit relative to the stator tooth poles, wherein the number of the stator tooth poles is twice as large as that of the rotor tooth poles; the stator tooth poles are fixedly connected in layers along the direction of a rotation axis, the stator tooth pole with thickness corresponding to the thickness range of the rotor tooth pole is called a rotor tooth pole unit, the stator tooth pole is composed of a stator tooth pole iron core and a stator tooth pole coil sleeved at the outside of the stator tooth pole iron core, an end part of the stator tooth pole iron core forming an air gap with the rotor tooth pole is a concave-convex fit circular arc surface, the cooperation relationship between the stator tooth pole and the rotor tooth pole is that no matter the rotor tooth pole rotates to any angle relative to the stator tooth pole, the center line of at least one layer of stator tooth poles forms an included angle α with the center line of the corresponding rotor tooth pole unit, 0<α≤β, β is an angle of a center of the circle corresponding to the circular arc of a cross section of the stator tooth pole iron core or the rotor tooth pole along the direction of the rotation axis.
US10658903B2

A power tool is provided including a brushless electric motor, a switching arrangement having motor switches and interposed between the electric motor and a power supply, and a controller configured to control a switching operation of the motor switches for driving the electric motor and enforce a current limit on the current delivered to the electric motor. The controller receives a measure of current passing from the power supply to the switching arrangement and takes corrective action to reduce current delivered to the electric motor if the measured current exceeds the current limit. The controller further receives a signal corresponding to at least one of a type and/or a nominal voltage of the power supply and sets the current limit based on the received signal.
US10658893B2

A rotary electric-machine rotor includes: a rotor core made of magnetic material, the rotor core having magnet holes; magnets disposed in the magnet holes; resin portions disposed in at least part of gaps between the magnet holes and the magnets, the resin portions extending in the axial direction; and end plates disposed adjacent to end surfaces in an axial direction of the rotor core. The end plates are members made of magnetic material. The end plates cover end surfaces of the magnets in the axial direction and end surfaces of the resin portions in the axial direction, and each of the end plates having at least one holes disposed in a position that faces at least one part of the end surfaces of the magnets.
US10658891B2

Embodiments describe a motor. The motor includes a stator, and a rotor, which is arranged within the stator. An end part of at least one air-gap slot of the rotor has an offset with a predetermined distance and/or a predetermined angle relative to a main body part adjacent immediately to the end part. With the offset of a predetermined distance and/or a predetermined angle configured at the end part of at least one air-gap slot of the rotor, ripple torque of the motor is effectively lower down while complexity of the motor, stator or rotor will not be increased.
US10658883B2

Wireless link management techniques for wireless charging systems are described. According to some such techniques, a power receiving unit (PRU) may be configured to observe a rectifier voltage while operating in a charge complete connected (CCC) mode according to which it possesses a wireless connection with a power transmitting unit (PTU) operating in a power save state. In various embodiments, the PRU may be configured to observe the rectifier voltage in an attempt to detect power beacons generated by the PTU. In some embodiments, the PRU may be configured to maintain the wireless connection if it detects power beacons, and to terminate the wireless connection if it does not detect any beacons. Other embodiments are described and claimed.
US10658879B2

A contactless power receiving device includes: a power reception coil unit including a power reception coil configured to contactlessly receive magnetic flux sent from a power supply coil; iron bolts fixing the power reception coil unit to a vehicle body; and a magnetic shield plate configured to suppress diffusion of the magnetic flux received by the power reception coil unit to surroundings. The magnetic shield plate is arranged below all of the iron bolts.
US10658873B2

Example implementations relate to wireless charging devices. In an example, a wireless charging device includes a housing and circuitry including a power transmitting coil, where the wireless charging device does not include a power amplifier or a power converter.
US10658868B2

An apparatus includes a housing for an electronic circuit. The housing includes at least three planes that form a structure to house the electronic circuit. At least one channel is formed along at least one of the three planes to provide a waveguide in the housing for wireless communications. A wireless communications module communicates via the waveguide to control the electronic circuit enclosed in the housing.
US10658860B2

An electronic device includes: a connector, arranged for coupling to a power supply external to the electronic device, wherein the power supply is arranged to provide a supply voltage to the electronic device to charge a battery of the electronic device; and a charger, coupled to the connector and selectively operated in a normal mode or a self-test mode, wherein when the charger operates in the normal mode, the charger is arranged for receiving the supply voltage via a power pin of the connector to charge the battery of the electronic device; and when the charger operates in the self-test mode, the charger provides a specific voltage to the power pin of the connector. The charger includes a detector to detect the current or voltage of at least one pin of the connector to generate a detecting result, and the supply voltage is set based on the detecting result.
US10658857B2

The present disclosure relates to a power management circuit and a mobile terminal having a first switch for blocking current. The first switch blocks an input of an external power supply in a case that a predetermined load operates in a large current/voltage mode. A bi-directional DC converter boosts a battery voltage and supplies it to the load. Thus, the circuit is simplified and the number of components is reduced for power management.
US10658855B2

A transformer less battery charger system. In one embodiment, the battery charger system includes input terminals for receiving an AC voltage, output terminals for receiving terminals of a rechargeable battery pack, and a non-isolated DC-DC converter coupled between the input terminals and the output terminals. A device is also coupled somewhere between the input terminals and the output terminals. The device is configured to selectively and indirectly couple the input terminals to the output terminals. More particularly, the device indirectly couples the input terminals to the output terminals when the rechargeable battery pack terminals are received by the output terminals, and the device indirectly decouples the input terminals from the output terminals when the rechargeable battery pack terminals are separated from the output terminals.
US10658849B2

Provided are a charging rate leveling device and a power supply system including the charging rate leveling device capable of leveling more quickly a charging rate of a plurality of battery cells a battery pack includes. In the power supply system a controlling device includes a two-way DC/DC convertor connected to an auxiliary battery separated from the battery pack, a switch array capable of selectively connecting each of the plurality of auxiliary battery cells the battery pack includes to the two-way DC/DC convertor, so as to charge the battery cell with electric power of the auxiliary battery, and a controller controlling the switch array to connect the lowest voltage battery cell selected among the plurality of battery cells, so as to reduce a difference between charging rates SOC of each of the plurality of battery cells.
US10658844B2

A modular power conversion system and power electronics enabling any power production device or entity to connect to any load or electrical grid including, but not limited to, electricity conversion between low level producer(s) such as a diesel or gas generator, Stirling engine, wind turbine or photovoltaic array, to a consumer such as a commercial or residential building, either directly or via the grid, is disclosed. The modular power conversion system including hardware and software power electronics designed as a modular power stage aggregating different power production entities, transmission systems, consumption and loads as well as energy storage is also disclosed.
US10658842B2

An assembly, system, and method for receiving, distributing, and monitoring electrical power received from one or more sources is characterized by a residential electrical panel having at least a main bus panel having one or more house load circuit breakers, a main circuit breaker, a first meter, and a battery output; a second bus panel having a battery input communicatively connected to the residential electrical panel and one or more critical load circuit breakers; one or more jumpers communicatively connecting the main bus panel to the second bus panel; a second meter communicatively connected to the monitoring device; a solar sub panel communicatively connected to the second meter; and a monitoring device communicatively connected to the residential panel, the solar sub panel, the second bus bar, and the second meter.
US10658841B2

Multiple dispatchable resources such as energy storage systems, generators, and curtailable loads are used to fulfill electricity usage control instructions by implementing multiple different sets of dispatch instructions. The sets of dispatch instructions vary based on individual status characteristics and aggregate status characteristics of the dispatchable resources in order to use the resources optimally. The resources may in some instances be prioritized according to their status characteristics in order to improve response efficiency, improve cost-effectiveness, reduce errors and flawed fulfillment, and improve the ability of the resources to respond to different kinds of electricity usage control instructions over time.
US10658832B2

The present invention increases noise immunity of an electrical leakage detection circuit. A first comparator COMP1 generates a first comparison signal indicating a comparison result between a voltage corresponding to a detected signal from a zero-phase-sequence current transformer and a predetermined first threshold voltage VTH1. A judgment circuit outputs a judgment signal indicating if there is electrical leakage based on the first comparison signal and outputs a mask signal corresponding to the first comparison signal. A mask circuit generates a latch input signal based on the judgment signal and the mask signal. An output stage comprises a latch circuit which latches a state of the latch input signal when the latch input signal is asserted. The output stage generates a drive signal corresponding to the state of the latch circuit.
US10658829B2

A excitation system and a generator arrangement with the excitation system is proposed. The excitation system comprises a converter adapted for converting an AC current to a DC current, a switching device for short circuiting an AC input of the converter, and an arc detection device for detecting an arc fault in the excitation system and for actuating the switching device upon detecting the arc fault. Therein, the switching device comprises an irreversible switch adapted for short circuiting the AC input such that the arc fault is quenched. This provide a comprehensive protection against arc faults.
US10658826B2

Protective housings for an electrical device, such as a switches or receptacle, and methods for installing protective housings are disclosed. A protective housing for an electrical device includes a baseplate with an internal opening and first arcuate cutout along the internal opening. The protective housing also includes a first insert with a second arcuate cutout and at least one aperture. The first insert fits within the opening. The first and second arcuate cutouts form a through hole when the first insert is fitted within the opening.
US10658817B2

The disclosure relates to a Vertical Cavity Surface Emitting Laser (100) comprising a first electrical contact (105), a substrate (110), a first Distributed Bragg Reflector (115), an active layer (120), a second Distributed Bragg Reflector (130) and a second electrical contact (135). The Vertical Cavity Surface Emitting Laser comprises at least two current aperture layers (125) arranged below or above the active layer (120), wherein each of the current aperture layers (125) comprises one AlyGa(1−y)As-layer, wherein a first current aperture layer (125a) of the at least two current aperture layers (125) is arranged nearer to the active layer (120) as a second current aperture layer (125b) of the at least two current aperture layers (125), wherein the first current aperture layer (125a) comprises a first current aperture (122a) with a bigger size as a second current aperture (122b) of the second current aperture layer (125b). The disclosure also relates to a method of manufacturing such a VCSEL (100).
US10658806B2

A brush holder apparatus has a stationary support member having two opposing grooves, a fork electrical connector, and a conductive bar configured to pass through a portion of a main body of the stationary support member. The conductive bar provides electrical conductivity with a collector mount and the fork electrical connector. A brush holder is configured to be releasably affixed to the stationary support member, and has two rails configured to slide along the grooves. The brush holder has a knife electrical connector configured to mate with the fork electrical connector. A brush spring is clipped on the brush holder, and the brush spring presses a brush against a collector of a dynamoelectric machine. A brush lead is connected to the brush and a brush terminal. The brush lead is an elongate conductive member, and a brush wear indicator is disposed over the brush lead.
US10658804B2

A wire harness includes a main line harness, a branch line harness, and a branching structure configured to connect the main line harness and the branch line harness to each other. The main line harness has a plurality of main lines arranged side by side. Each main line is configured as a wiring member having a rod conductor. The branch line harness has a plurality of branch lines. The branching structure includes connection terminals to be electrically connected to the main lines to form at least part of electrically conductive paths between the main lines and the branch lines. Each connection terminal has a tubular connection portion to cover an outer circumferential surface of the rod conductor. The tubular connection portion has a pressing structure configured to elastically press the outer circumferential surface of the rod conductor placed inside a hollow portion of the tubular connection portion.
US10658801B1

The present invention is a connector for connecting an electrical cable having cladding to an aperture in an electrical panel. The assembled connector has a spring, a shell, and a insulator along a longitudinal axis. The spring has a base from which two insertion tabs extend coaxial with the axis and two clad blocking tabs extending perpendicular from the two insertion tabs to prevent over-insertion of the cladding into the connector. The insertion tabs of the spring have hook latches extending past the insulator that lock the connector in the panel, and the base of the spring has a hole to receive the cable where clamping tabs clampably lock the cable in the connector.
US10658795B2

A cable assembly includes a plurality of wires and a plurality of electrical contacts. The electrical contacts include contact sections and wire connection sections, and the wire connection sections of the electrical contacts are respectively connected to the wires. Two adjacent electrical contacts for transmitting signals have a first center distance and a reduced center distance. The first center distance is adjacent to the contact sections, and the reduced center distance is between the first center distance and the wire connecting sections. In addition, the first center distance is greater than the reduced center distance to improve signal integrity.
US10658783B2

A mechanism (4) for securing a module (5) inserted into a module receiving frame (1) to the module receiving frame (1) and releasing the module (5) for removal from the module receiving frame (1), comprising a catch (6) arranged on the module (5) or the module receiving frame (1), which catch (6) may be moved to and fro between an open position and a locking position of the catch (6), and a spring (7) for preloading the catch (6) into one of the two positions, the open position or the locking position. The mechanism (4) further comprises a catch holder (11), which may be moved to and fro between a retaining position, in which it holds the catch (6) back against the preloading of the spring (7), and a release position, in which it does not hold the catch (6) back against the preloading of the spring (7).
US10658775B2

An electrical connector is used to electrically connect an electronic component to a circuit board, and includes an insulating body, at least one first terminal and at least one second terminal. The first terminal has a first base accommodated in the insulating body and a first elastic arm extending upward from the first base. The first elastic arm is used to abut the electronic component. The second terminal has a second base soldered and fixed to the first base, and a second elastic arm extending from the second base toward the first elastic arm. The second elastic arm upward abuts the first elastic arm. A lower end of the first base is provided with a first conduction portion to be electrically connected to the circuit board. A projection of the first conduction portion and a projection of the first elastic arm in a vertical direction are at least partially overlapped.
US10658773B2

An electrical contact of an electrical connector includes a mounting leg for being retained within a through hole of the printed circuit board wherein the mounting leg is tubular and is radially deformable to abut against an interior surface of the through hole. The mounting leg is radially thinned in thickness to confront the interior surface of the hole. The mounting leg is formed by rolling a metal plate with a C-shaped cross-section thereof. There are two thinned areas of the mounting leg, symmetrically located by two sides of the slit of the C-shaped cross-sectional configuration.
US10658770B1

A press and spring-back terminal block, includes a housing (1), a conductive terminal (2), a retainer assembly (3) and a rocker (4). The conductive terminal (2) is arranged inside the housing (1). The retainer assembly (3) includes a control member (30) and an elastic sheet (31) actuated by the control member (30). The elastic sheet (31) includes a stopping edge (310) and a retaining end (311) extended from the stopping edge (310) and toward the conductive terminal (2). When the control member (30) is actuated, it is abutted by the stopping edge (310) to allow the retaining end (311) to swing toward one side away from the conductive terminal (2). The rocker (4) is arranged inside the housing (1) and includes a first end portion (41) opposite from the lead wire insertion hole (11) and a second end portion driven to move relative to the control member (30).
US10658765B2

A method of forming a planar antenna on a first substrate. An antenna feedline is formed on a peelable copper film of a carrier. A dielectric with no internal conductive layer is formed on the feedline. A planar antenna is formed on one of two parallel sides of the dielectric and a feed port is formed adjacent the other parallel side. The feedline connects the antenna with the feed port. One plane of the planar antenna is configured for perpendicular attachment to a second substrate. The feedline is connected to the planar antenna by a via through the dielectric. The peelable copper is removed and the structure is etched to produce the planar antenna on the substrate. Two planar antennas on substrates can be perpendicularly attached to another substrate to form side-firing antennas.
US10658757B2

A device and method are described for duplex satellite communication over a single satellite antenna. A satellite ground terminal may utilize a frequency-selective surface module including a frequency-selective surface as a subreflector acting as a frequency diplexer to separate signals received and/or transmitted by a first feed and a second feed of a satellite ground terminal, where each feed has a separate antenna horn. The frequency-selective surface module may be used in combination with a second subreflector such that a first feed and a second feed of the satellite ground terminal are implemented on the same side of the frequency-selective surface module.
US10658750B2

The present disclosure relates to a wireless communication node (1) comprising at least one antenna arrangement (2, 2′, 2″). Each antenna arrangement (2, 2′, 2″) comprises at least one antenna port (3), at least two antenna elements (4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b) arranged for providing an antenna beam pattern (8), and a phase control arrangement (9, 9′, 9″) arranged to receive at least one input signal (10) via said antenna port (3) and to determine a plurality of intermediate signal components (11) from said input signal (10) by determining a first set of respective phase shifts (φ1, φ2, 10 φ3, φ4; θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) for said input signal (3). The phase control arrangement (9) is further arranged to determine a final signal component (12) for each antenna element (4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b) from said intermediate signal components (12) by determining a second set of respective phase shifts (β1, β2, β3, β4: Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7, Φ8) for said intermediate signal components (12), wherein the second set of phase shifts (β1, β2, β3, β4; Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7, Φ8) is arranged to provide a lowered gain of the antenna arrangement (2, 2′, 2″) in at least one direction (D). The present disclosure also relates to a corresponding method.
US10658748B2

What is provided is a shield housing for shielding interconnect structures and/or components disposed on a circuit board, wherein at least two antenna radiators can be disposed on the shield housing, and wherein the shield housing is configured in such a manner that it can cover the interconnect structures and/or components disposed on the circuit board, at least in part, can be connected with a ground surface of the circuit board, and has a region between the antenna radiators, which region is configured in such a manner that it provides electrical decoupling of the feed of the antenna radiators from one another.
US10658746B2

A wireless module includes a substrate, a ground pattern disposed on the substrate, a first antenna, a second antenna, and a base plate that is conductive. The first antenna is disposed between one end of the substrate and the ground pattern, and includes a grounding part and a first power feeding part, the grounding part is connected to the ground pattern, and the first power feeding part is fed with a first signal. The second antenna is disposed between the other end of the substrate and the ground pattern, and includes a second power feeding part fed with a second signal. The base plate includes a first opposed portion that faces the first antenna, a second opposed portion that faces the second antenna, and a third opposed portion that faces the ground pattern and is short-circuited to the ground pattern. The base plate also has, on the third opposed portion, a short-circuit point at which the base plate and the ground pattern are short-circuited to each other. The short-circuit point is disposed on the third opposed portion at a position nearer to the first opposed portion than to the second opposed portion.
US10658735B2

Component for a dual band antenna suitable for integration in a router, an access point, or similar device for wireless communication, wherein the outside of the component is of a multi-faced design which is supported by a support body that is designed to be mounted onto a ground plane, wherein the outside of the component includes the following faces: a) a top face which is provided with an electrically conductive flare layer that encloses at least one flare slot; b) one or two side faces adjacent to the top face that are provided with an electrically conductive feed strip and an electrically conductive ground strip which strips are both electrically connected to the flare layer; c) a bottom face that is not adjacent to the top face, which is designed to be mounted onto the ground plane; wherein the ground strip is electrically connectable to the ground plane onto which the component is to be mounted, and wherein the feed strip is electrically connectable to an appropriate RF chain.
US10658733B2

A mobile terminal can include a terminal body having a display unit disposed on one surface thereof; a frame supporting the display unit; a metal member spaced apart from the frame and exposed to an outside of the mobile terminal; a plurality of connecting members connecting the metal member to the frame and grounding the metal member; and an antenna unit disposed adjacent to the frame and including a radiator configured to radiate wireless signals in a first frequency band, in which the metal member is divided into specific areas by the plurality of connecting members, and one area located adjacent to the radiator, is configured to generate a parasitic resonance at a second frequency band different from the first frequency band, and the plurality of connecting members connected to the metal member are spaced apart from one another at different intervals.
US10658727B1

A combiner/divider includes a transition waveguide interposed between a plurality of input/output waveguides and an output/input waveguide. The input/output waveguides are preferably distributed in a radial sector extending in the E-plane of the input/output waveguides. The input/output waveguides extend from inner nodes disposed proximate to and spaced from a sector center to outer nodes disposed along an arc of the sector. At least some of the input/output waveguides taper in size from the inner nodes to the outer nodes. Walls between adjacent input/output waveguides also may taper in width between the inner nodes and the outer nodes. The output/input waveguide has an inner port facing and spaced from the inner nodes of the input/output waveguides. A transition waveguide extends between the input/output waveguides and the output/input waveguide and has side walls extending along the radii of the sector for communicatively coupling the output/input waveguide with input/output waveguides.
US10658726B2

Aspects of the subject disclosure may include, generating, by a first hollow waveguide coupled to a first dielectric coupler, a first electromagnetic wave that couples onto a transmission medium, generating, by a second hollow waveguide coupled to a second dielectric coupler, a second electromagnetic wave that couples onto the transmission medium, combining the first electromagnetic wave and the second electromagnetic wave combine to form a combined electromagnetic wave that propagates along the transmission medium without requiring an electrical return path, and adjusting a first phase of the first electromagnetic wave, a second phase of the second electromagnetic wave, or both to adjust a wave mode of the combined electromagnetic wave. Other embodiments are disclosed.
US10658725B2

A spatium amplifier includes a plurality of amplifiers connected between a pair of spatial couplers, each having a core member and a shell member forming an antenna. The core member includes a cylindrical core portion and a plurality of tapering core fins extending radially outwardly from the cylindrical core portion. The shell member includes a cylindrical shell portion and a plurality of tapering shell fins extending radially inwardly from the cylindrical shell portion to form a plurality of fin pairs. Each fin pair forms a tapering channel having a first channel height at a first end of the antenna and a second channel height larger than the first channel height at a second end of the antenna. Each of the plurality of amplifiers is electromagnetically coupled to a respective fin pair at the first end of each of the antennas.
US10658724B2

At least some aspects of the present disclosure feature a waveguide for propagating an electromagnetic wave. The waveguide includes a base material and a plurality of resonators disposed in a pattern, the plurality of resonators having a resonance frequency. Each of the plurality of resonators has a relative permittivity greater than a relative permittivity of the base material. At least two of the plurality of resonators are spaced according to a lattice constant that defines a distance between a center of a first one of the resonators and a center of a neighboring second one of the resonators.
US10658721B2

Disclosed are embodiments of ceramic radiofrequency filters advantageous as RF components. The ceramic filters can include a ceramic stepped impedance resonator, wherein the inner diameter of the ceramic stepped impedance resonator can vary from one end to another end. The inner diameter can be, for example, tapered, sectioned, or stair-stepped in order to provide different impedances in the ceramic resonator.
US10658712B2

A battery module includes a plurality of battery cells and a plurality of cell barriers. Each cell barrier is between adjacent battery cells of the plurality of battery cells and includes at least one flange. The flange has a first flange portion and a second flange portion. The first flange portion has a first sealing edge extending therefrom and overlapping a first lateral side of one of the adjacent battery cells, and the second flange portion has a second sealing edge extending therefrom and overlapping a second lateral side of another of the adjacent battery cells.
US10658709B2

A battery pack includes one or more battery cells including a plurality of electrode tabs, a protective circuit module connected to the electrode tabs of the one or more battery cells, a frame accommodating the battery cells and the protective circuit module, and a protective tape covering the protective circuit module and the electrode tabs, a first surface of the protective tape including a plurality of grooves corresponding to the electrode tabs.
US10658696B2

A nonaqueous secondary cell provided with: a positive electrode provided with a positive-electrode current-collecting substrate and a positive-electrode active material layer formed thereon, the positive-electrode active material layer being able to absorb or discharge lithium; a negative electrode provided with a negative-electrode current-collecting substrate and a negative-electrode active material layer formed thereon, the negative-electrode active material layer being able to absorb or discharge lithium; a separator interposed between the positive and negative electrodes; and a nonaqueous electrolyte solution. The nonaqueous electrolyte solution contains a sulfonyl imide electrolyte and a nonaqueous organic solvent. An electroconductive protective layer obtained by dispersing an electroconductive carbon material in a binder resin is formed on one or both surfaces of the positive-electrode current-collecting substrate and/or the negative-electrode current-collecting substrate. Regardless of whether the nonaqueous electrolyte solution including the sulfonyl imide electrolyte is used, the nonaqueous secondary cell has good cycle characteristics and high output characteristics.
US10658686B2

A fuel pressure regulator unit is mounted on a manifold. The fuel pressure regulator unit includes a housing providing a fuel inlet passage, a regulated fuel outlet passage, a sense pressure passage, a recycle passage and a mixed fuel passage. A pressure regulator is provided in the housing and is arranged fluidly between the fuel inlet passage and the regulated fuel outlet passage. The sense passage fluidly interconnects the mixed fuel passage and the pressure regulator. The pressure regulator is configured to regulate the flow of fuel from the fuel inlet passage to regulated fuel passage in response to a pressure from the sense pressure passage. An ejector is arranged within the housing and fluidly between the regulated fuel outlet passage and the mixed fuel passage. An ejector is configured to receive recycled fuel from the recycle passage.
US10658683B2

A method for preparing a fuel cell membrane electrode assembly, where the membrane electrode assembly includes a solid polymer electrolyte membrane and a first electrode and a second electrode provided on both sides of the solid polymer electrolyte membrane. The first electrode and the second electrode each include an electrode catalyst layer and a gas diffusion layer. The method includes forming the first electrode and the second electrode on both sides of the solid polymer electrolyte membrane, providing a preformed resin frame member around the solid polymer electrolyte membrane, overlapping an outer marginal portion of the first electrode and an inner marginal portion of the resin frame member with each other and applying heat and pressure to the overlapped portions of the first electrode and the resin frame member to join the resin frame member around the solid polymer electrolyte membrane.
US10658681B2

An object is to equalize the level of cooling along a top-bottom direction of a fuel cell stack. A fuel cell stack has an anode-side separator placed between a plurality of membrane electrode assemblies. The anode-side separator comprises a separator center area that is arranged to face a power generation area of the membrane electrode assembly; an outer peripheral portion that is extended from the separator center area to outer periphery and has a plurality of openings for cooling medium supply manifolds; and a rib that is firmed from a beam portion provided to separate the adjacent openings for cooling medium supply manifolds from each other, over an area between the openings for cooling medium supply manifolds and the separator center area.
US10658675B1

An electrode includes a current collector having metallic struts formed by freeze tape casting along a cast direction, and an electrochemically active material occupying portions of the void spaces. The struts define a percolated conductive network and void spaces through the percolated conductive network. The struts are directionally aligned and the void spaces are directionally ordered perpendicular to the cast direction.
US10658671B2

The present disclosure provides a polymer protecting layer, a lithium metal negative electrode, a lithium secondary battery. In the lithium secondary battery of the present disclosure, a polymer protecting layer comprising a polymer ionic liquid is coated on a surface of a lithium metal sheet.
US10658667B2

A conductive auxiliary agent for an electrode slurry for a battery. The electrode slurry contains an electrode active material and a conductive auxiliary agent, and is applied to a sheet-shaped current collector. The conductive auxiliary agent is a carbon paste produced by dispersing a carbon powder in a solvent. The carbon paste has a viscosity of at least 20 Pa·s and not more than 40 Pa·s. The carbon material can be acetylene black.
US10658661B2

An electrode and a power storage device each of which achieves better charge-discharge cycle characteristics and is less likely to deteriorate owing to separation of an active material, or the like are manufactured. As the electrode for the power storage device, an electrode including a current collector and an active material layer that is over the current collector and includes a particle containing niobium oxide and a granular active material is used, whereby the charge-discharge cycle characteristics of the power storage device can be improved. Moreover, contact between the granular active material and the particle containing niobium oxide makes the granular active material physically fixed; accordingly, deterioration due to expansion and contraction of the active material which occur along with charge and discharge of the power storage device, such as powdering of the active material layer or its separation from the current collector, can be suppressed.
US10658653B2

An electrode mixture paste for a sodium secondary battery contains a positive electrode active material capable of being doped and dedoped with a sodium ion, an electroconductive material, a binder, an organic solvent, and an acid having a valence number of 2 or more. The electrode mixture paste for a sodium secondary battery gives little change in viscosity with lapse of time even when there are no special facilities.
US10658652B2

A method of manufacturing a lithium-ion secondary battery electrode sheet proposed herein includes the step of pressing granulated particles (13a), wherein the ratio (t/D50) is less than 1, where D50 is the mean particle size of the granulated particles (13a) and t is the thickness of a layer (14) of active material particles (13a1) after pressing.
US10658647B2

The present disclosure provides a secondary battery and a battery module. The secondary battery includes: a shell having an opening; an electrode assembly including a first electrode plate, a second electrode plate, and a separator; a cap assembly including a cap plate and a first electrode terminal; a lower insulator located at a side of the cap plate away from the terminal board; and a wiring board including a main body portion and an extension portion, wherein the main body portion is located at a side of the lower insulator away from the cap plate and connected to the first electrode plate, the extension portion extends into the electrode lead-out hole and connected to the first electrode terminal, the first electrode plate is electrically connected to the first electrode terminal through the wiring board, and the first electrode terminal does not extend beyond a lower surface of the lower insulator.
US10658645B2

A busbar module includes a busbar holding plate and a busbar cover attached to the busbar holding plate. The busbar holding plate includes a busbar holding face and a bearing including a hole and a wall to define the hole. The busbar cover includes protrusions protruding toward each other in the axial direction at positions corresponding to the hole. The protrusions are opposed to each other with a gap less than a dimension of the hole in the axial direction. The protrusions are disposed in the hole to rotate the busbar cover about the protrusions between a covering position and an uncovering position. The busbar cover is flexible to deform such that the gap expands to allow the wall to pass through the gap during attachment of the bulbar cover to the busbar holding plate and restores its original shape when passing of the wall through the gap is complete.
US10658637B2

A battery system includes at least one battery apparatus having at least one apparatus for increasing safety when using a degassing apparatus. The degassing apparatus is suitable for the controlled degassing of battery apparatuses. The battery apparatus and the apparatus are surrounded by a housing. The degassing apparatus is inserted into a wall of a housing. The apparatus generates a physical distance between the battery apparatus and the degassing apparatus such that a space is kept free between the battery apparatus and the degassing apparatus for discharging substances, which emerge from the battery apparatus, to an area surrounding the battery system.
US10658632B1

Battery housings and batteries are presented for accommodating swelling of an electrode assembly. In one aspect, a battery includes an electrode assembly that includes a cathode and an anode. The battery also includes a receptacle that includes at least one feedthrough disposed through one or more sides of the receptacle. A lid is sealed to the receptacle. The receptacle, the at least one feedthrough, and the lid form a sealed volume in which the electrode assembly and an electrolyte are disposed. The lid is configured to displace from a first position to a second position in response to a swelling of the electrode assembly within the sealed volume. The receptacle is configured to strain less than the lid during the swelling of the electrode assembly. The second position of the lid may correspond to an expanded volume of the electrode assembly that is 15% greater than an initial volume.
US10658613B2

An encapsulation method of an organic light emitting diode, an organic light emitting diode encapsulation structure and an organic light emitting diode display apparatus are provided. The encapsulation method includes: providing an encapsulation cover plate and a base substrate with an organic light emitting diode device; forming a first sealant of the encapsulation cover plate, in which the first sealant includes a plurality of protrusion portions spaced apart with each other; forming a second sealant on the encapsulation cover plate, in which the second sealant includes a plurality of protrusion portions and a height of each of the plurality of protrusion portions of the second sealant is greater than a height of each of the plurality of protrusion portions of the first sealant; and bonding the encapsulation cover plate and the base substrate, in which the second sealant covers the organic light emitting diode device and the first sealant.
US10658604B2

A light-emitting element having low driving voltage and high emission efficiency is provided. In the light-emitting element, a combination of a guest material and a host material forms an exciplex. The guest material is capable of converting triplet excitation energy into light emission. Light emission from the light-emitting layer includes light emission from the guest material and light emission from the exciplex. The percentage of the light emission from the exciplex to the light emission from the light-emitting layer is greater than 0 percent and less than or equal to 60 percent. The energy after subtracting the energy of light emission from the exciplex from the energy of light emission from the guest material is greater than 0 eV and less than or equal to 0.23 eV.
US10658603B2

An electrode and an organic electroluminescent device using the same are provided. The electrode includes a first layer (1) and a second layer (2) arranged in a stacked manner. The first layer (1) is an alkaline earth metal alloy layer and the second membrane (2) has a work function of 2.0 eV to 3.5 eV.
US10658597B2

An organic electric element includes a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode. The organic material layer includes the compound represented by Formula 1. When the organic electric element includes the compound in the organic material layer, luminous efficiency, stability, and life span can be improved.
US10658596B2

An organic electroluminescent device having an anode, a cathode, and a light emitting layer between the anode and the cathode, in which the light emitting layer contains a first organic compound, a second organic compound, and a third organic compound that satisfy the following expression (A), the second organic compound is a delayed fluorescent material, and the third organic compound is a light emitting material, is capable of enhancing the light emission efficiency. ES1(A), ES1(B) and ES1(C) represent a lowest singlet excitation energy level of the first, second and third organic compound, respectively. ES1(A)>ES1(B)>ES1(C)  (A)
US10658595B2

An organic light emitting diode includes: a first electrode; a second electrode facing the first electrode; a light emission layer between the first electrode and the second electrode; an electron injection layer between the second electrode and the light emission layer; and a buffer layer between the electron injection layer and the second electrode, where the electron injection layer includes a dipolar material and a first metal, and the buffer layer includes a metal having a work function of 4.0 eV or less.
US10658588B2

Memory structures with a plurality of memory cells that each include memory devices in combination with switch devices are provided. The memory device and switch device of each cell are connected in series, and include at least first and second electrodes. The first electrode features a relatively high resistance, to provide a reduced snap current during operation of the memory device. The first electrode with a relatively high resistance can contain or be entirely composed of TiAlN.
US10658579B2

A storage device includes a first conductive layer and a second conductive layer, with an intermediate layer therebetween. The intermediate layer includes a first and second compound regions. The first compound region includes first and second adjacent portions and the second compound region includes third and fourth adjacent portions. Electrical resistance between the first and second conductive layers changes according to a polarity applied across the intermediate layer. In a first polarity state, a concentration of a first element in the first portion is higher than a concentration of the first element in the second portion of the first compound region. A thickness of the third portion in the first polarity state is greater than the thickness of the fourth portion in the first polarity state.
US10658575B2

Techniques are presented for ensuring alignment marks are available for use and patterning magnetoresistive devices following the deposition of layers used to form the magnetoresistive devices. In some cases, the plurality of layers corresponding to the magnetoresistive devices are selectively etched in order to expose the underlying alignment marks, whereas in other embodiments, the deposition of the plurality of layers is controlled by deposition tool tabs that prevent the materials from obscuring the underlying alignment marks.
US10658573B2

A magnetic memory includes magnetoresistance effect elements, each of which includes a first ferromagnetic metal layer in which a magnetization direction is fixed, a second ferromagnetic metal layer for a magnetization direction to be changed, and a nonmagnetic layer provided between the first ferromagnetic metal layer and the second ferromagnetic metal layer, a first wiring connected to the first ferromagnetic metal layer of at least one magnetoresistance effect element, spin-orbit torque wirings, each of which is connected to each of the second ferromagnetic metal layers of the magnetoresistance effect elements and extend in a direction intersecting a lamination direction of the magnetoresistance effect element, one first control element connected to the first wiring, one second control element connected to each of first connection points of the spin-orbit torque wirings, and first cell selection elements, each of which is connected to each of second connection points of the spin-orbit torque wirings.
US10658570B2

A composite wafer has an oxide single-crystal film transferred onto a support wafer, the film being a lithium tantalate or lithium niobate film, and the composite wafer being unlikely to have cracking or peeling caused in the lamination interface between the film and the support wafer. More specifically, a method of producing the composite wafer, includes steps of: implanting hydrogen atom ions or molecule ions from a surface of the oxide wafer to form an ion-implanted layer inside thereof; subjecting at least one of the surface of the oxide wafer and a surface of the support wafer to surface activation treatment; bonding the surfaces together to obtain a laminate; heat-treating the laminate at 90° C. or higher at which cracking is not caused; and applying ultrasonic vibration to the heat-treated laminate to split along the ion-implanted layer to obtain the composite wafer.
US10658563B2

An ultrasound transducer used in an ultrasound system and a manufacturing method thereof includes: a backing block; a piezoelectric layer placed on the backing block; a matching layer placed on the piezoelectric layer; and a ground layer placed between the piezoelectric layer and the matching layer. The backing layer includes a connector that connects a transmitting unit and a receiving unit of an ultrasound system, and a wiring area that connects the piezoelectric layer and the connector. The wiring area is formed by etching and filling with metal material.
US10658555B2

Provided is an optical semiconductor apparatus including an optical semiconductor device; a light-permeable buffer layer that contains a cured high-hardness silicone resin, that has a thickness ranging from 1 μm to 300 μm, and that covers at least part of a light-emitting surface of the optical semiconductor device; and a flexible sealing layer containing a cured flexible silicone resin that has a lower hardness than the light-permeable buffer layer, and that covers the optical semiconductor device and the light-permeable buffer layer. The optical semiconductor apparatus has superior heat resistance and UV resistance and is significantly prevents the breakage of a wire electrically connected to the optical semiconductor device.
US10658552B2

The invention provides an LED package configured to generate blue LED package light, wherein the LED package comprises a solid state light source configured to generate blue light source light, a luminescent material configured to convert part of the light source light into luminescent material light comprising green light, and a blue pigment configured to absorb part of the luminescent material light.
US10658551B2

A wavelength-converting film includes a sintered body formed of a mixture of a wavelength-converting material and a glass composition. The wavelength-converting material includes a quantum dot having a core-shell structure and a protective layer coating a surface of the quantum dot. A shell of the quantum dot contains at least one of Zn, S, and Se, the protective layer does not contain S and Se, and the glass composition includes a SnO2—P2O5—SiO2-based composition.
US10658544B2

A light-emitting device comprises a semiconductor layer sequence comprising a first semiconductor layer having a first electrical conductivity, a second semiconductor layer having a second electrical conductivity, and an active layer interposed between the first semiconductor layer and the second semiconductor layer; a plurality of beveled trenches formed in the semiconductor layer sequence; a plurality of protruding structures respectively formed in the plurality of beveled trenches; a dielectric layer formed on the second semiconductor layer and an inner sidewall of the plurality of beveled trenches; a reflecting layer interposed between the semiconductor layer sequence and the dielectric layer; and a metal layer formed along the inner sidewall of the plurality of beveled trenches, wherein the dielectric layer, the reflecting layer and the metal layer are overlapping, the plurality of protruding structures and the reflecting layer are not overlapping.
US10658538B2

Provided is an optical detection device including a first ohmic contact layer of a first conductivity type, a second ohmic contact layer of a second conductivity type, and first and second mesa structures stacked between the first and second ohmic contact layers. The first mesa structure includes an electric field buffer layer; and a diffusion layer formed in the electric field buffer layer. The second mesa structure includes a light absorbing layer and a grading layer on the light absorbing layer.
US10658524B2

A Schottky barrier diode includes a semiconductor layer having a major surface, a diode region of a first conductivity type formed in a surface layer portion of the semiconductor layer, a first conductivity type impurity region formed in the surface layer portion of the semiconductor layer and electrically connected to the diode region, a first electrode layer formed on the major surface of the semiconductor layer and forming a Schottky junction with the diode region, a second electrode layer formed on the major surface of the semiconductor layer and forming an ohmic junction with the first conductivity type impurity region, and a contact electrode layer formed on a peripheral region of the major surface of the semiconductor layer surrounding the first electrode layer so as to be electrically connected to the diode region via the semiconductor layer and being electrically connected to the second electrode layer.
US10658519B2

A semiconductor device including a highly reliable transistor is provided. A semiconductor device includes a transistor. The transistor includes first and second gate electrodes, first and second gate insulators, a source electrode, a drain electrode, first to sixth oxides, first and second layers, and first and second gate insulators. The third oxide is under the source electrode. The fourth oxide is under the drain electrode. The sixth oxide is under the second gate electrode. The third and fourth oxides each have a function of supplying oxygen to the second oxide. The sixth oxide has a function of supplying oxygen to the second gate insulator.
US10658518B2

Magnesium Zinc Oxide (MZO)—based high voltage thin film transistor (MZO-HVTFT) is built on a transparent substrate, such as glass. The device has the circular drain and ring-shaped source and gate to reduce non-uniformity of the electric field distribution. Controlled Mg doping in the channel and modulated Mg doping in a transition layer located at the channel-gate dielectric interface improve the device's operating stability and increase its blocking voltage capability over 600V. The MZO HVTFT can be used for fabricating the micro-inverter in photovoltaic system on glass (PV-SOG), and for self-powered smart glass.
US10658517B2

A highly reliable semiconductor device and a method for manufacturing the semiconductor device are provided. The semiconductor device is manufactured with a high yield, so that high productivity is achieved. In a semiconductor device including a transistor in which a source electrode layer and a drain electrode layer are provided over and in contact with an oxide semiconductor film, entry of impurities and formation of oxygen vacancies in an end face portion of the oxide semiconductor film are suppressed. This can prevent fluctuation in the electric characteristics of the transistor which is caused by formation of a parasitic channel in the end face portion of the oxide semiconductor film.
US10658506B2

A fin cut last methodology for manufacturing a vertical FinFET includes forming a plurality of semiconductor fins over a substrate, forming shallow trench isolation between active fins and, following the formation of a functional gate of the active fins, using a selective etch to remove a sacrificial fin from within an isolation region. A further etching step can be used to remove a portion of the gate stack proximate to the sacrificial fin to create an isolation trench and a laterally-extending cavity within the isolation region that are back-filled with an isolation dielectric.
US10658498B2

A semiconductor device may include a semiconductor substrate, an upper electrode and a lower electrode. The semiconductor substrate may include: a p-type anode region being in contact with the upper electrode; an n-type cathode region being in contact with the lower electrode; an n-type drift region interposed between the anode region and the cathode region. The semiconductor substrate may further include a barrier region interposed between the anode region and the drift region; and an n-type pillar region extending between the barrier region and the upper electrode. The barrier region may include a multi-layer structure in which a p-type second barrier layer is interposed between an n-type first barrier layer and an n-type third barrier layer. The first barrier layer may be in contact with the anode region and is connected to the upper electrode via the pillar region.
US10658496B2

The present disclosure relates to a high-speed superjunction lateral insulated gate bipolar transistor, and belongs to the technical field of semiconductor power devices. Fast turn-off can be achieved by replacing the lightly doped substrate of the existing bulk silicon superjunction lateral insulated gate bipolar transistor with heavily doped substrate, breakdown voltage of the device is ensured by reasonably setting the total number of impurities in each drift region of the over junction-sustaining voltage layer, and further application thereof in integrated circuits is realized by providing the semiconductor second substrate region and the semiconductor isolation region. A high speed superjunction laterally insulated gate bipolar transistor according to the present disclosure solves the contradiction between cost of the superjunction laterally insulated gate bipolar transistor and achievement of fast turn-off on a bulk silicon substrate.
US10658495B2

A method of forming a silicon-germanium heterojunction bipolar transistor (hbt) device is provided. The method includes forming a stack of four doped semiconductor layers on a semiconductor substrate. The method further includes forming a dummy emitter contact and contact spacers on a fourth doped semiconductor layer of the stack of four doped semiconductor layers, and removing portions of the second, third, and fourth semiconductor layers to form a vertical fin. The method further includes recessing the second and fourth doped semiconductor layers, and depositing a condensation layer on the second, third, and fourth doped semiconductor layers. The method further includes reacting the condensation layer with the third doped semiconductor layer to form a protective segment on a condensed protruding portion.
US10658492B2

The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; and a passive polysilicon device disposed over the semiconductor substrate. The passive polysilicon device further includes a polysilicon feature; and a plurality of electrodes embedded in the polysilicon feature.
US10658485B2

A semiconductor device includes plurality of fin structures extending in first direction on semiconductor substrate. Fin structure's lower portion is embedded in first insulating layer. First gate electrode and second gate electrode structures extend in second direction substantially perpendicular to first direction over of fin structures and first insulating layer. The first and second gate electrode structures are spaced apart and extend along line in same direction. First and second insulating sidewall spacers are arranged on opposing sides of first and second gate electrode structures. Each of first and second insulating sidewall spacers contiguously extend along second direction. A second insulating layer is in region between first and second gate electrode structures. The second insulating layer separates first and second gate electrode structures. A third insulating layer is in region between first and second gate electrode structures. The third insulating layer is formed of different material than second insulating layer.
US10658479B2

The present disclosure relates to a flash memory cell that includes a substrate and a floating gate structure over the substrate. The floating gate structure includes a first portion having a first top surface and a first thickness. The floating gate structure also includes a second portion having a second top surface and a second thickness that is different from the first thickness. The floating gate structure further includes a sidewall surface connecting the first and second top surfaces, and an angle between the first top surface and the sidewall surface of the floating gate structure is an obtuse angle. The flash memory cell also includes a control gate structure over the first and second portions of the floating gate structure.
US10658475B2

Integrated circuit transistor structures are provided that may reduce capacitive parasitics by using metal on both sides (top and bottom) of a given integrated circuit transistor device layer. For example, in an embodiment, the drain metal interconnect is provided above the transistor device layer, and the source metal interconnect is provided below the transistor layer. Such a configuration reduces the parasitic capacitance not only between the source and drain metal interconnect layers, but also between the neighboring conductors of the drain metal interconnect layer, because the number of pass-thru conductors in the drain metal interconnect layer to access an upper conductor in the source metal interconnect layer is reduced. In other embodiments, the source metal interconnect remains above the transistor device layer, and the drain metal interconnect is moved to below the transistor device layer, to provide similar benefits. Techniques apply equally to any transistor type, including FETs and BJTs.
US10658467B2

A semiconductor device of an embodiment includes a silicon carbide layer having a first plane and a second plane; a first silicon carbide region of a first conductivity type in the silicon carbide layer; a second silicon carbide region of a second conductivity type between the first silicon carbide region and the first plane; a third silicon carbide region of the second conductivity type between the first silicon carbide region and the first plane, the third silicon carbide region extending in a first direction parallel to the first plane; a first electrode provided on a side of the first plane; a second electrode provided on a side of the second plane; and a metal silicide layer provided between the first electrode and the second silicon carbide region, the metal silicide layer having a portion being in contact with the first plane, and a shape of the portion being an octagon.
US10658459B2

A substrate structure for a nanosheet transistor includes a plurality of nanosheet layers and a plurality of recesses between the nanosheet layers. The substrate structure includes at least one trench through portions of the nanosheet layers, the sacrificial layers, and the substrate. The substrate structure includes a u-shaped portion formed at a bottom portion of the at least one trench. The u-shaped portion includes a bottom cavity. The substrate structure further includes a first liner disposed upon the u-shaped portion of the at least one trench, and a second liner disposed on the first liner. The substrate structure further includes a third liner disposed within the at least one trench to fill the bottom cavity of the u-shaped portion to form a bottom inner spacer within the bottom cavity.
US10658450B2

Embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device. The display substrate includes: a display area; an edge area; a bent portion between the display area and the edge area, the edge area being bent at a predetermined angle towards a side facing away from a display surface of the display area by means of the bent portion; and a row driving circuit in the edge area.
US10658446B2

A method for manufacturing an organic light-emitting diode (OLED) backplane is provided. The method includes sequentially depositing a first oxide semiconductor layer, a second oxide semiconductor layer and a third oxide semiconductor layer to obtain an active layer of a thin film transistor. The flow ratio of an argon gas and an oxygen gas introduced during the deposition of the first and third oxide semiconductor layers is greater than the flow ratio of the argon gas and the oxygen gas introduced during the deposition of the second oxide semiconductor layer. As a result, the oxygen content of the first and third oxide semiconductor layers is greater than the oxygen content of the second oxide semiconductor layer. Therefore, the conductivity of the active layer of the thin film transistor device is enhanced. The interface defects are reduced. The stability of the thin film transistor device is improved.
US10658445B2

An organic light emitting diode display is disclosed. The organic light emitting diode display includes a first substrate on which pixels each including an organic light emitting diode are disposed, a second substrate including a power line supplied with a power voltage and facing the first substrate, and a conductive filler layer interposed between the first substrate and the second substrate and including a conductive medium. The first substrate includes an auxiliary electrode, a first barrier disposed on the auxiliary electrode, a cathode divided by the first barrier and exposing at least a portion of the auxiliary electrode, and a protective layer disposed on the cathode, divided by the first barrier, and exposing at least a portion of the auxiliary electrode. One end of the cathode directly contacts the auxiliary electrode.
US10658427B2

A memory device may include an array of memory cells having a first area and configured to operate at a first voltage, and circuitry having a second area that at least partially overlaps the first area. The circuitry may be configured to operate at a second voltage lower than the first voltage. The circuitry maybe be further configured to access the array of memory cells using decoder circuitry configured to operate at the first voltage. The array of memory cells and the circuitry may be on a single substrate. The circuitry may include microcontroller circuitry, cryptographic controller circuitry, and/or memory controller circuitry. The memory cells may be self-selecting memory cells that each include a storage and selector element having a chalcogenide material. The memory cells may not include separate cell selector circuitry.
US10658420B2

A method for producing a plurality of curved electronic circuits includes: producing a support including a plurality of membranes made from at least one material having a rigidity of more than around 100 MPa, each intended for being part of one of the electronic circuits and having a radius of curvature R between about 15 mm and 500 mm; applying a force to one of the main surfaces of each of the membranes, so that the membrane deforms resiliently and has a substantially planar shape when exposed to the force; rigidly connecting at least one electronic component to each of the membranes; and removing the force applied to one of the main faces of each of the membranes so that each of the membranes retrieves its original radius of curvature R and curves the electronic component according to this radius of curvature R.
US10658419B2

A back-illuminated single-photon avalanche diode (SPAD) image sensor includes a sensor wafer stacked vertically over a circuit wafer. The sensor wafer includes one or more SPAD regions, with each SPAD region including an anode gradient layer, a cathode region positioned adjacent to a front surface of the SPAD region, and an anode avalanche layer positioned over the cathode region. Each SPAD region is connected to a voltage supply and an output circuit in the circuit wafer through inter-wafer connectors. Deep trench isolation elements are used to provide electrical and optical isolation between SPAD regions.
US10658417B2

A solid-state image sensing device includes a pixel array, control lines, signal lines, a pixel control circuit, and a read circuit. The pixel array includes pixel sub-arrays arranged in a main scanning direction and each including pixels arranged to form rows along the main scanning direction and at least one column along a sub-scanning direction. Each of the control lines is connected to at least one pixel in in one of the pixel sub-arrays. Pixels in each of the least one column is connected to different control lines. Each of the signal lines is connected to all pixels in each of the least one column in one of the pixel sub-arrays. The pixel control circuit generates a pixel signal in each pixel and the read circuit reads the pixel signal from each pixel to cause successive phase differences between the pixel sub-arrays.
US10658406B2

An imaging device includes: a semiconductor substrate; pixels arranged thereon; and a signal line through which a signal from a pixel is transferred. the pixel includes a photoelectric converter generating a charge, a region accumulating the charge, an amplification transistor having a gate electrically connected to the region, a first capacitor having a first terminal electrically connected to the region and a second terminal, a second capacitor having a third terminal electrically connected to the second terminal and a fourth terminal supplied with a voltage, a feedback transistor a source or a drain of which is electrically connected to the second terminal, and a feedback circuit forming a path through which an output from the amplification transistor is negatively fed back to the region. A part, which is from the feedback transistor to the first capacitor, of the path is closer to the semiconductor substrate than the signal line is.
US10658405B2

The present disclosure relates to a solid-state image sensor, an electronic apparatus and an imaging method by which specific processing other than normal processing can be sped up with reduced power consumption.The solid-state image sensor includes a pixel outputting a pixel signal used to construct an image and a logic circuit driving the pixel, and is configured of a stacked structure in which a first semiconductor substrate including a plurality of the pixels and a second semiconductor substrate including the logic circuit are joined together. In addition, among the plurality of pixels, a specific pixel is connected to the logic circuit independently of a normal pixel, the specific pixel being the pixel that outputs the pixel signal used in the specific processing other than imaging processing in which the image is imaged. The present technology can be applied to a stacked solid-state image sensor, for example.
US10658404B2

The present technology relates to a solid state imaging device capable of providing a solid state imaging device that does not cause deterioration of image quality due to an increase in reading speed of a pixel signal, and an imaging apparatus. In a pixel array block in which a plurality of pixels are two-dimensionally arrayed, each of the pixels including: a photoelectric conversion device; a plurality of transistors to be used for reading a signal from the photoelectric conversion device; and wiring for driving the transistors, a plurality of pixel output lines are provided for each one column of the plurality of pixels two-dimensionally arrayed, and the plurality of pixel output lines from the pixels are arranged separately in a plurality of wiring layers. The present technology can be applied to, for example, a CMOS image sensor.
US10658399B2

A transistor includes a semiconductor layer comprising a channel portion, a first contact portion and a second contact portion, a gate electrode facing the floating gate, and a floating gate disposed between the semiconductor layer and the gate electrode, the floating gate being insulated from the semiconductor layer and the gate electrode. The floating gate comprises an oxide semiconductor.
US10658397B2

A flexible display panel is provided, including a flexible base, a barrier layer, a buffer layer, an active layer and a gate insulating layer, a gate metal layer and a second insulating layer, a second metal layer and an interlayer insulating layer, a second interlayer insulating layer, and a source/drain metal layer; on the second interlayer insulating layer, a first via hole is formed to communicate with the source/drain metal layer and the active layer, and a second contact hole is formed to communicate with the source/drain metal layer and the second interlayer insulating layer. A manufacturing method of a flexible display panel and a display apparatus including the display panel are also provided. The disclosure can ensure the normal display of the flexible display panel during the bending process.
US10658395B2

A semiconductor device which can suppress leakage current between a wiring and a connection electrode connected to a floating node is provided. The semiconductor device includes a first insulator, a first conductor over the first insulator, a second conductor over the first insulator, and a second insulator over the first insulator, the first conductor, and the second conductor. The first conductor and the second conductor contain a metal A (one kind or a plurality of kinds of aluminum, copper, tungsten, chromium, silver, gold, platinum, tantalum, nickel, molybdenum, magnesium, beryllium, indium, and ruthenium). The metal A is detected in an interface between the first insulator and the second insulator by an energy dispersive X-ray spectroscopy (EDX). The second insulator includes a groove for exposing the first insulator between the first conductor and the second conductor.
US10658391B2

A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
US10658387B2

A method for forming a semiconductor structure includes forming a strained silicon germanium layer on top of a substrate. At least one patterned hard mask layer is formed on and in contact with at least a first portion of the strained silicon germanium layer. At least a first exposed portion and a second exposed portion of the strained silicon germanium layer are oxidized. The oxidizing process forms a first oxide region and a second oxide region within the first and second exposed portions, respectively, of the strained silicon germanium.
US10658385B2

A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A second PMOS transistor is defined by a gate electrode extending along a second gate electrode track. A first NMOS transistor is defined by a gate electrode extending along a third gate electrode track. A second NMOS transistor is defined by a gate electrode extending along a fourth gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
US10658376B2

According to one embodiment, a semiconductor device includes a substrate, a stacked body, and a columnar portion. The stacked body, provided on the substrate, includes first conductive layers and first insulating layers provided alternately along a first direction. The columnar portion extends through the stacked body in the first direction. The columnar portion includes a blocking layer, a charge storage layer, a tunneling layer, and a semiconductor layer. The columnar portion includes a first portion and a second portion. The second portion is provided on the substrate side of the first portion. A dimension in the second direction of the second portion is smaller than a dimension in a second direction of the first portion. A portion of the blocking layer is provided at the second portion being thicker than a portion of the blocking layer provided at the first portion.
US10658374B2

A vertical semiconductor device including a plurality of interlayer insulating layer patterns spaced apart from each other on a substrate and stacked in a vertical direction; a plurality of conductive layer patterns arranged between the interlayer insulating layer patterns and each having a rounded end, wherein at least one of the conductive layer patterns is configured to extend from one side wall of each of the interlayer insulating layer patterns and include a pad region, and the pad region includes a raised pad portion configured to protrude from a surface of the at least one conductive layer pattern; an upper interlayer insulating layer to cover the interlayer insulating layer patterns and the conductive layer patterns; and a contact plug configured to penetrate the upper interlayer insulating layer to be in contact with the raised pad portion of the at least one conductive layer pattern.
US10658370B2

A semiconductor device includes a substrate having a semiconductor fin, in which the semiconductor fin has a first sidewall and a second sidewall opposite to the first sidewall; an epitaxy structure in contact with the first sidewall of the semiconductor fin; and a spacer in contact with the second sidewall of the semiconductor fin and the epitaxy structure.
US10658368B2

A dynamic random access memory (DRAM) includes a first bit line extending along a first direction, a first buried word line extending along a second direction, and an active region overlapping part of the first bit line and part of the first buried word line. Preferably, the active region comprises a V-shape. Moreover, the DRAM also includes at least a storage node contact overlapping one end of the active region, in which the storage node contact includes an ellipse.
US10658366B2

A method for fabricating semiconductor device includes the steps of: providing a material layer having a contact pad therein; forming a dielectric layer on the material layer and the contact pad; forming a doped oxide layer on the dielectric layer; forming an oxide layer on the doped oxide layer; performing a first etching process to remove part of the oxide layer, part of the doped oxide layer, and part of the dielectric layer to form a first contact hole; performing a second etching process to remove part of the doped oxide layer to form a second contact hole; and forming a conductive layer in the second contact hole to form a contact plug.
US10658353B2

An electrostatic discharge (ESD) protection structure containing a bottom diode and a top diode vertically stacked on the bottom diode is provided to render sufficient protection from ESD events with reduced diode footprint. The bottom diode is serially connected to the top diode via a conductive strap structure.
US10658350B2

A semiconductor package including a substrate including an external terminal; a first semiconductor chip on the substrate and having a first and a second region; at least one second semiconductor chip on the second region of the first semiconductor chip, the at least one second semiconductor chip exposing a top surface of the first region of the first semiconductor chip; and at least one third semiconductor chip on the at least one second semiconductor chip, wherein the first semiconductor chip includes a first pad electrically connected to the at least one second semiconductor chip; a second pad electrically connected to the at least one third semiconductor chip; and a third pad electrically connected to the external terminal, the first pad is on the top surface of the first region, and at least one of the second pad and the third pad is on a top surface of the second region.
US10658349B1

Embodiments relate to the design of a device capable of increasing the electrical performance of an interconnect feature by amplifying the current carrying capacity of an interconnect feature. The device comprises a first body comprising a first surface with at least one nanoporous conductive structure protruding from the first surface. The device further comprises a second body comprising a second surface with arrays of nanofibers extending from the second surface and penetrating into corresponding nanoporous conductive structures to form conductive pathways between the first body and the second body.
US10658347B2

Embodiments of the present disclosure include semiconductor packages and methods of forming the same. An embodiment is a method including forming a first die package, the first die package including a first die, a first electrical connector, and a first redistribution layer, the first redistribution layer being coupled to the first die and the first electrical connector, forming an underfill over the first die package, patterning the underfill to have an opening to expose a portion of the first electrical connector, and bonding a second die package to the first die package with a bonding structure, the bonding structure being coupled to the first electrical connector in the opening of the underfill.
US10658345B2

A display panel includes a substrate, a plurality of first light emitting diodes (LEDs), a plurality of second LEDs, a plurality of first common electrodes, and a plurality of second common electrodes. Each pixel unit of the substrate includes a first sub-pixel region and a second sub-pixel region. The first LEDs are disposed on the substrate and located in the first sub-pixel regions, and the second LEDs are disposed on the substrate and located in the second sub-pixel regions. A dominant wavelength of each of the first LEDs is different from that of each of the second LEDs. The first common electrodes are connected to and form an ohmic contact with the first LEDs. The second common electrodes are connected to and form an ohmic contact with the second LEDs. A material of the first common electrodes is different from that of the second common electrodes.
US10658338B2

According to one embodiment, a semiconductor device includes a re-interconnection layer, bumps, chips, and a resin member. The bumps are provided on a first surface of the re-interconnection layer. The chips are stacked on a second surface of the re-interconnection layer. The resin member is provided on the second surface, and covers the chips. The re-interconnection layer includes an insulating layer, an interconnection, a first via, an electrode layer, and a second via. The interconnection is provided in the insulating layer. The first via is provided in the insulating layer and connected to the interconnection. The electrode layer is provided in the insulating layer, formed of a metal material different from a material of the first via, exposed on the first surface, and connected to the first via and the bumps. The second via is provided in the insulating layer, and connected to the interconnection and the chips.
US10658330B2

A semiconductor device includes a standardized carrier. A semiconductor wafer includes a plurality of semiconductor die and a base semiconductor material. The semiconductor wafer is singulated through a first portion of the base semiconductor material to separate the semiconductor die. The semiconductor die are disposed over the standardized carrier. A size of the standardized carrier is independent from a size of the semiconductor die. An encapsulant is deposited over the standardized carrier and around the semiconductor die. An interconnect structure is formed over the semiconductor die while leaving the encapsulant devoid of the interconnect structure. The semiconductor device is singulated through the encapsulant. Encapsulant remains disposed on a side of the semiconductor die. Alternatively, the semiconductor device is singulated through a second portion of the base semiconductor and through the encapsulant to remove the second portion of the base semiconductor and encapsulant from the side of the semiconductor die.
US10658328B2

A method of bonding wires onto surfaces, an apparatus and a computer program product are disclosed. The method of bonding wires onto surfaces, comprises the steps of: collecting operating characteristics of a bonding tool while forming a wire bond which bonds a wire to a surface; determining whether a possible bonding failure of the wire bond has occurred as indicated by the operating characteristics; and capturing an image of the wire bond to identify whether a foreign body is present on the surface if it is determined that a possible bonding failure has occurred. In this way, imaging of the wire bond is only necessary when the operating characteristics indicate a suspect bonding failure has occurred. This avoids the need to image every bond, while still imaging suspect bonds. This approach helps to significantly increase the throughput of the wire bonding apparatus whilst still identifying and classifying bonding defects due to the presence of a foreign body.
US10658323B2

A package structure is provided. The package structure includes a semiconductor die and a protective layer surrounding the semiconductor die. The package structure also includes a conductive structure and a warpage-control element over a same side of the protective layer. A bottom surface of the warpage-control element is higher than a bottom surface of the conductive structure. The bottom surface of the warpage-control element is lower than a top surface of the conductive bump.
US10658321B2

An integrated circuit device includes a support substrate, a first semiconductor chip and a second semiconductor chip provided on the support substrate, and a connection member made of solder. The first semiconductor chip and the second semiconductor chip each includes a semiconductor substrate, an interconnect layer provided on the semiconductor substrate, and a pad provided on a side surface of the interconnect layer. The connection member contacts a side surface of the pad of the first semiconductor chip and a side surface of the pad of the second semiconductor chip.
US10658320B1

A semiconductor device is provided and includes a first pad and a second pad, a first conductive connector and a second conductive connector, a first conductive structure and a second conductive structure. The first conductive connector and the second conductive connector are disposed over the first pad and the second pad. The first conductive structure is electrically connected to the first pad and the first conductive connector, and includes a first portion, a second portion and a connecting portion connecting the first and second portions. The first portion and the second portion are not overlapped in a vertical direction, and the first portion, the connecting portion and the second portion are integrally formed. The second conductive structure is electrically connected to the second pad and the second conductive connector, wherein a portion of the second conductive structure is overlapped with the first conductive structure therebeneath in the vertical direction.
US10658317B2

A semiconductor device includes a predetermined number of leads, a semiconductor element electrically connected to the leads and supported by one of the leads, and a sealing resin that covers the semiconductor element and a part of each lead. Each lead includes some portions exposed from the sealing resin. A surface plating layer is formed on at least one of the exposed portions of the respective leads.
US10658313B2

Representative implementations of techniques and devices are used to remedy or mitigate the effects of damaged interconnect pads of bonded substrates. A recess of predetermined size and shape is formed in the surface of a second substrate of the bonded substrates, at a location that is aligned with the damaged interconnect pad on the first substrate. The recess encloses the damage or surface variance of the pad, when the first and second substrates are bonded.
US10658305B2

A semiconductor device according to an embodiment includes a substrate, an α-ray shielding layer, a first semiconductor chip, and a second semiconductor chip. The α-ray shielding layer is provided on the substrate. The first semiconductor chip is provided on the α-ray shielding layer. The second semiconductor chip is provided on the first semiconductor chip, whose operation is controlled by the first semiconductor chip.
US10658304B2

A semiconductor device includes an electroconductive shielding layer, an isolation layer formed with a frame-shaped opening, a wiring layer on the isolation layer to be surrounded by the opening, a semiconductor element on the wiring layer with its back surface facing the wiring layer, electroconductive pillars spaced apart from the semiconductor element and standing on the wiring layer, and an electroconductive frame standing on an exposed region of the shielding layer through the opening, with the frame surrounding the semiconductor element and the electroconductive pillars. The semiconductor device further includes an electrically insulating sealing resin that covers the wiring layer and the semiconductor element, and the frame is configured to be electrically connected to an external ground terminal.
US10658303B1

A packaged semiconductor device includes: a substrate; an semiconductor die attached to a top surface of the substrate; a mold body surrounding the semiconductor die; a tiered through mold via (TMV) comprising: a first recess having a recessed surface within the mold body at a first depth, and a second recess from the recessed surface to a second depth that exposes a ground contact area on a bonding area on the top surface of the substrate, wherein the first depth is greater than the second depth; and a metal shielding layer formed on a top surface of the mold body to form a shielded mold body, wherein the metal shielding layer makes direct contact with at least one sidewall of the first recess, with at least a portion of the recessed surface, with at least one sidewall of the second recess, and with the ground contact area.
US10658301B2

An image pickup apparatus includes an optical device, a transparent conductive film, an electrode pad, and a penetrating electrode. In the optical device, an optical element area for receiving light is formed on a first surface side of a substrate, and an external connection terminal is formed on a side of a second surface opposite to the first surface of the substrate. The transparent conductive film is formed to face the first surface of the substrate. The electrode pad is formed on the first surface of the substrate and configured to perform connection with a fixed potential. The penetrating electrode is connected to the electrode pad and formed to penetrate the substrate between the first surface and second surface. The transparent conductive film is connected to the electrode pad, and the penetrating electrode is connected to the external connection terminal on the side of the second surface of the substrate.
US10658298B1

A semiconductor device package includes a dielectric layer, a first conductive pattern and a first semiconductor device. The dielectric layer has a first surface, wherein a surface uniformity of the first surface is substantially equal to or less than 5%. The first conductive pattern is disposed on the first surface of the dielectric layer, wherein the first conductive pattern includes a first conductive trace, and a line width of the first conductive trace substantially ranges from about 0.5 μm and about 2 μm. The first semiconductor device is disposed on the first surface of the dielectric layer and electrically connected to the first conductive pattern.
US10658294B2

In an exemplary structure, a first conductor connects a power source to integrated circuit devices. The first conductor includes a first axis defining a first side and a second side. A second conductor, perpendicular to the first conductor, is connected to the first conductor by first vias. A third conductor, parallel to the first conductor, is connected to the second conductor by second vias. The third conductor includes a second axis defining a third side and a fourth side. The first side and the third side are aligned in a first plane perpendicular to the conductors and the second side and the fourth side are aligned in a second plane perpendicular to the conductors. The first vias contact the first conductor in only the first side. The second vias contact the third conductor in only the third side. And the second conductor is outside the second plane.
US10658287B2

A semiconductor device including a semiconductor die, an encapsulant and a redistribution structure is provided. The encapsulant laterally encapsulates the semiconductor die. The redistribution structure is disposed on the semiconductor die and the encapsulant and is electrically connected to the semiconductor die. The redistribution structure includes a dielectric layer, a conductive via in the dielectric layer and a redistribution wiring covering the conductive via and a portion of the dielectric layer. The conductive via includes a pillar portion embedded in the dielectric layer and a protruding portion protruding from the pillar portion, wherein the protruding portion has a tapered sidewall.
US10658262B2

Interconnection systems and methods are provided. An interconnector as disclosed allows for a first component having a first coefficient of thermal expansion to be joined to a second component having a second coefficient of thermal expansion securely, and while maintaining a precise alignment between the components. The interconnector generally includes a plurality of pins that each have a free end that is adhered to the first component for imaging, sensing, tracking, processing, and other applications.
US10658257B1

A semiconductor package structure includes a semiconductor die, at least one wiring structure, an encapsulant and a plurality of conductive elements. The semiconductor die has an active surface. The at least one wiring structure is electrically connected to the active surface of the semiconductor die. The encapsulant surrounds the semiconductor die. The encapsulant is formed from an encapsulating material, and a Young's Modulus of the encapsulant is from 0.001 GPa to 1 GPa. The conductive elements are embedded in the encapsulant, and are electrically connected to the at least one wiring structure.
US10658256B2

Mold compound transfer systems and methods for making mold compound transfer systems are disclosed herein. A method configured in accordance with a particular embodiment includes providing a sheet mold compound, and dispensing a granular mold compound directly on the sheet mold compound. The sheet mold compound can have a first density and the overall granular mold compound can have a second density less than the first density. The method further comprises transferring the solid sheet carrying the dispensed granular mold compound to a molding machine without using a release film.
US10658253B2

In a semiconductor device, when a printed circuit board is pressed against a bottom part of a case with an adhesive interposed therebetween, the back surface of the printed circuit board is supported by projections formed on the bottom part. Since the gap between the printed circuit board and the bottom part is maintained to have substantially the same height as the projections, the adhesive pressed by the printed circuit board does not spread excessively. At each edge of the printed circuit board in the long-side direction, the end of the adhesive is aligned with or extends slightly beyond the edge. In the short-side direction, the adhesive extends beyond each edge of the printed circuit board, but does not extend over the front surface of the printed circuit board, internal connection terminals, or the front surface of a ceramic circuit board.
US10658251B2

A process of forming an epitaxial substrate is disclosed, where the epitaxial substrate includes a nucleus forming layer made of aluminum nitride (AlN) grown on a substrate made of silicon carbide (SiC). The process includes steps of: (1) first measuring the first reflectivity R0 of a surface of the SiC substrate, (2) growing the nucleus forming layer made of AlN as measuring second reflectivity R1 of a grown surface of the AlN nucleus forming layer, and (3) ending the growth of the AlN nucleus forming layer when a ratio R1/R0 of the reflectivity enters a preset range.
US10658246B2

A method of forming a vertical field effect transistor device is provided. The method includes forming one or more fin stacks on a substrate, wherein the fin stacks include a lower junction plate, a vertical fin on the top surface of the lower junction plate, and an upper junction plate on the top surface of the vertical fin. The method further includes removing a portion of the lower junction plate and upper junction plate to form recessed spaces, and forming an inner spacer in the recessed spaces. The method further includes forming a sacrificial layer on the exposed surfaces of the vertical fin and the substrate. The method further includes forming a protective liner on the sacrificial layer and inner spacers, and removing the portion of the sacrificial layer on the surface of the substrate to leave a hanging portion of the protective liner extending below the inner spacer.
US10658237B2

Semiconductor devices are provided, and includes a substrate, a first gate structure and a second gate structure over the substrate, a first hard mask on the first gate structure and a second hard mask on the second gate structure and a third hard mask. The third hard mask is disposed in a dielectric layer between the first gate structure and the second gate structure and disposed between the first hard mask and the second hard mask.
US10658223B2

Susceptor assemblies comprising a susceptor with a support post are described. The susceptor has a body with a top surface and a bottom surface. The top surface has a plurality of recesses therein. The support post is connected to the bottom surface of the susceptor to rotate the susceptor assembly. The support post includes support post vacuum plenum in fluid communication with a susceptor vacuum plenum in the body of the susceptor. The support post also includes a purge gas line extending through the support post to a purge gas plenum in the body of the susceptor.
US10658217B2

The transfer chamber transfers a wafer (W) as a transferred object to or from a processing device (6) by using a transfer robot (2) provided thereinside, and includes a circulation path (CL) formed inside of a transfer chamber (1) to circulate gas, a chemical filter unit (7) as a chemical filter provided in the midstream of the circulation path (CL), a humidity detector (HG2) as a humidity detection means which detects internal humidity, a gas supply means (NS) which supplies gas to the inside of the transfer chamber (1), and a moisture supply means (HS) which supplies moisture content to the inside of the transfer chamber (1). The moisture supply means (HS) is made to operate in accordance with a humidity detection value by the humidity detection means.
US10658215B2

A transportation container is provided with a container body constructed of a top wall, a bottom wall, a rear wall, and two sidewalls forming a front opening for loading or unloading a reticle pod into or out of the container body; a lid for opening and closing the front opening; and a lift plate above the container body configured to connect to a carrier of an overhead hoist transfer (OHT) system.
US10658214B2

Disclosed in this invention is a wafer processing apparatus and method for pre-alignment and edge exposure of a wafer. The wafer processing apparatus includes a pre-alignment module, an edge exposure module, a motion module, a control module and a rotary table. The motion module includes a rotation module, a lifting module and a translation module, which are disposed and interconnected above one another. The rotation module is connected at the top to the rotary table and is configured to drive the rotary table to rotate together with the wafer. The lifting module is configured to drive the rotation module and the rotary table to move vertically. The translation module is configured to drive the lifting module and the rotation module to move horizontally. The pre-alignment module and the edge exposure module are positioned in correspondence to opposing sides of the wafer. The invention reduces the number of objects to be controlled as well as the complexity in control and system structure. Additionally, it simplifies the pre-alignment operation and reduces equipment cost.
US10658212B2

A ring spacer interposed between plate-shaped objects above and below in a container for storing and transporting the plate-shaped objects when a plurality of plate-shaped objects is stored in an up-and-down direction includes a ring-shaped abutment portion and a control portion. An upper face and a lower face in the abutment portion have an approximately flat shape and the upper face in the abutment portion abuts against a lower face of a peripheral edge portion of the plate-shaped object. The lower face in the abutment portion abuts against an upper face of the peripheral edge portion of the plate-shaped object. The control portion includes a control portion upper face positioned to protrude further upward than the support face of the abutment portion and a control portion lower face positioned at an appropriate location in a thickness direction of the abutment portion.
US10658204B2

A substrate processing system to treat a substrate includes a spin chuck configured to hold and rotate a substrate. A heating assembly is configured to heat an opposite surface of the substrate and includes a main heater assembly and a nozzle stack cap. The main heater assembly includes a first plurality of light emitting diodes (LEDs) arranged on a first printed circuit board (PCB) in a first plane that is spaced from and parallel to a second plane including the substrate. The nozzle stack cap assembly includes at least one nozzle to dispense liquid onto a center of a first surface of the substrate. A radiant heat source is arranged closer to the substrate than the first plane and is configured to heat the center of the first surface of the substrate.
US10658199B2

A method of manufacturing a semiconductor device includes placing a polymer raw material mixture over a substrate. The polymer raw material may include a polymer precursor, a photosensitizer, and an additive. The polymer raw material mixture is exposed to radiation to form a dielectric layer and cured at a temperature of between about 150° C. and about 230° C.
US10658192B2

A method of etching is described. The method includes forming a first chemical mixture by plasma-excitation of a first process gas containing an inert gas and at least one additional gas selected from the group consisting of He and H2, and exposing the first material on the substrate to the first chemical mixture to modify a first region of the first material. Thereafter, the method includes forming a second chemical mixture by plasma-excitation of a second process gas containing an inert gas and an additional gas containing C, H, and F, and exposing the first material on the substrate to the second plasma-excited process gas to selectively etch the first material, which contains silicon oxide, relative to the second material and remove the modified first material from the first region of the substrate.
US10658190B2

Extreme ultraviolet (EUV) lithographic patterning methods are provided which implement directional deposition on the EUV resist mask to improve selectivity and critical dimension control during the patterning of features in multiple layers. A hard mask material is deposited on a substrate structure using directional deposition. The hard mask material forms a hard mask layer that covers patterning features of an EUV resist mask of the substrate structure. The hard mask material is etched selective to a layer underlying the EUV resist mask to remove portions of the hard mask material that were deposited on the underlying layer during the directional deposition without uncovering the patterning features of the EUV resist mask. At least one layer of the substrate structure is patterned based on the EUV resist mask and the hard mask layer.
US10658187B2

A method for manufacturing a semiconductor component including: providing a flat carrier with an upper side and a lower side, the carrier including a continuous opening that runs between the upper side and the lower side; providing a semiconductor arrangement that includes a semiconductor chip that includes electrically and/or optically active regions on a lower side; arranging the semiconductor arrangement in the opening such that a lower side of the semiconductor arrangement and the lower side of the carrier run in a common plane; casting the semiconductor arrangement with a potting compound, such that the semiconductor arrangement is materially connected to the carrier; and thinning out the semiconductor system by way of grinding from above, such that an upper side of the carrier and an upper side of the semiconductor arrangement run in a common plane.
US10658185B2

A laser annealing apparatus (1) according to an embodiment includes a laser oscillator (4) configured to generate a laser beam (L), a floating-type conveying stage (3) configured to float and convey a workpiece (W) to be irradiated with the laser beam (L), and a beam profiler (7) configured to measure a beam profile of the laser beam (L). The floating-type conveying stage (3) includes a conveying surface (3a) opposed to the workpiece (W), and a bottom surface (3b) on the side opposite to the conveying surface (3a). The beam profiler (7) is positioned below the bottom surface (3b) of the floating-type conveying stage (3). The floating-type conveying stage (3) includes a detachable part (12) in a part of it. An opening (S) is formed by detaching the detachable part (12) from the floating-type conveying stage (3), the opening (3) extending from the conveying surface (3a) to the bottom surface (3b). The beam profiler (7) is configured to measure the beam profile of the laser beam (L) through the opening (S).
US10658169B2

A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
US10658163B2

Provided is a tantalum target, wherein, when a direction normal to a rolling surface (ND), which is a cross section perpendicular to a sputtering surface of a target, is observed via an electron backscatter diffraction pattern method, an area ratio of crystal grains of which a {100} plane is oriented in the ND is 30% or more. An object of the present invention is to provide a tantalum sputtering target in which a deposition rate can be appropriately controlled under high-power sputtering conditions. When sputter-deposition is performed using this kind of a tantalum target, it is possible to form a thin film having superior film thickness uniformity and improve the productivity of the thin film formation process, even for micro wiring.
US10658162B2

A semiconductor manufacturing apparatus includes a vacuum chamber, a rotary member, a first magnet, a second magnet, and a magnetic body. The vacuum chamber contains a substrate and a target located opposite to the substrate. The rotary member has a first surface located on a back side of the target outside the vacuum chamber. The first magnet is provided on the first surface. The second magnet has a magnetic pole opposite to a magnetic pole of the first magnet and is provided on an inner side of the first magnet on the first surface. The magnetic body is provided between the first magnet and the second magnet and is configured to be movable backward and forward in a vertical direction.
US10658156B1

A system and method for generating a plurality of scan profiles based on a desired implant pattern and the uniformity of the spot beam is disclosed. The system scans the spot beam and records the number of ions as a function of position. This is referred to as the linear uniformity array. The desired implant pattern and the linear uniformity array are then combined to generate a composite pattern array. This array contemplates the non-uniformity of the scanned beam and allows the system to create scan profiles that compensate for this. The software may be executed on the controller disposed in the implantation system, or may be executed on a different computing device.
US10658155B2

A phase contrast transmission electron microscope apparatus has a long-life phase modulator, enabling changes in quantity of phase modulation, barely absorbing the electron beams, and not being influenced by irradiation of the electron beams. An electron microscope comprises an electron gun, a first laser beam irradiating process, being positioned between the electron source and an object lens, for irradiating laser beams onto the electron beams radiated from the electron gun, a second laser beam irradiating process, being positioned on a focal plane behind the object lens, for focusing and irradiating the laser beams upon the focus of the electron beams penetrating through a specimen, and a screen or a 2D electron sensor for detecting a specimen image in the form of distribution of intensity of the electron beams by an optical system.
US10658154B2

A system for performing diffraction analysis, includes a mill for removing a surface portion of a sample, and an analyzer for performing diffraction analysis on the milled sample.
US10658153B1

Methods, tools and systems for patterning of substrates using charged particle beams without photomasks, without a resist layer, using multiple different processes (different chemistry processes and/or different ones of material deposition, removal and/or modification) in the same vacuum space, wherein said processes are performed independently (without cross-interference) and simultaneously. As a result, the number of process steps can be reduced and some lithography steps can be eliminated, reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Also, because such processes are resist-less, layer-to-layer registration and other column control processes can be performed by imaging previous-layer features local to (or in contact with) features to be written in a next layer as designated by the design layout database.
US10658145B2

An x-ray target, x-ray source, and x-ray system are provided. The x-ray target includes a thermally conductive substrate comprising a surface and at least one structure on or embedded in at least a portion of the surface. The at least one structure includes a thermally conductive first material in thermal communication with the substrate. The first material has a length along a first direction parallel to the portion of the surface in a range greater than 1 millimeter and a width along a second direction parallel to the portion of the surface and perpendicular to the first direction. The width is in a range of 0.2 millimeter to 3 millimeters. The at least one structure further includes at least one layer over the first material. The at least one layer includes at least one second material different from the first material. The at least one layer has a thickness in a range of 2 microns to 50 microns. The at least one second material is configured to generate x-rays upon irradiation by electrons having energies in an energy range of 0.5 keV to 160 keV.
US10658144B2

Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a plurality of grid supports disposed on the electrode, each of the plurality of grid supports having a first width; and a plurality of grid lines, each of the plurality of grid lines being supported on an associated one of the plurality of grid supports, each of the plurality of grid lines having a second width that is wider than the first width.
US10658142B2

A circuit breaker and panel system includes a panel including a base pan having a plurality of base pan electrical connections. A circuit breaker including a housing having a plurality of circuit breaker electrical connections arranged to contact the base pan electrical connections when the circuit breaker is coupled to the base pan. The circuit breaker is rotatably coupleable with the base pan via a pivot joint for engaging the plurality of base pan electrical connections with the plurality of circuit breaker electrical connections per a predetermined electrical connection coupling sequence. One of the housing and the base pan includes a protrusion and the other of the housing and the base pan includes a corresponding recess which, when engaged with each other, retain the housing to the base pan to prevent reverse rotational movement of the breaker with respect to the base pan.
US10658140B2

A contact mechanism has a base, a pair of fixed contact terminals provided side by side on the base, a first contact mechanism including a first fixed contact provided in one of the pair of fixed contact terminals, and a first movable contact that contactably and separably faces the first fixed contact, a second contact mechanism including a second fixed contact provided in another of the pair of fixed contact terminals, and a second movable contact that contactably and separably faces the second fixed contact, and a magnetic field generation unit having a permanent magnet disposed between the first contact mechanism and the second contact mechanism such that magnetic fields in opposite directions are generated respectively between contacts of the first contact mechanism and between contacts of the second contact mechanism when currents in opposite directions flow in the first contact mechanism and the second contact mechanism.
US10658126B2

There is provided a capacitor electrode material that does not require the use of a conductive aid and can increase the capacitance of an electric double layer capacitor. A capacitor electrode material comprising resin-remaining partially exfoliated graphite obtained by pyrolyzing a resin in a composition in which the resin is fixed to graphite or primary exfoliated graphite by grafting or adsorption, the resin-remaining partially exfoliated graphite having a structure in which graphite is partially exfoliated, with part of the resin remaining; and a binder resin.
US10658116B2

A multilayer ceramic capacitor comprises a body including dielectric layers and internal electrodes; and external electrodes disposed on external surfaces of the body, respectively, wherein each of the external electrodes includes a first electrode layer disposed on the one surface of the body and contacting the internal electrodes; a conductive resin layer disposed on the first electrode layer and including a plurality of metal particles, a conductive connecting part surrounding the plurality of metal particles, a base resin, and an intermetallic compound contacting the first electrode layer and the conductive connecting part; and a second electrode layer disposed on the conductive resin layer and contacting the conductive connecting part.
US10658112B2

A multilayer capacitor includes a capacitor body including first and second internal electrodes disposed alternately in a width direction; first and second external electrodes spaced apart from each other on a mounting surface; and a first insulating layer disposed between the first and second external electrodes, in which the first and second internal electrodes each include a body portion, a first lead portion extending from the body portion toward the mounting surface and electrically connected to the first and second external electrodes, and a second lead portion extending from the body portion toward a surface of the capacitor body opposing the mounting surface, and the first and second lead portions extend from each body portion in a diagonal direction relative to each other.
US10658101B2

A transformer includes a magnetic core, a first coil unit and a second coil unit. The first coil unit is disposed within the magnetic core and includes a laminated board having layers laminated therein and conductive patterns. Respective ones of the conductive patterns are disposed on the laminated layers. The second coil unit includes a conductive wire spaced apart from the conductive patterns of the laminated board by an insulating distance. The conductive wire includes a triple-insulated wire surrounded by three sheets of insulating paper to maintain the insulating distance from the conductive patterns.
US10658098B2

One object is to provide an electronic component in which a standoff for filling solder is maintained. An electronic component according to an embodiment of the present invention is configured to be surface-mountable on a circuit board. The electronic component includes: an insulating base member; an internal conductor provided in the base member; a first external electrode provided on the mounting surface of the base member so as to be electrically connected to the internal conductor; and a second external electrode provided on the mounting surface of the base member so as to be electrically connected to the internal conductor. The first external electrode has a first protrusion, and the second external electrode has a second protrusion. The first protrusion and the second protrusion enables a standoff for filling solder to be maintained within a region defined by the mounting surface of the base member and the circuit board.
US10658094B2

A NdFeB magnet containing cerium and a manufacturing method thereof are provided. The manufacturing method includes steps of: refining a part of raw materials pure iron, ferro-boron, and rare earth fluoride in a crucible, adding a rest of the raw materials into the crucible and refining, casting a refined solution to a surface of a water-cooled rotation roller through a tundish and forming alloy flakes, processing the alloy flakes containing at least two different compositions with hydrogen decrepitation, milling powders, magnetic field pressing, vacuum presintering, machining and sintering, and obtaining the NdFeB magnet containing cerium. The NdFeB magnet containing cerium has a density of 7.5-7.7 g/cm3 and an average particle size of 3-7 μm; comprises a main phase and a grain boundary phase distributed around the main phase. A composite phase containing Tb is provided between the main phase and the grain boundary phase.
US10658086B2

Fuel assemblies include an outer channel having a physical configuration optimized for a position of the fuel assembly within a core of a nuclear reactor. The position of the fuel assembly with respect to an employed control blade in the nuclear reactor determines if the outer channel may be thickened, reinforced, and/or fabricated of Zircaloy-4 or similar distortion-resistant material, so as to reduce or prevent distortion of the channel against the control blade, or thinned so as to increase water volume and enhance reactivity in the assembly. Reactor cores having configured fuel assemblies include fuel assemblies having different outer channels. Methods include determining operational characteristics of the fuel assembly, including likelihood of being placed directly adjacent to an employed control blade, and physically selecting or modifying the outer channel of the fuel assembly based thereon.
US10658081B2

A provider device for advanced patient communication and methods for making and using same. According to one embodiment, a provider device comprises a receiver for receiving one or more messages from a central processing server, each of the one or more messages reflecting a patient request, an urgency level associated with the patient request, one or more action items associated with the patient request, and a lapse in time since receiving the patient request. The provider device also includes a display for displaying, based on the one or more messages, a patient listing including status information corresponding to one or more patients.
US10658077B2

An automatic data collection system tracks medical articles by providing a robust electromagnetic (EM) field within an enclosure in which the articles are stored. Respective data carriers, such as RFID tags, attached to each medical article respond to the EM field by transmitting unique data identified with each medical article. The use of probes for injecting the EM field into the enclosure results in a greater likelihood of activation of the tags and greater accuracy in detecting and tracking medical articles.
US10658075B1

A system includes a non-transitory computer-readable medium containing computer-executable instructions for providing a method related to rapid reporting of meaningful use in electronic health records. The method includes storing patient encounter data in a database, pre-calculating data related to at least one meaningful use measure, storing the pre-calculated data in a plurality of small staging tables, and compiling the pre-calculated and stored data from the small staging tables into a single table that is adapted to be accessed by reporting software.
US10658074B1

A computer-implemented method for transcribing spoken input into text is disclosed. The method includes identifying a role of a healthcare provider using an automated transcription system, using the identified role to provide a language model for a speech recognition system operating on computer system, receiving spoken input from the healthcare provider, and producing textual output corresponding to the spoken input using the provided language model.
US10658073B2

Disclosed herein are system, method, and computer program product embodiments for building a community database of allele counts. An embodiment operates by receiving human variant datasets derived from samples generated by distinct users, wherein the users consented to share pooled variant observations with other users; determining that a plurality of variant observations meet the inclusion criteria for a pool; and calculating one or more anonymized allele statistics from the pool.
US10658071B2

Ancestry deconvolution includes obtaining unphased genotype data of an individual; phasing, using one or more processors, the unphased genotype data to generate phased haplotype data; using a learning machine to classify portions of the phased haplotype data as corresponding to specific ancestries respectively and generate initial classification results; and correcting errors in the initial classification results to generate modified classification results.
US10658068B2

A system, device and method for receiving multiple aligned genetic sequences obtained from genetic samples of multiple organisms of one or more different species. A measure of evolutionary variation may be computed for one or more alleles at each of one or more aligned genetic loci. The aligned genetic loci in the multiple organisms may be derived from one or more common ancestral genetic loci or may be otherwise related. The measure of evolutionary variation may be a function of variation in alleles at corresponding aligned genetic loci in the multiple aligned genetic sequences. One or more likelihoods may be computed that an allele mutation at each of the one or more genetic loci in a simulated virtual progeny will be deleterious based on the measure of evolutionary variation of alleles at the corresponding aligned genetic loci for the multiple organisms.
US10658067B2

Exemplary methods, apparatuses, and systems include a controller that determines that a group of memory cells of a first memory device has an elevated error rate. In response to determining the elevated error rate, the controller identifies a spare group of memory cells. The group of memory cells and the spare group of memory cells span a first dimension and a second dimension that is orthogonal to the first dimension. The controller reads a portion of a logical unit from the group of memory cells along the first dimension of the group. The controller further determines that the group of memory cells and the spare group of memory cells have strong disturb effects in different dimensions and, in response to that determination, writes the portion of the logical unit to the spare group of memory cells along the second dimension of the spare group.
US10658060B2

The present disclosure provides a shift register circuit, adapted for connecting with a pixel-compensating circuit corresponding to the GOA unit. The shift register circuit comprises: an input module connecting with a signal input terminal, the input module is adapted for generating an output control signal based on an input signal supplied by the signal input terminal; a shift register module connecting with the input module, the shift register module is adapted for inverting the output control signal, so as to output an emission control signal toward a pixel-compensating circuit corresponding to the GOA unit; and wherein the shift register module includes a first capacitor, a second capacitor, a first transistor, a second transistor, a third transistor and a fourth transistor. The required amount of thin-film transistors (TFT) is small and entire PMOS design could save process and raise the production efficiency. The present application further provides a shift register unit.
US10658059B2

Embodiments relate methods and computer program products for performance testing of a solid state memory devices. The method includes operating a first solid state memory device for a period of time and capturing state information of the first solid state memory device after the period of time. The method also includes storing the state information in a control file and loading the control file onto a second solid state memory device. Once the control file has been loaded into the second solid state memory device the state information can be adapted to fix any issues due to physical variation. Performance testing can then be preformed on the second solid state memory device without preconditioning the second solid state memory device.
US10658048B2

A sense structure includes: a sense amplifier core configured to compare a measurement current with a reference current; a cascode transistor coupled to the sense amplifier core and configured to be coupled to a load; a switch coupled between a bias voltage node and a control terminal of the cascode transistor; a local capacitor having a first terminal coupled to the control terminal of the cascode transistor; a first transistor coupled between a second terminal of the local capacitor and a reference terminal; and a control circuit coupled to a control terminal of the first transistor, the control circuit configured to disconnect the local capacitor from the reference terminal to produce a voltage overshoot in the control terminal of the cascode transistor, and after disconnecting the local capacitor from the reference terminal, limit or reduce the voltage overshoot by adjusting a voltage of the control terminal of the first transistor.
US10658024B2

A memory device is provided. The memory device includes a memory array having at least one memory cell. The memory device further includes a sense amplifier circuit configured to read data from the at least one memory cell, write data to the at least one memory cell, or a combination thereof. The memory device additionally includes a first bus configured to provide a first electric power to the sense amplifier circuit, and a second bus configured to provide a second electric power to a second circuit, wherein the first bus and the second bus are configured to be electrically coupled to each other to provide for the first electric power and the second electric power to the at least one memory cell.
US10658019B2

A read latency control circuit is described having a clock synchronization circuit and a read latency control circuit. The clock synchronization circuit includes an adjustable delay line to generate an output clock signal whose phase is synchronized with the phase of the input clock signal. The read latency control circuit captures a read command signal relative to the timing of the input clock signal and outputs the read command signal relative to the timing of the output clock signal such that the read command signal is outputted indicative of a specified read latency.
US10658016B1

An apparatus includes a first continuous time linear equalizer circuit and a second continuous time linear equalizer circuit. The first continuous time linear equalizer circuit may be configured to generate an intermediate signal by filtering an input signal using a first passive bandpass filter having an inductor. The second continuous time linear equalizer circuit may be configured to generate an output signal by filtering the intermediate signal.
US10658014B2

A memory device includes memory cell blocks, bit line sense amplifier blocks, and a control circuit connected to one or more of the bit line sense amplifier blocks arranged between the memory cell blocks. The control circuit controls levels of currents respectively supplied to a first sensing driving voltage line and a second sensing driving voltage line driving bit line sense-amplifiers, to be constant. A first sensing driving control signal and/or a second sensing driving control signal, output from the sensing-matching control circuit is provided to the bit line sense amplifiers in all of the bit line sense amplifier blocks, so that the bit line sense amplifiers are constantly driven based on the constant levels of currents supplied to the first sensing driving voltage line and the second sensing driving voltage line.
US10658009B2

A computer system includes a computer casing having a casing wall having an opening to pass through a connection means; a circuit board having the connection means; and a centering means arranged in the casing, wherein the centering means is formed to cooperate with the circuit board such that the circuit board is centered with respect to the casing wall in a direction of the casing wall in a placing movement so that the connection means takes a predetermined position flush with respect to the opening in the casing wall and can plunge into the opening.
US10658004B2

According to one embodiment, a magnetic disk device includes a disk, a head configured to write data to the disk and read data from the disk, and a controller configured to control the head to write a first track based on a first error rate read immediately after writing a second track adjacent in a radial direction of the disk to the first track.
US10658003B1

A receiver device receives a signal via a communication channel, the signal (i) having been transmitted by a transmitter device, and (ii) corresponding to a pseudorandom bit sequence (PRBS). The receiver device correlates the received signal with a known signal to generate a correlation signal. The known signal includes the PRBS. The receiver device identifies one or more characteristics of the correlation signal, and determines one or more parameters of the communication channel using the identified one or more characteristics of the correlation signal. The receiver device i) uses the one or more parameters corresponding to the communication channel to process subsequent signals received via the communication channel, and/or ii) communicates the one or more parameters to the transmitter device to prompt the transmitter device to preprocess subsequent signals to be transmitted via the communication channel by the transmitter device.
US10658002B2

According to one embodiment, a magnetic disk device includes a control device and a regulator device. The control device and the regulator device are connected to each other through a first interface and a second interface. The control device transmits a required voltage value to the regulator device through the first interface and transmits a correction value based on the required voltage value and an output voltage output from the regulator device to the regulator device. The regulator device outputs a voltage to the control device on the basis of the received required voltage value and corrects a value of the voltage to be output to the control device on the basis of the received correction value.
US10657999B2

A plasma CVD device includes a chamber (102), an anode (104), a cathode (103), a holding portion which holds a substrate to be deposited (101) a plasma wall (88) an anti-adhesion member (91) which is arranged between a first gap (81) between the anode and the plasma wall and a first inner surface (102a) of the chamber and a pedestal (92) which is arranged between the anti-adhesion member and a back surface of the anode and which is electrically connected to the anode. The maximum diameter of each of the first gap, a second gap (82) between the anode and the anti-adhesion member, a third gap (83) between the back surface of the anode and the pedestal, a fourth gap (84) between the plasma wall and the anti-adhesion member and a fifth gap (85) between the anti-adhesion member and the pedestal is equal to or less than 4 mm.
US10657995B2

According to one embodiment, a magnetic disk device includes a magnetic disk including a plurality of tracks, first and second actuators, and a control circuit. The magnetic disk includes the plurality of tracks. The control circuit writes, in a first track by using the first actuator, second data having a size corresponding to a first number among the first data. In addition, the control circuit writes, in a second track by using the second actuator, third data having a size corresponding to a second number among the first data. Each of the first track and the second track is a track among the plurality of tracks. The first number is a number of writable sectors included in the first track. The second number is a number of writable sectors included in the second track. The third data is data received subsequent to the second data.
US10657992B2

An apparatus, according to one embodiment, includes: a plurality of tunnel valve read transducers arranged in an array extending along a read module. Each of the tunnel valve read transducers includes: a sensor structure having a cap layer, a free layer, a tunnel barrier layer, a reference layer and an antiferromagnetic layer, and electrically insulating layers on opposite sides of the sensor structure. Moreover, a height of the free layer measured in a direction perpendicular to a media bearing surface of the read module is less than a width of the free layer measured in a cross-track direction perpendicular to an intended direction of media travel.
US10657955B2

Described herein are systems and methods to identify and address sources of bias in an end-to-end speech model. In one or more embodiments, the end-to-end model may be a recurrent neural network with two 2D-convolutional input layers, followed by multiple bidirectional recurrent layers and one fully connected layer before a softmax layer. In one or more embodiments, the network is trained end-to-end using the CTC loss function to directly predict sequences of characters from log spectrograms of audio. With optimized recurrent layers and training together with alignment information, some unwanted bias induced by using purely forward only recurrences may be removed in a deployed model.
US10657953B2

Disclosed is an artificial intelligence voice recognition apparatus including: a microphone configured to receive a voice command; a memory configured to store a first voice recognition algorithm; a communication module configured to transmit the voice command to a server system and receive first voice recognition algorithm-related update data from the server system; and a controller configured to perform control to update the first voice recognition algorithm, which is stored in the memory, based on the first voice recognition algorithm-related update data. Accordingly, the voice recognition apparatus is able to provide a voice recognition algorithm fitting to a user's characteristics.
US10657942B2

A method for transferring data between a storage and playback device and a server containing at least one audio file having information for producing a tempo that is sensible to at least one user as the at least one user performs a repetitive motion activity, the storage and playback device being capable of storing and playing the information in the audio file, the method comprising, at the data storage and playback device, or at a combination of the server and the data storage and playback device: receiving a request to substantially match at least one audio file based on its beats per minute for outputting on the storage and payback device; identifying a metadata tempo tag for each designated audio file, each tempo tag indicating the tempo of the audio file; and causing to be delivered to, or providing to, the storage and playback device the audio file.
US10657936B2

An electronic musical instrument includes a display, a memory, and at least one processor. The memory is configured to store a plurality of song data items. Each of the plurality of song data items includes a plurality of event data items and the plurality of song data items does not include size information of each of the plurality of event data items. The at least one processor is configured to read at least one song data item from among the plurality of song data items, add an identifier to each of the plurality of event data items of the read at least one song data item, calculate size information for each of the plurality of event data items, associate the size information calculated for each of the plurality of event data items with the corresponding identifier, display a content of a first event data item, refer to the associated size information when the content of the first event data item is displayed on the display and a content of a second event data item is not displayed on the display, and display, in accordance with the associated size information referred to, the content of the second event data item on the display, instead of displaying the content of the first event data item.
US10657934B1

Systems and methods are provided for enhancements for musical composition applications. An example method includes receiving information identifying initiation of a music composition application, the music composition application being executed via a user device of a user, with the received information indicating a genre associated with a musical score being created via the music composition application. One or more constraints associated with the genre are determined, with the constraints indicating one or more features learned based on analyzing music associated with the genre. Musical elements specified by the user are received via the music composition application. Musical score updates are determined based on the musical elements and genre. The determined musical score updates are provided to the user device.
US10657932B1

A compact string tensioning tuning assembly for a stringed instrument comprising two or more worm gear tuners where the tuner worm gears are in axial alignment and individual tuners are rotationally positioned around the worm gear axis such that the tuner knobs are separated from each other and finger access to individual tuner knobs is improved.
US10657916B2

The embodiments of the present disclosure provide a shift register unit, a gate driving circuit and a driving method thereof, and a display device. The shift register unit, comprises two transfer gate modules (211, 212), four AND gate modules (231, 232, 233, 234), and two capacitor modules (241, 242), as well as a pulse signal input terminal (IN), four pulse signal output terminals (L1, L2, L3, L4), and a plurality of clock signal input terminals (CLK1 to CLK8). The shift register unit provided in the present disclosure can make the layout area occupied by the corresponding gate driving circuit reduce greatly as compared with that occupied by the gate driving circuit in the prior art, which facilitates border narrowing of the corresponding display device.
US10657915B2

A scan signal compensating method and a scan signal compensating device based on a scan driving circuit are provided. The method exemplary includes: acquiring a scan signal compensation voltage value in a detecting period; adjusting a clock signal(s) and a DC voltage source(s) inputted to the gate driving circuit according to the scan signal compensation voltage value, in an adjusting period. In particular, after the scan signal compensation voltage value is obtained, amplitudes of the clock signal(s) and the DC voltage source(s) inputted into the gate driving circuit are adjusted, thereby solving problems of ghost and flicker of a display device caused by pixel capacitance leakage in the active area resulting from the drift of I-V characteristic curve of TFTs in the active area suffered from a long-term voltage difference.
US10657913B2

A display panel includes a gate line, first and second data lines, first and second gate control lines, and first and second pixels. The first pixel includes a double-gate switching element including a gate electrode connected to the gate line, a source electrode connected to the first data line, and another gate electrode connected to the first gate control line. The second pixel includes a double-gate switching element including a gate electrode connected to the gate line, a source electrode connected to the second data line, and a gate electrode connected to the second gate control line. A data voltage having a first polarity is applied to the first data line, another data voltage having a second polarity is applied to the second data line, and first and second gate control voltages are respectively applied to the first and second gate control lines.
US10657910B2

The resolution of a low-resolution image is made high and a stereoscopic image is displayed. Resolution is made high by super-resolution processing. In this case, the super-resolution processing is performed after edge enhancement processing is performed. Accordingly, a stereoscopic image with high resolution and high quality can be displayed. Alternatively, after image analysis processing is performed, edge enhancement processing and super-resolution processing are concurrently performed. Accordingly, processing time can be shortened.
US10657894B2

Disclosed are a pixel circuit, a method for driving the same, a display panel, and a display device, and in the pixel circuit, a node reset sub-circuit resets a gate of a driver transistor in a first reset stage, a data writing sub-circuit writes a data signal, and compensates for drifting threshold voltage of the driver transistor, in a data writing stage, and a light-emission control sub-circuit connects a first voltage terminal with a light-emitting diode in a light emission stage.
US10657891B2

A source driving circuit of a display device includes a plurality of unit driving circuits configured to drive a plurality of connection nodes connected to a display panel. Each unit driving circuit includes a plurality of driver circuits and output switches. The driver circuits perform analog-conversion and amplification operations on a plurality of digital data signals to generate a plurality of analog data signals. The output switches are connected in parallel between the driver circuits and a corresponding connection node among the plurality of connection nodes. The output switches transfer the plurality of analog data signals alternately to the corresponding connection node. Each one of the plurality of connection nodes may be driven by more than one of the plurality of driver circuits. The source settling time is reduced and performance of the display device is enhanced by disposing a plurality of unit driving circuits to each connection node.
US10657876B2

A gate driving circuit provided in embodiments of the present disclosure includes: N-stage gate driving units, the gate driving unit at each stage of the N-stage gate driving units having a first voltage terminal and a clock signal terminal, and a first transmission path being formed between the first voltage terminal and the clock signal terminal, wherein at each stage, the first transmission path of the gate driving unit is conductive when the gate driving unit is in a non-operative state; and a first voltage line connected to the first voltage terminal of the gate driving unit at each stage. A preset voltage received by a clock signal terminal of a gate driving unit that is in a non-operative state is transmitted to the first voltage line through the first transmission path of the gate driving unit.
US10657869B2

An electrophoretic medium includes a fluid, a first, light scattering particle (typically white) and second, third and fourth particles having three subtractive primary colors (typically magenta, cyan and yellow); at least two of these colored particles being non-light scattering. The first and second particles bear polymer coatings such that the electric field required to separate an aggregate formed by the third and the fourth particles is greater than that required to separate an aggregate formed from any other two types of particles. Methods for driving the medium to produce white, black, magenta, cyan, yellow, red, green and blue colors are also described.
US10657868B2

A display apparatus may comprise a display section and circuitry. The display section may comprise a plurality of display units arranged in a two-dimensional array, wherein each of the display units comprises a plurality of pixels arranged in a matrix, and each of the plurality pixels comprises a plurality of light-emitting devices that are each configured to emit a different color of light. The circuitry may be configured to generate a corrected image signal based on an uncorrected image signal and correction factors that correct luminance and chromaticity of the light-emitting devices, including at least some correction factors determined by adjusting light emission intensity ratios of first light-emitting devices that are configured to emit light of a particular color and are disposed in different ones of the plurality of pixels.
US10657867B1

A system and method for controlling display characteristics is disclosed. The system and method can receive a control signal from a user interface and a video input signal. The system and method can filter the video input signal in accordance with a spatial frequency threshold related to the control signal to provide a filtered video output signal. The system and method can provide the filtered video output signal for display of an image on the translucent display and non-translucent display. The translucent display can be a head up display (HUD) and the non-translucent display can be a head down display. The user interface can be a brightness, contrast or combination brightness and contrast control.
US10657864B2

This application provides a drive circuit of a display device and a driving method for the display device. The display device includes a driver module and a display panel. The drive circuit includes: N single-ended to differential modules, connected to N signal output lines of the driver module and 2N scanning lines of the display panel and connected to a clock signal. Each single-ended to differential module is correspondingly connected to one signal output line and two scanning lines. The N single-ended to differential modules are configured to: output, to the 2N scanning lines according to the clock signal, scanning signals output by the N signal output lines, and charge the 2N scanning lines by using the N signal output lines, where N≥1, and N is a positive integer.
US10657852B2

The present invention relates to a flexible transparent display sheet, and an image display apparatus including the same. The flexible transparent display sheet according to an embodiment of the present disclosure includes: a base disposed in a display area and a connection area; a metal layer formed on the base; an anti-oxide layer formed on a portion of the metal layer; a plurality of solders formed on a portion of the anti-oxide layer; a plurality of light emitters, each of which is connected to each of the plurality of solders; and an insulation layer disposed in the connection area and formed on the anti-oxide layer. Accordingly, a flexible transparent display sheet having an integrally formed power connector may be provided.
US10657842B2

The technology disclosed herein includes a navigation system for a visually impaired person. The navigation system may include a plurality of fixtures, a plurality of installations, wherein each installation is electronically connected to a fixture, and an electronic device, the electronic device configured to receive auditory or tactile signals from each installation and produce a signal indicative of a fixture location.
US10657835B2

A method for completing a project using a content-generating device. The method includes receiving a task defining a content item to be generated, restricting operation of at least a first component of the content-generating device, operating at least a second component of the content-generating device to generate the content item, and making available the generated content item.
US10657831B2

A computing device receives image data from a camera. The received image data represents a scene comprising an unmanned aerial vehicle, UAV. The computing device receives identification data wirelessly from the UAV. The computing device associates the received image data with the received identification data.
US10657830B2

A method, system, and/or computer program product controls operations of an aerial drone within a predetermined airspace. A drone controller device detects a presence of an aerial drone. The drone controller device and the aerial drone negotiate permission to fly within a predetermined airspace under a predefined aerial drone state. In response to successfully negotiating the permission, the drone controller device enables a drone on-board computer to operate the aerial drone within the predetermined airspace in accordance with the predefined aerial drone state.
US10657816B2

A method includes receiving: by a computing device, vehicle identification information for a vehicle that is entering a parking facility; identifying a driver profile and vehicle information based on the vehicle identification information, where the driver profile identifies criteria for scoring and selecting a parking space; determining, by the computing device, attributes of one or more open parking spaces in the parking facility when the vehicle enters the parking facility; scoring, by the computing device, each of the one or more open parking spaces based on the attributes, the driver profile, and the vehicle information; selecting, by the computing device, a particular one of the one or more parking spaces based on the scoring; determining, by the computing device, navigation directions from the vehicle to the selected parking space; and outputting, by the computing device, the navigation directions to a user device or vehicle interface system associated with the driver.
US10657815B2

Disclosed is a method and system that receives sensor information from each of a plurality of sensors. Each sensor in the plurality is associated with a vehicle. The sensor information includes location coordinates of each vehicle in the plurality. The sensor information associated with each vehicle in the plurality then is translated to parking statistics information. In one embodiment, the translation is based on an aggregate of sensor information corresponding to the plurality of vehicles. The system then communicates parking statistics information to the vehicle.
US10657808B2

Exemplary embodiments of the present invention are directed to a system for monitoring, recording, and analyzing driver activity. An exemplary system comprises a sensor module configured to receive data from one or more sensors that measure acceleration or deceleration associated with a vehicle. A stop detection module is configured to receive the sensor module data, process the sensor module data, and determine an abrupt acceleration or deceleration event. A location module is configured to retrieve the location of the vehicle simultaneous with an abrupt acceleration or deceleration event. The system stores the location of the abrupt acceleration or deceleration event in an event record in an event database.
US10657806B1

A method to determine a traffic flow at a point-of-interest (POI). The method comprises determining route segments contained within a predefined POI geometry, creating a POI object that comprises the identities of the route segments contained within the POI geometry, whereby a geolocation of the POI is defined, for each of a plurality of mobile communication devices, determining route segments traversed by the mobile communication device based on geolocations of the device, and determining a number of different mobile communication devices that intersect with the POI based on comparing the route segments traversed by the mobile communication devices to the route segments associated to the POI object, whereby a traffic flow at the geolocation of the POI is determined.
US10657804B2

Apparatus and methods are described for updating a geographic database based on road object probabilities. For example, an initial value set for an existence probability that a road object exists is determined. Observation data collected from sensors of vehicles are received. A total quantity of the observation data include a first quantity of vehicles that observed a presence of the road object and a second quantity of the vehicles observed an absence of the road object. A presence probability indicative of a likelihood that observation data accurately describe the road object and an absence probability indicative of a likelihood that observation data accurately describe the road object are calculated to determine an updated value for the existence probability. A geographic database is updated in response to the comparison of the updated value for the existence probability to a threshold confidence level.
US10657803B2

A central monitoring and measurement system is described. A central user interface system for generation of a plurality of user-desired information based upon a plurality of measured data, the central user interface system may include a receiver system configured to receive wirelessly the plurality of measured data from a plurality of external sensor systems. An input/output system may be configured to provide output data to a display screen, receive input data from the display device, and provide output data to a processing system. The processing system may be configured to process the plurality of measured data from the plurality of external sensor systems into the plurality of user-desired information. Each external sensor system may include a transmission system configured to transmit wirelessly measured data to the central user interface system, and a measurement system configured to determine the measured data associated with an external device.
US10657798B2

Techniques of tracking a user's location are disclosed. In some embodiments, a mobile device captures first sensor data using at least one sensor, determines that a predetermined hazard criteria is not satisfied by an environment of a user of the mobile device, suppresses transmission of a representation of the captured first sensor data to a remote computing device based on the determination that the predetermined hazard criteria is not satisfied, captures second sensor data using the sensor(s), determines that the predetermined hazard criteria is satisfied by the environment of the user, and transmits a representation of the captured second sensor data to the remote computing device based on the determination that the predetermined hazard criteria is satisfied by the environment of the user.
US10657793B2

A method for a positioning server configured to locate positioning devices and to maintain information on users, who are associated with respective positioning devices. The server receives one or more alert messages from an alerting positioning device. Each alert message conveys identifying information of the alerting positioning device. The server uses the identifying information to retrieve a location estimate of the alerting positioning device. The server forms a first set of other positioning devices in a vicinity of the alerting positioning device and sends an assist request message to the positioning devices in the first set. The assist request message indicates the location estimate of the alerting positioning device and/or said descriptive information.
US10657782B2

A premises security system can leverage cloud-based analytics and captured information about a visitor at the premises to provide security to the premises. The system can include a sensor, an actuator, and a local processing device. The sensor can capture information about a visitor to the premises without requiring the visitor to provide the information. The actuator can perform an action with respect to the premises. The local processing device can communicatively couple to a cloud-based analytics system that can analyze the information with respect to one or more databases that include criminal history information, and return data representing a risk rating for the visitor or a command to perform the action. The local processing device can, in response to receiving the data, output a command to the actuator to perform the action.
US10657776B2

An alarm handling and viewing system includes an alarm display interface that enables the different alarms generated by the same control module, safety system module, device, etc., to be handled and viewed in a manner that is different than each other and/or that is different than the display parameters specified for the module or device that generates the alarms. The system thus enables the selection of various different alarms of a single control module, device, etc., to result in different plant displays, different faceplate displays, and/or different alarm handling parameters to be used to provide further information to the user regarding the selected alarm. This feature, in turn, enables the alarm handling and viewing system to immediately switch to a predetermined plant display, faceplate display, or detail display best suited to the individual alarm being viewed, to thereby enable a control operator to more quickly identify the source or cause of an alarm and/or to determine a cause of action to take in responding to the alarm.
US10657769B2

An electronic gaming machine includes a game controller configured to select a first plurality of card symbols to form a player hand for a player, wherein the first plurality of card symbols include a plurality of hole cards dealt only to the player and at least one community card. The game controller is also configured to select a second plurality of card symbols to form a jackpot hand, and determine whether at least one card symbol of the first plurality of card symbols matches at least one card symbol of the second plurality of card symbols. The game controller is also configured to adjust, based on the determining, a credit balance of the player by a value associated with a jackpot award based upon a number of hole cards in the player hand that match card symbols in the jackpot hand.