US11723477B2
A children's accessory that is convertible between a highchair configuration and a stepstool. In the highchair configuration the device generally includes a first child seat supported above a floor by a highchair frame, and a second child seat configured for being removably coupled to the first child seat. The second child seat is configured such that, when detached from the highchair's first child seat, it can be used as a booster seat. In certain embodiments, the second child seat includes a base surface configured to stably support the second child seat on a separate support surface. In the stepstool configuration a support step platform is supported above the floor by the frame, and a back rail at the top of the frame provides further support for the user.
US11723468B2
The present disclosure relates to configurable stacking chairs having a standard seat base frame design to which different interchangeable seat backs can be quickly and easily attached. The seat base frames and the interchangeable seat backs may include corresponding quick-connect features that allow selective attachment therebetween. The interchangeable seat backs may be attached to a standard seat base frame via a magnetic connection. Each interchangeable seat back can have a different unique design allowing for a quick change of appearance by exchanging one interchangeable seat back design for another. The interchangeable seat backs and the standard seat base frames can be stored separately and take up less space than completely assembled or fixed back chairs.
US11723464B2
A mesh shelf system comprises a bracket mount, a bracket, a mesh shelf, and a shelf locking clamp. The bracket mount defines a plurality of mount apertures. The bracket is attached to the bracket mount by interfitting with the mount apertures. The mesh shelf is carried by the bracket and includes a crossbar residing proximate to the bracket mount. The shelf locking clamp includes first and second convexities that are disposed in apertures in the bracket, and the shelf locking clamp is rotatable between a first position away from the crossbar and a second position in which the shelf locking clamp resides proximate to the first crossbar. In the second position, the shelf locking clamp is attachable to the bracket mount.
US11723457B2
An overhead storage unit is disclosed. The storage unit has an elongated guide member with a first horizontal segment mountable within an overhead storage area, a second vertical segment mountable below the overhead storage area, and a curved segment extending between the first and second segments. The storage unit also has a storage container with at least a first wall mounted to the guide member and displaceable therealong to be raised and lowered between a stored position and an accessible position. The first wall is disposed within the storage area and has a first orientation to define a bottom surface of the storage container in the stored position. The first wall is disposed below the storage area and has a second orientation different from the first orientation in the accessible position. A residential living unit and method are also disclosed.
US11723456B2
An adjustable shelving system comprised of a plurality of interconnecting shelf sections including a front side shelf section, a right side shelf section and a left side shelf section. At least one of the three shelf sections is independently adjustable in length to adjust a length and/or width of the shelving system and are supported by legs that are also independently adjustable in height.
US11723446B1
A cut resistant and highly translucent tote utilizes a multilayer knitted metal fabric having a knitted metal outside layer and a knitted metal inside layer. These two knitted layers may be independent in a portion of the tote, such as in a clear-view portion of the tote, configured to allow clear visibility of items retained in the tote. The independent layers of knitted fabric are highly cut resistant, as they can flex in multiple direction and also move and slide with respect to each other. The tote may have a gusseted base with a base-side sleeve extending at the intersection of the base and sides to allow the tote to be free standing. An opening in the top of the tote may have a closure feature, such as hook-and-loop fastener material.
US11723444B2
A device for attaching a bracelet or strap to a watch case, the device including, on the one hand, a bar secured to the watch case by a horn, and on the other hand, an insert integral with the end of the bracelet, wherein the bar and the insert are complementary to interlock with each other forming a removable assembly to make the bracelet interchangeable. The insert includes a movable pivot mounted in the insert and arranged to engage in a corresponding hole of the horn, the device having handling device integral with the movable pivot in order to move from a first position, in which the pivot is free to move and the strand can be assembled and/or disassembled, to a second position, in which said pivot is stationary in translation and the bracelet strand is locked on the watch case.
US11723442B2
A badge system for a shirt carrier or like body armor carrying includes an attachment panel and a badge flap removably attached to the attachment panel. A retention tab is located at the top of the attachment panel such that the top edge of the badge is sandwiched between the strap and the attachment panel to secure the badge to the carrier. The badge flap is printable and embroiderable or may be used a surface on which badges or other items can be attached. The badge flaps can be conveniently printed or embroidered in bulk, avoiding the difficulties associated with printing or embroidering directly on the shirt carrier.
US11723436B2
A charging system can include provisions for providing power to various systems or components associated with the article of footwear. A charging system may include a charging unit with one or more components configured for use with one or more articles of footwear, where the articles of footwear can include different sizes. The components can be magnetically joined to the article in some cases. Upon connection with a power source, the article may be configured to unlace automatically. In some cases, the charging system can be used to facilitate the transfer of power to components in an automated tensioning system.
US11723434B2
An article of footwear may include an upper with an outer layer, an inner layer, and a chamber element positioned at least partially between the outer layer and the upper layer. The chamber element may be formed of two layers of a transparent colored polymer material and may be sealed to enclose a fluid. The chamber element may also have a plurality of subchambers. The outer layer may have a plurality of apertures. Each subchamber may protrude at least partially through a corresponding one of the apertures.
US11723416B2
A maternity garment, or bodysuit, configured to provide support and comfort to a pregnant woman. The garment may include an opening in the front of the garment exposing the stomach, or belly, of a woman. The garment may further include reinforced or compression material that passes underneath the belly providing support to the belly. Additionally, a reinforced back panel may be positioned on the back of the garment to provide additional support to the lower back of a pregnant woman. Straps may extend over the shoulders and cross in the back. Furthermore, a support strap may pass under the breasts as well. The garment may include a seamless one-piece fabric and may be a bikini or thong cut back depending on a woman's preference to provide both comfort and style.
US11723409B2
An aerosol-generating system is provided, including: a liquid storage portion including a container to hold a liquid aerosol-forming substrate and defining an opening at an end thereof; a fluid-permeable heater assembly extending across a first pair of opposite side portions of the opening along a plane transverse to a longitudinal axis of the liquid storage portion and including an arrangement of one or more filaments, and a capillary material between the liquid storage portion and the arrangement and being configured to convey the substrate to the filaments; and conductive contacts in a main housing and making electrical contact with corresponding contacts of the heater assembly, the liquid storage portion being at a first side of the heater assembly, and a portion of a first airflow channel being at a second side of the heater assembly, and the first airflow channel including several channel portions upstream of the heater assembly.
US11723402B2
An insert for use with a smokable (e.g., such as a pre-rolled or empty cone) with one or more internal cavities for securing flavor releasing mechanism(s) (e.g., flavored “click balls”) is provided. The insert with internal cavities may be provided as a standalone item for use in pre-rolling and/or hand rolling a cone or cigarette. The insert may include a section of smokable material such as paper including a horizontal aperture and vertical fold lines towards one end. The fold lines may be folded back and forth to form an accordion shaped cavity into which the flavor releasing mechanisms may be inserted and held secure. The insert may then be rolled into a tubular shape and coupled with a smokable to serve as the smokable's mouthpiece.
US11723394B2
A fiber-wrapped smokeless tobacco product includes smokeless tobacco and a plurality of polymeric fibers surrounding the smokeless tobacco. The polymeric fibers can have a basis weight of 5 gsm or less and a diameter of less than 100 microns. In some cases, the polymeric fibers are melt-blown polymeric fibers. In some cases, the polymeric fibers are centrifugal force spun polymeric fibers. A method of preparing a fiber-wrapped smokeless tobacco product includes melt-blowing or centrifugal force spinning a plurality of polymeric fibers to create an polymer deposition zone and passing a body comprising smokeless tobacco through the polymer deposition zone. In some cases, an electrostatic charge can be applied to the plurality of polymeric fibers, the body, or a combination thereof. In some cases, a spin is applied to the body when passing through the polymer deposition zone.
US11723390B2
Described herein is a food that is suitable for use as a shelf stable nut butter based spread. The food has a protein content of at least 25% by weight, and a nut butter content of at least 50% by weight. The food retains a desirable eating experience, similar to a natural nut butter spread or a stabilized nut butter spread despite having a high protein content.
US11723383B2
The present patent application refers to a nutritional formulation presented as animal feed, concentrate and supplement, with extruded characteristic, based on crop haystacks or culture residues, with the object to complement or provide nutritional requirements for ruminants and/or equines, disclosing a product with considerable reduction of the final cost, due to the abundance of the raw material as used being originated from annual crop haystacks, improving the utilization of the food contained in the final product, with gains of digestibility, consequently improving the effectiveness of the rational use of nutritional resources with those species.
US11723381B2
A process of making a caramel color comprising a) mixing a carbohydrate with an ammonia compound and a sulfite compound and at pH from just greater than about 4.0 to about 6.0; and b) heating of the mixture from step a) in a sealed vessel to a temperature of from about 120° C. to about 137° C. and maintaining a temperature in said range for at least about 2 hours, said time and temperature being sufficient to yield a product having a color level of at least about double strength and a level of 4-MeI of less than about 20 ppm, is provided. Also provided is a process of ramped heating which results in a similar caramel color product.
US11723379B2
The present invention describes a method for producing a set-type yogurt snack, said method comprising allowing said yogurt snack to set in a mold or block and wherein said yogurt snack comprises at least 12% (w/w) protein and at least 35% (w/w) total solids.
US11723378B2
The present invention relates to a composition suitable for preparing a dairy product comprising at least one starter culture and a Lactobacillus rhamnosus strain capable of imparting onto the dairy product an enhanced creamy flavor without affecting the rheology negatively, the fermentation time or the post-acidification of the dairy product. The present invention further relates to processes for preparing a dairy product, such as a low-fat yogurt or cheese, which has a high content of diacetyl. A Lactobacillus rhamnosus strain useful for preparing such dairy product is also part of the present invention.
US11723372B2
A food-preparation apparatus for forming and baking a food product (5) from a dough portion (2) in a capsule (12) includes a housing (3) having a capsule-handling device (4) for opening and/or emptying the capsule (12), an upper plate (14), and a lower plate (11), arranged in the housing (3). The lower plate can be adjusted in a guide device between a receiving position (A) for receiving the dough portion (2) from the capsule (12), a position of interaction (W) for interacting with the upper plate (14) for baking and/or forming the dough portion, and an emptying position (E) wherein the lower plate (11) is inclined relative to a base surface (46) of the food-preparation apparatus. The guide device has a diverter (20) with a diverter element (21), which can be switched between at least two switching positions for predetermining an adjustment distance of the lower plate (11) in the guide device, wherein the diverter element (21) is assigned an electromotive drive (M) for switching the diverter element (21) automatically.
US11723366B2
The present disclosure relates to the use of alkali metal salts and preferably lithium chloride for treatment of Varroa destructor infestation of honey bees.
US11723365B2
A method for controlling PPO resistant weeds, wherein compounds of formula (I)
wherein the variables are defined as given in the description and claims;
are applied to the PPO inhibitor herbicide resistant weed, parts of it or its propagation material.
US11723360B2
By determining the lethality rate to Meloidogyne incognita and Caenorhabditis elegans, it was found that the methylmalonic acid has a better nematicidal effect on the Caenorhabditis elegans, with the LC50 being 13.11 and 1.20 for the Meloidogyne incognita and the Caenorhabditis elegans, respectively. After compounding the methylmalonic acid with betaine, the LC50 was 2.85 and 0.27 for the Meloidogyne incognita and the Caenorhabditis elegans, respectively. Meanwhile, the methylmalonic acid also has an inhibiting effect on Pseudomonas solanacearum and Erwinia carotovora. The preparation of the methylmalonic acid provides a new choice for preparing novel biocontrol agents against the root-knot nematodes.
US11723359B2
An antimicrobial wipe is provided including a textile comprised of natural fibers untreated with a chemical bonding agent, the textile is treated with an antimicrobial composition, the antimicrobial composition comprising a quaternary ammonium compound and an organic acid, wherein the antimicrobial composition is surfactant free, emollient free, and polymeric free. A method of preparing such wipes is also provided.
US11723351B1
A fishing lure with optic fiber simulator for simulating the bioluminescence characteristics of sea animals typically used as bait. A housing (20) partially receiving a fiber optic casing (60) with a battery with switch assembly (40) and connected light source (50) emits light to fiber optic members (80) with photophore elements. A hook assembly (90) is hidden inside the optic members and skirt strap members. An alternate embodiment uses a cable gland to hold the fiber optic members (180) and hook assembly (190).
US11723350B2
A portable basket is used to collect multiple weighted lines that extend between a buoy and a submerged crab pot. The basket is a cylindrical structure with flexible sidewalls that extend from a top edge to a bottom panel. Attached to the inside surface of the basket near the top edge are at least two ring connectors. During use, the basket is positioned below a winch system to pull the weighted line and the crab pot out of the water. The weighted line's first connector is detached from the buoy and connected to a ring connector inside the basket. The winch is then activated to allow the weighted line to fall into the basket and get automatically stacked in a vertical coil configuration inside the basket. When the crab pot is lifted out of the water, the second connector is detached from the crab pot and attached to the second ring connector near the top edge. The process may be repeated to collect additional weighted lines. When setting a crab pot, the buoy and pot connectors from one weighted line are detached from the ring connector and attached to desired buoy and pot, respectively. The buoy, the pot, and the coiled weighted line can then be deposited into the water.
US11723345B2
An example aquatic imaging system comprises a light source, a first platform coupled with a image capture device and a second platform that is parallel to the platform, the image capture device having a first field of view, and, the second platform being coupled to a organism tank, first organism tank having an inner wall, outer wall and a base that defines a well capable of retaining water, the base being parallel to the second platform, the organism tank configured to receive a light beam originating from the light source and configured to project at least a portion of the light beam through the well and in a directional plane that is parallel to the base, the image capture device configured to direct the first field of view from the first platform through the well in the organism tank.
US11723340B2
The present invention directed in party to soybean variety EC1662475 and/or EC1766217 breeding and development. The present invention particularly relates to soybean variety EC1662475 and/or EC1766217 and its seed, cells, germplasm, plant parts, and progeny, and methods of using EC1662475 and/or EC1766217, e.g., in a breeding program.
US11723335B1
A novel maize variety designated PH484D and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety PH484D with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH484D through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety PH484D or a locus conversion of PH484D with another maize variety.
US11723334B1
A novel maize variety designated PH47K7 and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety PH47K7 with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH47K7 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety PH47K7 or a locus conversion of PH47K7 with another maize variety.
US11723332B1
A novel maize variety designated 1PYTQ92 and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety 1PYTQ92 with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into 1PYTQ92 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety 1PYTQ92 or a locus conversion of 1PYTQ92 with another maize variety.
US11723331B1
A novel maize variety designated PH4CHD and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety PH4CHD with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH4CHD through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety PH4CHD or a locus conversion of PH4CHD with another maize variety.
US11723329B2
New lettuce variety designated ‘Uppercut’ is described. ‘Uppercut’ exhibits stability and uniformity.
US11723324B2
A hydroponic tray for agricultural use. More particularly, the hydroponic tray allows control on fluid flowing there through. The tray includes an inlet end for the ingress of fluid and an outlet end for the egress of fluid, a trough extending continuously between the inlet end and the outlet end along which, in use, the fluid flows, and at least one fluid regulator device extending transversely across the trough, wherein each fluid regulator device comprises a sluice panel adapted to allow a predetermined rate of fluid flow there through and a control panel moveable relative to the sluice panel to vary the rate of fluid flow through the fluid regulator.
US11723322B2
Apparatus and method for an improved driveline coupler having a reversible saddle thereon which allows it to be configured to work with different sizes and shapes of shafts. The reversible saddle is configured on one side to work with one size of driveline shaft and configured on the opposite side to work with a different size driveline shaft so that in the field, an operator can modify the driveline coupler from use with a first size of drive shaft to a second size of drive shaft easily and quickly by turning the saddle upside down.
US11723316B2
A method for treating pest infestation of crops includes withholding all light from the crops and, during the withholding, applying a burst of ultraviolet light to the crops. A method for reducing pests includes turning off all lighting arranged to apply growth light to the crops, applying a burst of ultraviolet light to the crops and turning on the lighting arranged to apply growth light to the crops. A system for treating pest infestation of crops includes a plurality of ultraviolet light sources and a controller configured to energize the ultraviolet light sources to apply a burst of ultraviolet light to the crops.
US11723312B2
The present invention relates to a compression spring assembly for a hay rake. The compression spring assembly has a rod that slidably receives a first stop, a compression spring, and a second stop. A limiter assembly is connected to the rod and has a limiting member that is received through a guide of a guide assembly that is connected to the rod. The guide encompasses the limiting member.
US11723308B2
An agricultural combine having at least one loss sensor associated with a threshing and separating system, a processing device, and a user interface. The processor is configured to collect geographical position readings, operating parameter settings, and loss data readings. The operating parameter settings and loss data readings are associated with the position readings. The processor generates a display at the user interface illustrating a geographical map including at least a portion of the plurality of position readings. The geographical map graphically indicates each loss data reading associated with each position reading illustrated on the geographical map at that position reading's respective location on the geographical map. A system and method for evaluating the performance of an agricultural combine are also provided.
US11723307B2
An apparatus, a system and a method indirectly detect the operational state of a machine among a plurality of operational states and track the movement of a material through a plurality of machines.
US11723304B2
A device is provided that includes: an elongated handle having a proximal end and a distal end; a handle coupling device attached to the distal end of the elongated handle, the coupling device having a tubular head and a plurality of spaced legs extending distally from the tubular head; a first attachment device pivotally coupled to a distal end of a first leg of the handle coupling device and a second attachment device pivotally coupled to a distal end of a second leg the handle coupling device; and a first set of yard rake tines rotatably coupled to the first attachment device and a second set of yard rake tines rotatably coupled to the second attachment device. The first and second attachment devices are preferably configured pivotally for a user to be able to pivot the first and second attachment device between a first position wherein the first and second attachment device are essentially orthogonal to the elongated handle and at least one other position wherein first and second attachment device are other than orthogonal to the elongated handle. The first and second sets of yard rake tines are preferably configured rotatably for a user to be able to rotate the first and second yard rake tines between a first position wherein the tines extend outwardly to perform as a rake and at least one other position wherein the first and second yard rake tines extend outwardly in opposite directions to perform as a grabbing device.
US11730064B2
A magnetic memory device including a lower electrode on a substrate; a conductive line on the lower electrode; and a magnetic tunnel junction pattern on the conductive line, wherein the conductive line includes a first conductive line adjacent to the magnetic tunnel junction pattern; a second conductive line between the lower electrode and the first conductive line; and a high resistance layer at least partially between the first conductive line and the second conductive line, a resistivity of the second conductive line is lower than a resistivity of the first conductive line, and a resistivity of the high resistance layer is higher than the resistivity of the first conductive line and higher than the resistivity of the second conductive line.
US11730063B2
The magnetoresistive effect element includes a first ferromagnetic layer, a second ferromagnetic layer, and a nonmagnetic layer positioned between the first ferromagnetic layer and the second ferromagnetic layer, and at least one of the first ferromagnetic layer and the second ferromagnetic layer includes a Heusler alloy layer including a crystal region and an amorphous region.
US11730057B2
An electronic device includes a light-receiving device configured to receive solar light, a loop-type heat pipe to which heat is input from the light-receiving device and in which an operating fluid is enclosed in a loop-shaped flow path, and a thermoelectric conversion element configured to convert a temperature difference of the loop-type heat pipe into electric power.
US11730054B2
A compound that is capable of achieving an organic EL device that has a high external quantum efficiency and a long lifetime is to be provided, and a compound represented by the following formula (1) is used (wherein in the formula, R11 to R17, R21 to R28, R31 to R38, R41 to R45, R51 to R55, R61 to R64, and L1 are defined in the description).
US11730047B1
A new type of charge transport layer based on organometal halide perovskite for highly efficient organic light emitting diodes (OLEDs) is demonstrated. By solution processing of halide perovskite precursors, smooth essentially pure perovskite thin films may be prepared with high transparency and conductivity. Solution processed multilayer OLED with this perovskite-based hole transport layer outperforms a device with a PEDOT:PSS layer.
US11730044B2
A display cell includes a signal line electrically connected to a pixel arranged in a display area, a signal pad unit disposed in a peripheral area adjacent to the display area, and including a signal pad electrically connected to the signal line, an inspection pad unit disposed in a turn-on inspection area, and including an inspection pad electrically connected to the signal pad, where the inspection pad is configured to receive a turn-on inspection signal, and a power supply voltage line configured to apply a power supply voltage to the pixel, extending from the inspection pad unit to the peripheral area, and divided into a plurality of sublines by at least one slit pattern in a cut-off area between the peripheral area and the turn-on inspection area.
US11730037B2
A display device includes a display panel, a wavelength control layer disposed on the display panel, a light control member disposed on the wavelength control layer, and a cover layer disposed on the light control member. The light control member includes an inorganic layer disposed on the wavelength control layer and having a first refractive index, a first light control layer disposed on the inorganic layer and having a second refractive index, a second light control layer disposed on the first light control layer and having a third refractive index, and a color filter layer disposed on the second light control layer. The first refractive index is greater than the second refractive index and is less than a refractive index of the wavelength control layer, and the third refractive index is greater than the second refractive index and is less than a refractive index of the color filter layer.
US11730036B2
A pixel arrangement structure, an organic light emitting diode display panel, a display device, and a mask plate assembly are disclosed. The pixel arrangement structure includes a plurality of first sub-pixels, a plurality of second sub-pixels, a plurality of third sub-pixels. The positions of the sub-pixels do not overlap each other. One of the first sub-pixels is located at the center position of a first virtual rectangle. Four of the first sub-pixels are located at four vertex angle positions of the first virtual rectangle, respectively. Four of the second sub-pixels are located at the center positions of four sides of the first virtual rectangle, respectively. The first virtual rectangle is divided into four second virtual rectangles. The inside of each of the four second virtual rectangles comprises one third sub-pixel of the third sub-pixels.
US11730033B2
A display device includes: a substrate; a data line on the substrate; a first insulating layer on the data line; a first transistor on the first insulating layer; a second insulating layer on the first transistor; a pixel electrode on the second insulating layer, the pixel electrode being electrically connected to the first transistor; and an auxiliary data pattern on the second insulating layer as a same layer as the pixel electrode, the auxiliary data pattern being electrically connected to the data line.
US11730029B2
The embodiments of the present application provide a display substrate, a light field display apparatus, and a method for driving the same. The display substrate includes: a base substrate; a light emitting block on the base substrate, wherein the light emitting block includes a plurality of first light emitting units, and each of the first light emitting units includes a plurality of first light emitting points which are located at a plurality of predetermined positions in the first light emitting unit respectively; and first driving leads each electrically connected to first light emitting points located at the same predetermined positions in the respective first light emitting units and configured to receive a first driving signal from a driving circuit.
US11730028B2
A display apparatus including a substrate having a display area and a peripheral area outside the display area, a first pad disposed on a first layer in the peripheral area, a second pad disposed adjacently to the first pad in a first direction in the peripheral area, the second pad being disposed on a second layer different from the first layer, a third pad disposed adjacently to the first pad in a second direction in the peripheral area, the third pad being disposed on the second layer, a first connection line disposed on the first layer and connected to the first pad, a second connection line disposed on the second layer and connected to the second pad, and a third connection line disposed on the second layer, connected to the third pad, and disposed between the first connection line and the second connection line.
US11730027B2
An electronic device has a peripheral region and includes a substrate, a first metal layer, and a protrusion structure. The first metal layer is disposed on the substrate. The protrusion structure is disposed on the substrate and in the peripheral region. The first metal layer extends into and ends in the protrusion structure.
US11730026B2
A display apparatus includes a substrate having a display area and a peripheral area outside the display area, a pad located in the peripheral area, a first line located in the peripheral area and having one end electrically connected to the pad and the other end facing the display area, a second line having one end facing the other end of the first line and extending into the display area, the one end of the second line being spaced apart from the first line, a first connector line electrically connecting the other end of the first line to the one end of the second line, and a first power line intersecting the first line, the first power line being disposed on a first layer different from a second layer on which the first line is disposed.
US11730021B2
To provide a display device having a reduced non-display area, the display device including: a substrate including a display area, the display area including a first area and a second area; a first pixel electrode in the first area, and a second pixel electrode in the second area; a pixel-defining layer on the substrate and including a first opening and a second opening, the first opening exposing at least a portion of the first pixel electrode, and the second opening exposing at least a portion of the second pixel electrode; a first intermediate layer on the at least a portion of the first pixel electrode, and a second intermediate layer on the at least a portion of the second pixel electrode; a first opposite electrode on the first intermediate layer; and a second opposite electrode on the first opposite electrode and the second intermediate layer.
US11730016B2
A display apparatus comprising a driving circuit that includes a storage capacitor and at least one thin film transistor, and a light-emitting device that includes a region disposed outside the driving circuit and a region overlapping with the storage capacitor, each of capacitor electrodes of the storage capacitor being a transparent electrode having a relatively higher transmittance, so that the quality of the image realized on an outer surface of a device substrate which supports the driving circuit and the light-emitting device of each pixel area can be improved.
US11730004B2
A first solid-state imaging element according to an embodiment of the present disclosure includes a bottom-electrode; a top-electrode opposed to the bottom-electrode; a photoelectric conversion layer provided between the bottom-electrode and the top-electrode and including a first organic semiconductor material; and an upper inter-layer provided between the top-electrode and the photoelectric conversion layer, and including a second organic semiconductor material having a halogen atom in a molecule at a concentration in a range from 0 volume % or more to less than 0.05 volume %.
US11730002B2
A display device includes a first bank and a second bank spaced apart from each other on a substrate, at least one semiconductor layer disposed between the first bank and the second bank, a first electrode disposed on the first bank and electrically connected to a part of the at least one semiconductor layer, an organic functional layer disposed on another part of the semiconductor layer and comprising at least an organic light emitting layer, and a second electrode disposed on the organic functional layer.
US11730000B2
A memory structure formed above a semiconductor substrate includes two or more modules each formed on top of each other separated by a layer of global interconnect conductors. Each memory module may include a 3-dimensional array of memory transistors organized as NOR array strings. Each 3-dimensional array of memory transistors is provided vertical local word lines as gate electrodes to the memory transistors. These vertical local word lines are connected by the layers of global interconnect conductors below and above the 3-dimensional array of memory transistors to circuitry formed in the semiconductor substrate.
US11729996B2
An embedded eMRAM device for eFlash replacement including an MTJ pillar located between a top electrode and a bottom electrode for forming an MRAM array. The bottom electrode is disposed above a substrate and surrounded by a first dielectric spacer, while the top electrode is disposed above the MTJ pillar and surrounded by a second dielectric spacer. A bottom metal plate is disposed on opposing sides of the bottom electrode between first and second dielectric layers and is electrically separated from the bottom electrode by the first dielectric spacer. A top metal plate is disposed on opposing sides of the top electrode between third and fourth dielectric layers and is electrically separated from the top electrode by the second dielectric spacer. A bias voltage applied to the top metal plate and the bottom metal plate generates an external electric field on the MTJ pillar for creating a VCMA effect.
US11729995B1
To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
US11729994B2
A ferroelectric device structure includes an array of ferroelectric capacitors overlying a substrate, first metal interconnect structures electrically connecting each of first electrodes of the array of ferroelectric capacitors to a first metal pad embedded in a dielectric material layer, and second metal interconnect structures electrically connecting each of the second electrodes of the array of ferroelectric capacitors to a second metal pad embedded in the dielectric material layer. The second metal pad may be vertically spaced from the substrate by a same vertical separation distance as the first metal pad is from the substrate. First metal lines laterally extending along a first horizontal direction may electrically connect the first electrodes to the first metal pad, and second metal lines laterally extending along the first horizontal direction may electrically connect each of the second electrodes to the second metal pad.
US11729991B1
To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.
US11729990B2
In some embodiments, the present disclosure relates to an integrated chip that includes a gate electrode over a substrate, and a gate dielectric layer arranged over the gate electrode. The gate dielectric layer includes a ferroelectric material. An active structure is arranged over the gate dielectric layer and includes a semiconductor material. A source contact and a drain contact are arranged over the active structure. A capping structure is arranged between the source and drain contacts and over the active structure. The capping structure includes a first metal material.
US11729983B2
A semiconductor device and method of forming thereof that includes a transistor of a peripheral circuit on a substrate. A first interconnect structure such as a first access line is formed over the transistor. A via extends above the first access line. A plurality of memory cell structures is formed over the interconnect structure and the via. A second interconnect structure, such as a second access line, is formed over the memory cell structure. The first access line is coupled to a first memory cell of the plurality of memory cell structures and second access line is coupled to a second memory cell of the plurality of memory cell structures.
US11729976B2
A semiconductor device includes a lower stack structure that includes a lower word line, an upper stack structure that is on the lower stack structure and includes an upper word line, a decoder that is adjacent to the lower stack structure and the upper stack structure, a signal interconnection that is connected to the decoder, a lower selector that is connected to the signal interconnection and further connected to the lower word line, and an upper selector that is connected to the signal interconnection, isolated from direct contact with the lower selector, and further connected to the upper word line.
US11729975B2
A semiconductor memory includes a stack section comprising a first area including a plurality of first conductors and a plurality of first insulators alternately stacked in a first direction and memory cells, and a second area including respective end portions of the plurality of stacked first conductors and the plurality of stacked first insulators, a plurality of contact plugs respectively reaching the plurality of first conductors in the second area, first and second supporting portions configured respectively to pass through the stack section in the first direction and arranged in a second direction, which crosses the first direction, in the second area, and a layer between respective adjacent first insulators, among the plurality of first insulators that are stacked, between the first supporting portion and the second supporting portion, wherein the layer is made of a material that is different from that of the first conductors.
US11729973B2
According to one embodiment, a semiconductor memory device includes a first memory chip, a circuit chip, and an external connection electrode on a surface of the first memory chip. The first memory chip comprises first conductors stacked via an insulator, and a first pillar passing the first conductors. The circuit chip comprises a substrate, a control circuit, and a second conductor connected to the control circuit, the circuit chip being attached to the first memory chip. The external connection electrode comprises a portion extending from a side of the surface of the first memory chip through the first memory chip and connected to the second conductor. Part of the first conductors is between the external connection electrode and the substrate.
US11729968B2
A method for manufacturing a dynamic random access memory includes: forming a buried bit line in a substrate; forming a plurality of buried word lines in the substrate, wherein the bottom surfaces of the buried word lines are higher than the top surface of the buried bit line; forming a bit line contact structure on the buried bit line; forming a through hole passing through the bit line contact structure, wherein the bit line contact structure is not in direct contact with the buried bit line, and the material of the bit line contact structure is different from the material of the buried bit line; forming a conductive plug between the bit line contact structure and the buried bit line; and forming a capacitor structure on the substrate.
US11729967B2
A device includes a substrate. A first nanostructure is over the substrate, and includes a semiconductor having a first resistance. A second nanostructure is over the substrate, is offset laterally from the first nanostructure, is at about the same height above the substrate as the first nanostructure, and includes a conductor having a second resistance lower than the first resistance. A first gate structure is over and wrapped around the first nanostructure, and a second gate structure is over and wrapped around the second nanostructure.
US11729965B2
A semiconductor device that can be miniaturized or highly integrated is provided. The semiconductor device includes a transistor and a capacitor. The transistor includes a metal oxide and a first conductor that is electrically connected to the metal oxide. The capacitor includes a first insulator which is provided over the metal oxide and which the first conductor penetrates; a second insulator provided over the first insulator and including an opening reaching the first insulator and the first conductor; a second conductor in contact with an inner wall of the opening, the first insulator, and the first conductor; a third insulator provided over the second conductor; and a fourth conductor provided over the third insulator. The first insulator has higher capability of inhibiting the passage of hydrogen than the second insulator.
US11729964B2
An apparatus comprises a conductive structure, another conductive structure, and a laminate spacer structure interposed between the conductive structure and the another conductive structure in a first direction. The laminate spacer structure comprises a dielectric spacer structure, another dielectric spacer structure, and an additional dielectric spacer structure interposed between the dielectric spacer structure and the another dielectric spacer structure. The additional dielectric spacer structure comprises at least one dielectric material, and gas pockets dispersed within the at least one dielectric material. Additional apparatuses, memory devices, electronic systems, and a method of forming an apparatus are also described.
US11729963B2
A semiconductor device includes a substrate including an isolation layer pattern and an active pattern, a buffer insulation layer pattern on the substrate, a polysilicon structure on the active pattern and the buffer insulation layer pattern, the polysilicon structure contacting a portion of the active pattern, and the polysilicon structure extending in a direction parallel to an upper surface of the substrate, a first diffusion barrier layer pattern on an upper surface of the polysilicon structure, the first diffusion barrier layer pattern including polysilicon doped with at least carbon, a second diffusion barrier layer pattern on the first diffusion barrier layer pattern, the second diffusion barrier layer pattern including at least a metal, and a first metal pattern and a first capping layer pattern stacked on the second diffusion barrier layer pattern.
US11729958B1
An electromagnetically insulating device includes a body material, an electrically conductive EMI attenuation layer, and a plurality of conductive elements. The body material is substantially planar and flexible. The EMI attenuation layer is positioned inside the body material. The plurality of conductive elements are positioned in the body material. The EMI attenuation layer and the plurality of conductive elements are configured to be electrically connected to an external ground connection.
US11729952B2
This invention relates to systems and methods for redundant data center cooling and electrical systems.
US11729948B2
An immersion cooling system includes an immersion tank that is configured to retain dielectric working fluid and to hold a plurality of computing devices submerged in the dielectric working fluid. The immersion cooling system also includes a condenser that is configured to cause condensation of vaporized working fluid. The immersion cooling system also includes a subcooling heat exchanger that is in fluid communication with a coolant source. The coolant source provides coolant having a coolant temperature that is lower than a boiling point of the dielectric working fluid. The subcooling heat exchanger is positioned so that heat transfer can occur between the dielectric working fluid and the subcooling heat exchanger. The immersion cooling system also includes a control system that controls how much of the coolant flows into the subcooling heat exchanger based at least in part on a temperature of the dielectric working fluid.
US11729946B2
According to one embodiment, a leak segregation system for a rack that includes a rack liquid manifold. The system includes at least one leak segregation structure that is mounted to the manifold, the structure having a top opening, a bottom that includes at least one opening, a back opening for receiving a manifold connector of the manifold, and a front opening for receiving a connector of an electronics component mounted within the rack, where the structure contains the manifold connector and at least partially contains the connector when the connectors are coupled together. The system also includes a leak detection structure that is positioned below the leak segregation structure and includes a leak detection sensor that is configured to detect a presence of liquid from the leak segregation structure.
US11729944B2
A cold plate for cooling a heat-generating component in a computer system is disclosed. The cold plate includes a lid member with a lower supply manifold housing and a lower collection manifold housing. The cold plate includes a base member having coolant channels defined by fins. Each of the fins have a top section and a bottom section attached to the base member. An interior cavity is defined by an arc-shaped section of the fins, the interior surface of the base, and the lower supply manifold housing. An interior corner is formed by the lower supply manifold housing of the lower manifold housing at the top of the fins to trap debris. An upper inlet manifold has a connector to receive coolant. An upper outlet manifold has a connector to circulate coolant. The upper manifolds are in fluid communication with the collection manifold housings.
US11729933B2
The disclosure provides a low-cost near-hermetic package, which may a substrate configured to support one or more internal components. The package may also include an enclosure comprising a cavity surrounding the one or more internal components and a first sidewall extending upward from the substrate. The first sidewall may be coupled to the substrate. The package may further include a first flexible circuit comprising conductive traces configured to connect to the one or more internal components. The first flexible circuit may include a first section outside the first sidewall of the enclosure, a second section inside the enclosure, and a third section between the first section and the second section joining to the enclosure and the substrate.
US11729923B1
An electronic device assembly includes a first electronic device and a second electronic device. The first electronic device includes a first wall body, a first opening, a sliding seat, a first magnetic attraction element, an elastic element and a connecting terminal. When the second wall body is close to the first wall body, the second magnetic attraction element and the first magnetic attraction element are magnetically attracted by each other. Consequently, the sliding seat is moved toward the first wall body, the elastic element is compressed, and the connecting terminal is protruded outside the first opening and contacted with the connector. When the second wall body is separated from the first wall body, the compressed elastic element is restored. Consequently, the sliding seat is moved away from the first wall body and the connecting terminal is retracted inside the first electronic device.
US11729922B2
A display device includes: a display panel including first and second areas, and a bending portion between the first and second areas; and a cover window on the display panel. The first area is between the cover window and the second area when the display panel is in a bent state, the first bending portion is between the cover window and the third bending portion when the display panel is in the bent state, and the bending portion includes a first bending portion extending from the first area, a second bending portion extending from the first bending portion, and a third bending portion between the second bending portion and the second area. A radius of curvature of the second bending portion is less than that of the first bending portion, and the radius of curvature of the second bending portion is less than that of the third bending portion.
US11729912B2
A wiring substrate includes an insulating layer including inorganic fillers and resin, and a conductor layer formed on a surface of the insulating layer and having a conductor pattern. The surface of the insulating layer has an arithmetic average roughness Ra in the range of 0.05 μm to 0.5 μm, the conductor layer includes a metal film formed on the surface of the insulating layer, and the inorganic fillers include a first inorganic filler including particles such that each of the particles has a portion of a surface separated from the resin and forming a gap with respect to the resin of the insulating layer and that the metal film of the conductor layer includes part formed in the gap between the first inorganic filler and the resin.
US11729911B2
A printed wiring board includes a base insulating layer, a conductor layer formed on the base layer and including conductor pads, an underlayer formed on one of the conductor pads and including a metal different from a metal of the conductor layer, a solder resist layer formed on the base layer such that the solder resist layer is covering the conductor layer and has openings exposing the conductor pads, and a bump formed directly on a first conductor pad of the conductor pads and including a base plating layer formed in a first opening of the openings and a top plating layer formed on the base plating layer such that a metal of the base plating layer is same as the metal of the conductor layer. The conductor pads include a second conductor pad such that the second conductor pad is the one of the conductor pads having the underlayer.
US11729905B2
A stretchable circuit is provided in the invention. The stretchable circuit comprises a plurality of segments. Each segment includes a plurality of sub-segments. Each sub-segment includes at least one main line, at least one secondary line, and rib lines, and in each sub-segment, the main lines and the secondary lines are electrically connected to the rib lines.
US11729904B2
An efficient fabrication technique, including an optional design step, is used to create highly customizable wearable electronics. The method of fabrication utilizes rapid laser machining and adhesion-controlled soft materials. The method produces well-aligned, multi-layered materials created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as microchip integrated circuits (IC), discrete electrical components, and interconnects. The design step can be used to create a 3D device that conforms to different-shaped body parts. These techniques are applied using commercially available materials. These methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio-monitoring applications.
US11729903B2
A radio frequency module includes: a module board; a first electronic component and a second electronic component that are disposed apart from each other on the module board; and a third electronic component that is electrically connected to both the first electronic component and the second electronic component, and is disposed extending across the first electronic component and the second electronic component.
US11729899B2
A shield enclosure includes a housing with a peripheral wall that defines a cavity, and a cover removably coupleable to the housing to at least partially seal the cavity. The cavity is sized to receive a printed circuit board therein. The housing shields the printed circuit board from electromagnetic interference and noise during noise figure testing of a radiofrequency component on the printed circuit board.
US11729887B2
A control module is able to be installed with electrical devices, such as, for example electrical loads (e.g., lighting loads) and/or load regulation devices. The control module may determine whether an LED driver for an LED light source is responsive to one or more of a plurality of control techniques. The control module may be able to automatically determine an appropriate control technique to use to control the connected LED driver and/or LED light source. The control module may sequentially attempt to control the LED driver and/or LED light source using each of the plurality of control techniques and determine if the LED driver and/or LED light source is responsive to the present control technique. The plurality of control techniques may include one or more analog control techniques and one or more digital control techniques.
US11729879B2
Controlling the color temperature of a composite light source including at least one discrete-spectrum light source is disclosed. For example, the color temperature of a composite light source including at least one discrete-spectrum light source may be determined and/or adjusted based on one or more of the ambient color temperature of a space, the actual temperature of the space, the relative brightness of the space, the occupancy of the space, a time clock, a demand response command (e.g., from an electrical utility), the absolute location of the composite light source, the location of the composite light source relative to other light sources, inputs from a camera or other external devices, the operation of appliances or other machines in the vicinity of the composite light source, media content being utilized in the vicinity of the composite light source, and/or other sensor inputs.
US11729874B2
A two-wire load control device (such as, a dimmer switch) for controlling the amount of power delivered from an AC power source to an electrical load (such as, a high-efficiency lighting load) includes a thyristor coupled between the source and the load, a gate coupling circuit coupled between a first main load terminal and the gate of the thyristor, and a control circuit coupled to a control input of the gate coupling circuit. The control circuit generates a drive voltage for causing the gate coupling circuit to conduct a gate current to thus render the thyristor conductive at a firing time during a half cycle of the AC power source, and to allow the gate coupling circuit to conduct the gate current at any time from the firing time through approximately the remainder of the half cycle, where the gate coupling circuit conducts approximately no net average current to render and maintain the thyristor conductive.
US11729869B2
A lossy dielectric heat source transducer or other transducer can be formed using a multi-layer substrate, such as can include a power layer (to receive an applied electromagnetic input signal), a polyurethane or other polymeric electromagnetic energy absorption layer, and a coupling layer therebetween. The absorption layer can be doped with carbon or another dopant material to increase electromagnetic energy absorption. The coupling layer can be doped with barium titanate or another dopant material to focus electromagnetic energy passing through the coupling layer toward the absorption layer. Frequency-selective addressing of particular transducers can include using a plurality of planar resonators, which can be configured to resonate at the same or different specified frequencies of the applied electromagnetic input. Such addressing of such frequency-sensitive structures can permit location-specific actuation of one or more transducers.
US11729868B2
An induction heating device is provided. The induction heating device comprises a plurality of induction heating devices disposed at intervals along the circumference of a ring-shaped workpiece, a setting unit for setting induction heating conditions, and a switching control unit. Each of the plurality of induction heating devices comprises heating coils disposed facing areas to be heated of the workpiece, a plurality of transformers connected to the heating coils in parallel, a plurality of matching units connected to any one of the plurality of transformers, an inverter unit having a rectifier unit and an inverter unit, an inverter control unit having a rectification control unit, and a group of switches.
US11729861B2
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for fast role switching between master and slave roles among wireless nodes. In one aspect, wireless nodes, such as wireless earbuds, coupled to a wireless source, may dynamically and intelligently swap master and slave roles to optimize battery life in the wireless nodes.
US11729859B2
A system can receive, over one or more networks, location data from a computing device of a requesting user, where the location data indicates a current position of the requesting user. The system can determine a rendezvous location for the requesting user prior to the requesting user transmitting a service request to the network computer system. The system may then transmit, over the one or more networks, data corresponding to the rendezvous location to the computing device of the requesting user.
US11729857B2
Systems, Methods, Devices, and Apparatuses for power saving are provided. In at least one embodiment, a device may be configured for discontinuous reception (DRX) mode and further receive signaling indicating whether or not to wake and/or may receiving signaling indicating whether or not to go-to-sleep. The signaling may be implemented as group-specific signaling.
US11729856B2
Methods, systems, and devices for wireless communication are described. A base station may initiate a beam management procedure, including reference signal transmission to a user equipment (UE) and receive beam training. A base station may configure a UE to monitor a set of beams for reference signals. Based on the received reference signals, the UE may optionally select one or more transmit beams for wakeup signal reception, and may transmit an indication of the selected beams to the base station. The base station may transmit a wakeup signal over the originally configured or the UE-selected transmit beams to initiate wake-up procedure at the UE. The base station and UE may subsequently perform a refined beam management procedure, providing a refined reference signal transmission from the base station. Based on the received transmission, the UE may select a refined beam for downlink transmissions.
US11729847B2
A communication device includes: a communication unit configured to perform wireless communication; and a control unit configured to allocate respective resources for communication with a plurality of terminal devices in which at least any of bandwidths or central frequencies of channels to be used is different. The control unit allocates a first control channel to be commonly transmitted to the plurality of terminal devices to a first region overlapping between the respective channels of the plurality of terminal devices in a region in which the resources are allocated. The control unit allocates a second control channel to be individually transmitted to each of the plurality of terminal devices to a second region different from the first region.
US11729845B2
Various arrangements for performing setup of a wireless network without pairing are provided. A request mapped to a first characteristic may be transmitted using a first wireless protocol. In response to the request mapped to the first characteristic, a listing of one or more wireless networks within range mapped to a second characteristic may be transmitted by a peripheral device. Using the first wireless communication protocol, a third characteristic mapped to the selected wireless network and the password may be transmitted to the peripheral device. A connection to the selected wireless network using the password and the second wireless communication protocol may then be performed by the peripheral device.
US11729836B2
According to some embodiments, a method for early data transmission (EDT) performed by a wireless device comprises: assembling a random access message 3 that includes uplink data for random access EDT; transmitting the random access message 3 to a network node; receiving a random access message 4 from the network node; determining whether the random access message 4 includes a successful integrity check indicating that the network node successfully received the uplink data in random access message 3; and upon determining the random access message 4 includes a successful integrity check, discarding transmission protocol information corresponding to the uplink data in random access message 3.
US11729833B2
The present disclosure describes a method, an apparatus, and a computer-readable medium for a random access channel (RACH) procedure at a user equipment. For example, the method may select a two-step RACH procedure or a four-step RACH procedure at the UE based at least on RACH configuration information received from a base station or the RACH configuration information at the UE. The example method may further include transmitting, from the UE, one or more messages associated with the two-step RACH procedure or the four-step RACH procedure based on the selection.
US11729827B2
The disclosure relates to a communication technique for convergence of a 5G communication system for supporting a higher data transmission rate beyond a 4G system with an IoT technology, and a system therefor. The disclosure may be applied to intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security and safety-related services, etc.) based on 5G communication technology and IoT-related technology. The disclosure relates to a method and apparatus for detecting an uplink listen-before-talk (LBT) failure when using a 3GPP 5G new radio (NR) technology in a wireless communication system.
US11729826B2
A method of operating a wireless communication device comprises identifying a first start position for performing uplink (UL) transmission in unlicensed spectrum during a first transmission time interval, performing UL transmission in the first transmission time interval (TTI) according to the first start position, identifying a second start position for performing UL transmission in unlicensed spectrum during a second TTI, wherein the first and second start positions correspond to different symbol offsets within the respective first and second TTIs, and performing UL transmission in the second TTI according to the second start position.
US11729825B2
Channel access enhancement for new radio-unlicensed (NR-U) operations are disclosed. In attempting access to a shared communication channel, both base stations and user equipments (UEs) may operate similarly to load-based equipment (LBE) devices by performing extended clear channel access (eCCA) operations independently, such that each of the base stations and UEs may independently acquire the channel occupancy time (COT) of the shared communication spectrum.
US11729824B2
The present invention provides according to one of its aspects a method of communication in a wireless network comprising an access point and a plurality of stations, the method comprising, at one of the stations:
receiving a trigger frame from the access point, the trigger frame reserving a transmission opportunity on at least one communication channel of the wireless network, the transmission opportunity including random resource units that the stations may access using a contention scheme, wherein the trigger frame includes a first indicator specifying a traffic type of data allowed to be sent on at least one of the random resource units;
determining, based on the first indicator, eligible resource units, among the resource units in the reserved transmission opportunity, for the station to contend for access for transmitting data; and
transmitting data on a determined eligible resource unit using a contention scheme.
US11729819B2
Provided by an embodiment of the present application are a method and device for determining a contention window, the method comprising: according to feedback information sent by a terminal device, a network device determining the length of a contention window (CW) used for channel detection, the feedback information comprising feedback information corresponding to a physical downlink shared channel (PDSCH) sent by the network device on a first carrier wave; according to the length of CW, the network device performing channel detection on the first carrier wave.
US11729815B2
A method in a network node for managing random-access procedures with a plurality of wireless devices. The method comprising transmitting an indication of a modulation format to one or more of the plurality of wireless devices to configure the modulation format for a random access message (3) transmission from the one or more wireless devices.
US11729812B2
Aspects relate to obtaining, at a first scheduled entity, a first priority ranking of first uplink (UL) data scheduled for transmission to a scheduling entity and a first data scheduled for transmission to a second scheduled data, as well as a second priority ranking of second data scheduled for transmission to a third and fourth scheduled entity, respectively. The scheduling uses at least a portion of a sidelink resource reserved for sidelink communication for the transmissions. The scheduling of the transmissions using at least the portion of the sidelink resource are based on the first priority ranking and the second priority ranking. Various transmission cancellation and reception preemptions are transmitted from transmitting scheduled entities to other transmitting or receiving scheduled entities, respectively. Such cancellations and preemptions are based on the priority rankings, prediction of data transmission collisions and prediction of interference at receiving entities.
US11729811B2
A base station and a user equipment device and a method for sending data from the user equipment device to the base station is proposed. The method for transmitting data comprises the steps of determining disadvantageous transmission conditions for the user equipment device and if such disadvantageous transmission conditions are determined, transmitting data in a reserved frame.
US11729806B2
Methods and apparatus related to radio configuration of a wireless device, such as for use in a quasi-licensed wireless system. In one embodiment, a computerized apparatus is provided, which comprises at least one computer program configured to: (i) detect at least one connectable wireless network; (ii) obtain data relating to one or more associated network conditions; and (iii) change radio configuration of the wireless device based on the obtained data e.g., to enable the wireless device to connect to an optimal base station. In one variant, the data relating to the one or more network conditions is obtained via one or more configurable logic blocks (CLBs) of the wireless device. In one implementation, a CLB can be configured to e.g., generate network data traffic to detect the network conditions. Furthermore, the CLBs can be configured to activate or de-activate individual ones of an array of radios with sectorized antenna of the wireless device.
US11729804B2
A wireless communications method and device is provided. The method includes determining, by a network device, a period of a reference signal resource and a time domain resource offset of the reference signal resource, sending time domain resource configuration information of the reference signal resource to a terminal, determining at least one target first time domain resource unit according to the period and the time domain resource offset, determining at least one target second time domain resource unit from the at least one target first time domain resource unit, where the at least one target first time domain resource unit includes at least one target second time domain resource unit, and sending a reference signal or rate matching on a signal on a reference signal resource in the at least one target second time domain resource unit.
US11729800B2
A wireless device receives one or more messages. The one or more messages comprise configuration parameters of the cell. The configuration parameters indicate a plurality of control resource sets for multiple transmission reception points. Downlink control information (DCI) is received via a control resource set of the plurality of control resource sets. The DCI comprises a physical uplink control channel (PUCCH) resource indicator. The control resource set comprises one or more control channel elements starting from a first control channel element. A PUCCH resource is determined based on the PUCCH resource indicator. The PUCCH resource is determined based on an index of the first control channel element. The PUCCH resource is determined based on the control resource set. An uplink control information is transmitted via the PUCCH resource in response to the determination of the PUCCH resource.
US11729799B2
Provided is a method, performed by an electronic device, of obtaining location information. In detail, provided is a method, performed by an electronic device, of obtaining relative location information with respect to anchor devices by wirelessly communicating with the anchor devices.
US11729795B2
A terminal apparatus includes: a reception unit configured to receive an MIB that configures a first CORESET, receive an SIB1 that configures a second CORESET, receive first information that configures an initial UL BWP and second information that configures an additional UL BWP, and receive a first DCI format that schedules a PUSCH in a common search space; and a transmission unit configured to specify a set of allocated resource blocks based on a first field included in a first DCI format and transmit a PUSCH in an active UL BWP, the active UL BWP being either the initial UL BWP or the additional UL BWP, the first value indicated by a first field is provided based on the size of the initial UL BWP, a first start position that is a start position of a set of allocated resource blocks, and the number of first resource blocks continuously allocated, and the common search space is used for a random access procedure.
US11729784B2
Methods and apparatuses for allocating and receiving frequency-domain resources and a communication system. The method includes: determining a coefficient used for obtaining the continuous frequency-domain resources based on a size of a currently activated bandwidth part, and obtaining a starting position of the continuous frequency-domain resources and the number of continuous resource blocks according to the resource indication value and the coefficient; or determining a size of a resource block group used for obtaining the noncontinuous frequency-domain resources based on a size of a currently activated bandwidth part and a format of downlink control information, and obtaining one or more resource block groups of the noncontinuous frequency-domain resources according to the bitmap information and the size of a resource block group.
US11729783B2
Methods, systems, and devices for wireless communications are described. A wireless device such as a user equipment (UE) may monitor a search space of a control channel for at least one downlink transmission. The UE may perform a plurality of decoding operations on a plurality of decoding candidates associated with the downlink control information format transmitted in a plurality of transmission time intervals (TTIs). In some cases, the plurality of decoding operations may comprise performing a first decoding on a first decoding candidate received in a current TTI, the first decoding operation applying a first descrambling code to the first decoding candidate, and performing a second decoding operation on a combined decoding candidate that comprises soft combined information from the first and second decoding candidate, the second decoding candidate received in a prior TTI.
US11729780B2
A method performed by a BS for configuring CSI reporting is provided. The method includes transmitting a CSI reporting configuration to a UE on a first BWP; transmitting a first BWP switch indication to the UE on the first BWP, the first BWP switch indication being used to request the UE to switch to a second BWP; transmitting a second BWP switch indication to the UE after the UE switches from the first BWP to the second BWP, the second BWP switch indication being used to request the UE to switch back to the first BWP; and receiving a CSI report from the UE based on the CSI reporting configuration, without providing any CSI reporting activation command to the UE after the UE switches back to the first BWP according to the second BWP switch indication. A BS using the same is also provided.
US11729778B2
Method and system for handling of special SCell selection in dual connectivity. The present invention relates to the field of wireless communication networks and more particularly to a User Equipment (UE) operating in dual connectivity mode in wireless communication networks. The principal object of the embodiments herein is to provide a method and system for handling of special SCell (PSCell) change by extending Event A3 or Event A5 to PSCell for relative comparison. Another object of the invention is to provide a method and system for handling of special SCell (PSCell) change with a new Event Ax.
US11729775B2
A wireless device determines to deactivate an antenna panel of a plurality of antenna panels at the wireless device. An uplink signal indicating the determination to deactivate the antenna panel is transmitted. A time window based on transmitting the uplink signal is started. The antenna panel is deactivated based on an expiry of the time window.
US11729765B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine information indicating an association between the UE and a preconfigured uplink resource (PUR). The UE may transmit a message including the information indicating the association between the UE and the PUR. A base station may receive the message including the information indicating the association between the UE and the PUR. The base station may identify the UE associated with the PUR based at least in part on the information indicating the association between the UE and the PUR. Numerous other aspects are provided.
US11729763B2
Based on an embodiment of the present disclosure, provided is a method for performing sidelink communication by a first device. The method may comprise: receiving, from a second device, a CSI-RS; transmitting, to a base station, a SR or a BSR, based on triggering of sidelink CSI MAC CE transmission to the second device by channel-related information measured based on the CSI-RS; receiving, from the base station, a sidelink grant related to the SR or the BSR; and canceling the triggered sidelink CSI MAC CE transmission to the second device, based on a latency bound related to the sidelink CSI MAC CE transmission and a time period based on the sidelink grant for the sidelink CSI MAC CE transmission.
US11729761B2
This disclosure provides systems, methods, and apparatuses, including computer programs encoded on computer storage media, for wireless communication. In one aspect of the disclosure, a method for wireless communication performed by a user equipment (UE) includes receiving, from a base station, mapping information indicating, for each bandwidth part (BWP) of multiple BWPs, a mapping between a respective beam direction of multiple beam directions and the BWP. The method further includes receiving an allocation of a first BWP. The method also includes communicating, via the first BWP, one or more first messages using a first beam having a first beam direction, and receiving, from the base station, a change indicator associated with a second BWP or a second beam direction. The method includes communicating, via the second BWP, one or more second messages using a second beam having a second beam direction. Other aspects and features are also claimed and described.
US11729760B2
Disclosed in some examples are a method for physical downlink shared channel receiving and a method for indicating its time domain resource, and a device, a storage medium, a base station, and a terminal thereof. The method for indicating the time domain resource for the physical downlink shared channel includes: determining a starting symbol position of the time domain resource for transmitting the physical downlink shared channel based on a symbol position for a front loaded demodulation reference signal; determining a row index in a preset time domain table at least based on the starting symbol position; and carrying the row index in a downlink control information, and transmitting the downlink control information to a user equipment. The technical solution of the present disclosure can achieve the flexibility in PDSCH schedule.
US11729758B2
A communication system includes a remote unit that exchanges radio frequency signals with mobile devices, at least some of the radio frequency signals comprising information destined for, or originating from, a mobile device, the remote unit being configured to perform first physical layer processing. A controller is separated from the remote unit by a switched Ethernet network, wherein data corresponding to the information is transmitted in frames between the controller and the remote unit. At least some of the data comprises baseband data that is transmitted in frequency domain. The controller and the remote unit are configured to transmit time stamp messages on the switched Ethernet network to synchronize a controller clock and a remote unit clock. The controller is configured to advance downlink subframe timing relative to the remote unit, when transmitting on the switched Ethernet network, based on a measured transport delay across the switched Ethernet network.
US11729755B2
A method in a communication device having a plurality of protocol layers including a media access control, MAC, layer and a physical, PHY, layer, includes, at the MAC layer, selecting a plurality of carriers for carrier aggregation, each of the carriers being associated to a respective hybrid automatic repeat request, HARQ, entity, and at the MAC layer, initiating a sidelink carrier reselection process by the first communication device in response to a triggering event. Related devices and computer program products are disclosed.
US11729747B2
A user equipment (UE) is configured to receive, from a wireless network, information including a plurality of first values and queue limit information, wherein each of the plurality of first values is associated with at least one radio bearer. Further, the UE is configured to transmit a plurality of buffer occupancy indicators, wherein each buffer occupancy indicator is associated with at least one queue. The UE is further configured, in response to the transmitted plurality of buffer occupancy indicators, to receive, from the wireless network, an uplink resource allocation. The UE is determined, based on the received queue limit information, select a limited number of queues for providing data for transmission and to transmit the data based on the first value associated with the select queue of the selected limited number of queues in resources determined from the received uplink resource allocation.
US11729742B2
Embodiments herein relate generally to a Control plane, CP, node, a method performed by the CP node, a Radio Access Network, RAN, node and a method performed by the RAN node. More particularly the embodiments herein relate to handling paging.
US11729741B2
Techniques for determining a change of a given remote unit of a centralized radio access network (C-RAN) are disclosed. This can be done, for example, by determining signal reception metrics for other remote units in the C-RAN based on at least one transmission associated with the given remote unit and determining if a radio frequency (RF) environment associated with the given remote unit has changed as a function of the signal reception metrics for the other remote units.
US11729736B2
Methods and apparatuses for time adjustment during handover in non-terrestrial networks. A method of operating a user equipment (UE) includes receiving configuration information for a first and a second RS and receiving the first RS from a first base station (BS) and the second RS from a second BS. The method also includes measuring a time of arrival of the second RS relative to a time of arrival of the first RS, determining a differential propagation delay between the first RS and the second RS based on the times of arrival. The method further includes determining a transmission time for an uplink (UL) UE-dedicated channel to the second BS based on the differential propagation delay and transmitting the UL UE-dedicated channel to the second BS based on the determined time.
US11729727B2
A user equipment (UE) receives a reference signal from a base station and determines a pathloss based on the received reference signal. The UE further receive a downlink channel signal including an uplink resource assignment and a transmit power command. The UE transmits an uplink signal, wherein the uplink signal is transmitted using a transmit power level determined based on the pathloss, a format of the uplink signal, the uplink resource assignment and the transmit power command.
US11729715B2
A method and an apparatus for allocating a flexible transmission slot in a wireless local area network (LAN) system are disclosed. A flexible transmission slot allocation method of an access point (AP) in a wireless local area network (WLAN) system according to an exemplary embodiment includes transmitting a beacon including a traffic indication map (TIM) bit to a station, receiving a power save poll (PS-Poll) from the station in a slot implicitly allocated by the TIM bit, and transmitting an acknowledgement (ACK) including transmission slot allocation information on downlink data to the station.
US11729707B2
In some embodiments, an apparatus includes a spectral scanning controller configured to interrupt service at a wireless access point (WAP) such that the WAP performs spectral scanning during service interruption. The spectral scanning controller is configured to interrupt service at the WAP at a first scanning frequency when the spectral scanning controller is in a first configuration. The spectral scanning controller is configured to interrupt service at the WAP at a second scanning frequency different from the first scanning frequency when the spectral scanning controller is in a second configuration. The spectral scanning controller is configured to move from the first configuration to the second configuration in response to a change in at least one of a service demand, a service quality, a spectral scanning demand or a spectral scanning quality.
US11729702B2
A source wireless device sends an indication of support for one or more broadcast services that broadcasts information over a wireless local area network (WLAN). The source wireless device determines, based on one or more factors, whether to use a broadcast stream of a broadcast service or a unicast stream to deliver information to one or more receiving wireless devices.
US11729701B2
A distribution network system and method. The distribution system has a plurality of communication channels and is connected to a mesh network. The mesh network uses one of the plurality of communication channels as a distributable network channel. The distribution network system includes an already-distributed network node and a to-be-distributed network node. The already-distributed network node is located in the mesh network and is configured to broadcast a mesh network beacon to the distributable network channel. The to-be-distributed node is configured to alternately monitor whether the mesh network beacon is detected on each communication channel. The to-be-distributed node outputs a network distribution request message to the already-distributed node according to the mesh network beacon, monitors whether a distribution network response message corresponding to the distribution network request message is detected on the distributable network channel, and joins the mesh network according to the distribution network response message.
US11729700B2
A base station (1) controls state transitions of a radio terminal (2) among first to third RRC states. In addition, the base station (1) explicitly or implicitly informs the radio terminal (2) about whether a network slice configured in the radio terminal (2) for data communication at least in the first RRC state is available in each cell included in a RAN notification area configured by a RAN (3). It is thus, for example, possible to allow a radio terminal in a first state (e.g., RRC_INACTIVE state) to be easily aware of the availability of network slices in a cell to be reselected or a reselected cell.
US11729691B2
A method and base station are disclosed. The base station comprises a transceiver and a processor. The base station transmits a system information block (SIB) to a wireless transmit/receive unit (WTRU), wherein the SIB indicates random access transmission uplink resources. After transmitting the SIB, the base station receives a random access preamble from the WTRU. After receiving the random access preamble, the base station receives, using one or more of the uplink resources indicated by the SIB, a first message from the WTRU, wherein the first message includes a first radio network temporary identifier (RNTI) of the WTRU. After receiving the first message, the base station transmits a second message to the WTRU, wherein the second message is derived from a second RNTI, the second RNTI being different than the first RNTI. The base station may be configured to communicate with the WTRU on a plurality of cells.
US11729688B2
In one embodiment, the method includes if a first network device having a first path with a second network device determines that a terminal device is to be handed over from the second network device to a third network device, establishing a second path between the first and third network devices; disabling data transmission for the terminal device via the first path; transmitting a handover indication to the second network device to cause it to suspend transmission of buffered data to the terminal device and to transmit remaining data to the third network device; and upon receiving a completion indication from the second network device that transmission of the remaining data is complete, enabling data transmission for the terminal device via the second path.
US11729678B2
The objective of the present invention is to provide services by effectively switching, by a terminal, a macro cell and a small cell on the basis of time in a communication system in which the macro cell and the small cell coexist. A method for operating a terminal in a wireless communication system comprises the steps of: transmitting, to a first base station and/or a second base station, information on a switching delay time required for the terminal to perform cell switching; and communicating through a resource of the first base station and a resource of the second base station which are allocated by considering the switching delay time.
US11729674B2
A light-weight solution for media handovers between different Radio Access Technologies (RAT) is provided. A user may switch from Wi-Fi to Cellular Data (e.g., LTE/4G/3G/ . . . ), from Cellular data to Wi-Fi, and the like. In contrast to a “make-before-break” design for switching between RATs, the technologies described herein are a “break-before-make” design. When a change in a RAT is detected, an application on the computing device utilizing the connection is notified of the change. Instead of removing connection information, the connection is maintained for a configurable period of time such that the application can re-register with the network to continue the communication session. During a transition to a second RAT, the application provides one or more notifications to the user of the change in RAT. For instance, a graphical user interface (GUI) can be displayed showing the change and/or a tone can be played indicating the change in the RAT.
US11729673B2
According to some embodiments, a method for use in a user equipment of performing cell reselection to a cell providing multimedia broadcast multicast service (MBMS) comprises: receiving a system information message comprising an indication of whether one or more carrier frequencies support MBMS carrier type or further enhanced MBMS (FeMBMS) carrier type; selecting, based on a capability of the user equipment and the carrier type of the one or more carrier frequencies, a carrier frequency for cell reselection; and camping on the selected carrier frequency. In particular embodiments, the system information message further comprises, for each of the one or more carrier frequencies, an indication of a percentage (e.g., 100%, 80%, etc.) of available multicast broadcast single frequency network (MBSFN) subframes in each radio frame.
US11729668B2
The present disclosure relates to a 5th (5G) generation) or pre-5G communication system for supporting a higher data transmission rate beyond a 4th (4G) generation communication system such as long term evolution (LTE). An operating method of a base station in a wireless communication system according to various embodiments of the present disclosure includes generating at least one compressed symbol based on modulation compression, transmitting to another base station, control information including position indication information which indicates a position of a subcarrier at which a first subcarrier signal is transmitted in a physical resource block (PRB) to which the at least one compressed symbol is mapped, and power indication information for indicating a transmit power of the first subcarrier signal, and transmitting the at least one compressed symbol to the another base station. Thus, transmission capacity may be optimized, and efficient modulation compression is possible.
US11729661B2
A Machine Type Communication Inter Working Function (MTC-IWF) entity (1) is configured to, in response to receiving from a Service Capability Server (SCS) a first request for quality of service to be applied to a specific communication of an MTC device, send to a Policy and Charging Rule Function (PCRF) entity a second request for applying the quality of service to the specific communication. It is thus possible, for example, to facilitate controlling quality of service of a specific communication in a Public Land Mobile Network (PLMN) in response to a request by the SCS for the quality of service.
US11729659B2
A cross-layer security scheme can be used for a Multi-Input Multi-Output (MIMO) antenna-based large-scale multihop mobile ad hoc network (MANET) with a set of frequency-nonselective, slow/Rayleigh fading, and uncoded channels along with interference combining both physical, link, and higher layer encryption techniques for the payload in addition to signaling. Furthermore, MIMO-aware cross-layer secure MANET physical and key-based logical hierarchical routing proving scalability can be used. Security can be provided in Multi-Hop MIMO MANETs in Physical, medium access control (MAC), and internet protocol (IP) Routing layer. The MIMO-aware MANET IP Routing can include two kinds of routing: Physical Routing such as secure ad-hoc on-demand distance vector (SAODV) in the access MANET and Secure Key-based distributed hash table (DHT) “logical” routing in the backbone MANET. Both security and performance metrics can be employed to improve (e.g., optimize) both network secrecy and throughput/bandwidth capacity.
US11729658B2
Systems and methods of providing feedback when a specific PDU is successfully delivered or transmitted are described. The node hosting PDCP entity indicates triggering of a DDDS frame from the remote corresponding node. Rather than immediately triggering transmission of a DDDS frame, the node hosting PDCP entity indicates triggering based on successful delivery of a PDU having a specific SN, as long as in-sequence delivery or transmission of PDUs up to the specific SN was successful. The DDDS frame is transmitted once the corresponding node determines that the PDU having the SN was successfully delivered or transmitted. After reporting by the DDDS frame, the QoS flow associated with the PDUs is remapped from a source DRB to a target DRB.
US11729651B2
A measurement reporting method, a user equipment and a network device are provided. The measurement reporting method includes: measuring a corresponding reference signal according to a downlink measurement configuration of a network device, where the downlink measurement configuration includes at least one of content information of measurement report, measured reference signal resource related information and an association relationship information of reference signal resource and measurement report; generating at least one measurement report, based on at least one of the content information of measurement report, the measured reference signal resource related information, the association relationship information of reference signal resource and measurement report and measurement results of reference signal; and sending the at least one measurement report.
US11729646B2
Methods, systems, and devices for wireless communications are described. In some wireless communications systems, a base station may transmit a set of reference signals spanning a channel to a user equipment (UE), where each of the reference signals is associated with one of a set of transmit beams. The UE may measure a signal quality of each of the set of reference signals. In some cases, each measured signal quality may correspond to one of a set of subbands of the channel and one of the set of transmit beams. The UE may then transmit an indication of at least one signal quality associated with one of the set of subbands and one of the set of transmit beams. In some cases, the UE may indicate the at least one signal quality according to a configuration that may be indicated by the base station or selected by the UE.
US11729636B1
Techniques for clustering network elements of a telecommunication network are described herein. For instance, a machine learned model can cluster cells based on a combination of network data, user equipment data, location data, and map data. Clusters output from the machine learned model can be compared to each other to identify an underperforming cell, to generate recommendations that improve performance of a cell, and/or to determine performance benchmarks for cells or networks across different geographical regions.
US11729635B2
A method is disclosed, comprising: collecting, at an in-vehicle base station, reports from a plurality of user equipments (UEs); storing, at the in-vehicle base station, reports collected from the plurality of UEs into a database; forwarding, from the in-vehicle base station to a coordinating server, stored reports into the database; performing, at the coordinating server, data analysis of the received reports; and sending, from the coordinating server to a base station, an instruction to update at least one configuration parameter of the base station, thereby improving data collection and data processing for radio frequency cell optimization.
US11729628B2
Apparatuses, systems, and methods for a wireless device to perform methods to implement mechanisms for non-stand-alone unlicensed band cells that support single carrier capable UEs. A UE may camp on a licensed band cell of a RAN and transmit a request to connect. The UE may receive, from the licensed band cell, a connection setup message indicating a switch to an unlicensed band cell of the RAN and receive, from the unlicensed band cell, a reference signal. The UE may transmit to the unlicensed band cell and in response to confirming, based at least in part of the reference signal, radio quality and/or downlink timing of the unlicensed band cell, a connection complete/connection resume message.
US11729627B2
Techniques for optimizing antenna parameters of a radio configured to transmit on spectrum shared by incumbent user(s) are disclosed. The incumbent user has priority to use the shared spectrum over the radio. The antenna parameters are optimized to reduce interference to incumbent user(s) and/or other radios utilizing the shared spectrum whilst maintaining satisfactory coverage area.
US11729624B2
Various embodiments described herein are directed towards authenticating calls by using one or more keys associated with a specific user. In examples, the user is the sender of a call. In various embodiments, when a call is made, an identifying payload is encrypted using a private key associated with the user. The encrypted identifying payload is appended to the call data stream. The identifying payload may be decrypted with a public key. In embodiments, the identifying payload may be verified. In various embodiments, further authentication methods may be performed by using an object such as a contactless card to provide one or more components of the identifying payload and/or keys. In embodiments, a connection may be made between the sender and the intended recipient of a call based on the verification of the identifying payload.
US11729623B2
A method of pairing a mobile computing device with an external device during set up of the mobile computing device, the method comprising, at a computing device initiate a setup application for the mobile computing device; determining if the mobile computing device has an internal scanner; when the mobile computing device does not have an internal scanner: prepare the mobile computing device for pairing with a peripheral scanning device; prepare the peripheral scanning device for pairing with the mobile computing device; pairing the mobile computing device with the peripheral scanning device; and scanning staging indicia with the peripheral scanning device to initiate a device staging application within the mobile computing device.
US11729621B2
The present disclosure distributes processing capabilities throughout different nodes in a wireless network. Methods and apparatus consistent with the present disclosure increase the efficiency of communications in a wireless network because they help minimize the need to forward communications to other nodes in the network by allowing different wireless nodes to receive and store content ratings regarding requested content in caches associated with respective wireless nodes. Apparatus and methods consistent with the present disclosure perform a load balancing function because they distribute content ratings to different nodes in a wireless network without increasing messaging traffic. As response messages regarding access requests are passed back to a requestor, cache memories at nodes along a communication path are updated to include information that cross-references data identifiers with received content ratings. The cross-referenced data identifiers and content ratings allow each respective wireless node along the communication path to block requests to bad content.
US11729609B2
Network equipment (300, 400) is configured for use in one of multiple different core network domains of a wireless communication system (10). The network equipment (300, 400) is configured to receive a message (60) that has been, or is to be, transmitted between the different core network domains. The network equipment (300, 400) is also configured to apply inter-domain security protection to, or remove inter-domain security protection from, one or more portions of the content of a field in the message according to a protection policy (80). The protection policy (80) includes information indicating to which one or more portions of the content inter-domain security protection is to be applied or removed. The network equipment (300, 400) is also configured to forward the message (60), with inter-domain security protection applied or removed to the one or more portions, towards a destination of the message (60).
US11729605B2
Certain aspects of the present disclosure provide techniques for communicating via one or more subcarrier spacings in accordance with an indication of a subcarrier spacing capability. A method that may be performed by a user equipment (UE) includes transmitting, to a network entity, an indication of a subcarrier spacing capability of the UE associated with a frequency range and communicating with the network entity in accordance with the indication.
US11729603B2
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may transmit, to a base station, capability signaling indicating one or more phase coherency capabilities of the UE for maintaining phase coherence across multiple uplink messages within a time interval, wherein each phase coherency capability is based on one or more channel usage characteristics associated with the time interval. The UE may receive, from the base station, a downlink message scheduling a set of uplink messages from the UE to the base station within the time interval. The UE may transmit the set of uplink messages within the time interval based on the downlink message and in accordance with at least one of the one or more phase coherency capabilities.
US11729602B2
A terminal software upgrade method can be applied to a terminal that is installed with a near-field communication sensing circuit. The terminal software upgrade method can include: in response to a distance between a near-field communication instruction writing circuit and the terminal reaching an effective communication distance of a near-field communication, writing instruction information sent by the near-field communication instruction writing circuit into the near-field communication sensing circuit, wherein the instruction information comprises at least boot-up instruction information and upgrade configuration information; and controlling the terminal to boot up via the near-field communication sensing circuit, based on the boot-up instruction information, and upgrading software of the terminal based on the upgrade configuration information.
US11729601B1
The present disclosure is directed to a method and system for routing communications. A plurality of communications-enabled devices are coupled to a communications network. Each communications-enabled device has a device identifier. A user-programmable database associates each of a plurality of user identifiers with a device identifier. A router circuit is coupled to the communications network through a portal communication device having a portal identifier. A user designates a destination user identifier when making a communication. The router circuit switches the call, directing the call to a destination device identifier responsive to the user-programmable database association between the destination user identifier and a device identifier. According to certain aspects, communications are directed to users and are routed to associated equipment, a user identifier serving as a virtual extension number. Users remotely program the database to direct their communications to communications-enabled devices at various destinations.
US11729599B2
A system comprising means for: receiving a request for locations of a plurality of devices for communicating in a network, said request comprising an identifier for identifying said plurality of devices; checking whether each of two or more devices of said identified plurality of devices has been registered on the network; in response to determining that at least one device of the two or more devices has been registered on the network, determining and reporting at least one location for the at least one device determined to be registered on the network; and in response to determining that at least one device of the two or more devices has not been registered on the network, storing at least one indication of at least one pending request for at least one location of the at least one device not registered on the network.
US11729590B2
A service enabler architecture layer (SEAL) system for a wireless communication network and a method therefor are provided. The SEAL system includes: a SEAL function entity including SEAL service servers corresponding to functionalities associated with service applications, where the SEAL function entity is an intermediate layer between a 3GPP network core and a service application system, and interfaces provided by the SEAL service servers. The SEAL system also provisions inter-services communication in a SEAL system of wireless communication network by receiving a request from a service application system for accessing at least one functionality of a plurality of functionalities, determines at least one functionality of the plurality of functionalities requested by the service application system based on the request, and provides at least one functionality to the service application system based on the inter-services communication in the SEAL system.
US11729585B2
Communication systems and methods for routing data selectively via unicast paths and multicast paths are disclosed. An example communication system includes a satellite ground station having a multicast server configured to: access a receive signal-to-noise ratio (SNR) measured for a forward link (FL) between a satellite and a satellite modem; select one of a unicast mode or a multicast mode for the FL based upon the receive SNR; and configure the FL in the selected one of the unicast mode or the multicast mode.
US11729582B2
In an aspect, a network component (e.g., BS, server, etc.) obtains measurement information associated with uplink signal(s) from UE(s), with the uplink signal(s) having reciprocity with one or more downlink beams of wireless node(s) (e.g., TRP, reference UE, etc.). The network component determines (e.g., generates or refines) a measurement (e.g., RFFP-P) model based on the measurement information. The network component provides the measurement (e.g., RFFP-P) model to a target UE. The target UE receives at least one signal (e.g., PRS) on the one or more downlink beams from the wireless node(s). The target UE processes the at least one signal (e.g., predicts target UE location) based at least in part on the measurement (e.g., RFFP-P) model.
US11729580B2
Methods and systems are disclosed herein for encouraging particular behavior while occupying vehicles. For example, by granting and restricting access to media and other user comfort devices based on whether or not a user is conforming to a predetermined rule set, the media guidance application may encourage a user to adhere to the rule set.
US11729574B2
A method including: obtaining at least one spatial audio signal including at least one audio signal, wherein the at least one spatial audio signal at least partially defines an audio scene; obtaining at least one augmentation audio signal; determining at least two audio objects based upon the at least one augmentation audio signal; determining audio-object dependency information for the determined at least two audio objects; and augmenting the audio scene based, at least partially, on both the determined at least two audio objects and the determined audio-object dependency information.
US11729573B2
Devices, media, and methods are presented for an audio enhanced augmented reality (AR) experience using an eyewear device. The eyewear device has a microphone system, a presentation system, a support structure configured to be head-mounted on a user, and a processor. The support structure supports the microphone system and the presentation system. The eyewear device is configured to capture, with the microphone system, audio information of an environment surrounding the eyewear device, identify an audio signal within the audio information, detect a direction of the audio signal with respect to the eyewear device, classify the audio signal, and present, by the presentation system, an application associated with the classification of the audio signal.
US11729567B2
The present invention relates to a device for generating sound messages, comprising:
a generation chain configured to generate a first and a second sound signal carrying a useful audio signal and a test audio signal;
a conversion chain configured to transform the first and second sound signals into first and second analog signals; and
a verification chain configured to extract the test audio signal from a combination of the analog signals to verify the integrity of the useful audio signal.
The first sound signal corresponds to the sum of the test audio signal and the useful audio signal, and the second sound signal corresponds to the sum of the test audio signal and an opposite signal corresponding to the opposite of the useful audio signal.
US11729551B2
In one aspect, the systems and methods described herein may include a first device comprising a first ultra-wideband (UWB) antenna. The first device may establish a connection with a second device having a second UWB antenna. The first device may determine an orientation of the first device relative to the second device, according to one or more UWB measurements between the first UWB antenna of the first device and the second UWB antenna of the second device. The first device may receive audio signals corresponding to the second device, and can render the audio signals into audio output to a user of the first device according to the determined orientation.
US11729541B2
According to an aspect of the disclosure, an audio device is provided comprising a communications interface configured to be communicatively coupled to an audio source, at least one sensor, and a controller configured to control the audio device to be in a low-power mode, receive, from the sensor(s), information indicative of a presence of a user's body, initiate, via the communications interface responsive to receiving the information, a wireless communication pairing process to establish a wireless communication bond with the audio source prior to determining that the audio device is fully engaged with the user's body, determine, subsequent to initiating the wireless communication pairing process and based on information received from the sensor(s), that the audio device is fully engaged with the user's body, and control, responsive to determining that the audio device is fully engaged with the user's body, the audio device to be in an active mode.
US11729536B2
Summarizing the invention, a sensing element for monitoring the state of a single-use sterilizable element such as a single-use bioreactor, wherein the state of the single-use sterilizable element is determined by at least one environmental condition is provided. The sensing element comprises: a variable component having at least one physical property that is configured to change in response to the at least one environmental condition and/or a change thereof, wherein the variable component comprises a sensing material with changing absorption characteristics for electromagnetic radiation configured to change in response to the at least one environmental condition and/or a change thereof.
US11729534B1
Low power event driven pixels with passive difference detection circuit (and reset control circuits for the same) are disclosed herein. In one embodiment, an event driven pixel comprises a photosensor; a photocurrent-to-voltage converter, and a difference circuit. The difference circuit includes a source follower transistor and a switched-capacitor filter having an input coupled to the photocurrent-to-voltage converter and an output coupled to a gate of the source follower transistor. The switched-capacitor filter includes a first capacitor coupled between the input and the output of the switched-capacitor filter, a second capacitor having a first plate coupled to the output of the switched-capacitor filter, and a reset transistor coupled between a reference voltage and the output of the switched-capacitor filter. The difference circuit is configured generate a difference signal that is indicative of whether the event driven pixel has detected an event in an external scene.
US11729515B2
An imaging apparatus to which an attachable and detachable device attachable to and detachable from the imaging apparatus can be attached includes a control unit configured to cause the attachable and detachable device attached to the imaging apparatus to start an image analysis of a predetermined image, a determination unit configured to determine whether the image analysis of the predetermined image is completed, and a determining unit configured to, based on a result of the determination by the determination unit, determine a waiting time from when the imaging apparatus causes the attachable and detachable device to start an image analysis of a captured image captured by the imaging apparatus to when the imaging apparatus requests the attachable and detachable device to acquire a result of the image analysis.
US11729503B2
An image capturing apparatus includes a memory device that stores a set of instructions, and at least one processor that executes the set of instructions to function as, a first detection unit configured to detect a position of a gazing point in an image based on a line-of-sight of a user, a first setting unit configured to set an object detection range based on the position of the gazing point and an image capturing condition, a second detection unit configured to detect a feature area from the image, and a second setting unit configured to set a focus detection area based on a position of the feature area included in the object detection range.
US11729500B2
A lowpass filter control apparatus of the present disclosure includes a lowpass filter controller that causes lowpass characteristics of a variable lowpass filter disposed in an optical path of incoming light into an imaging element including phase-difference pixels and normal pixels to be different for an exposure period of the normal pixels and an exposure period of the phase-difference pixels.
US11729490B2
A system for monitoring and recording and processing an activity includes one or more cameras for automatically recording video of the activity. A remote media system is located at the location of the activity. A network media processor and services is communicatively coupled with the remote media system. The remote media system includes one or more AI enabled cameras. The AI enabled camera is configured to record the activity. The network media processor is configured to receive an activation request of the AI enabled camera and validate the record request.
US11729489B2
Illustrative embodiments are directed to a device and method for improving a video chat experience. The device provides a video chat session between users. The device receives a first video stream of multiple users captured by a camera at the same time. The device identifies objects representing the users in the first video stream, respectively. The device generates a modified stream by altering image data to remove a portion of depicted visual content between the objects. The device receives a second video stream. The device outputs, to user devices, the modified first video stream and the second video stream for display to the users.
US11729481B2
Embodiments of the invention are directed to providing custom abridged versions of a media item. Aspects include receiving, from an electronic device of a user, a request for the media item and dividing the media item into a plurality of segments. Aspects also include determining a length of an available time for the user and creating the abridged version of the media item by combining a subset of the plurality of segments, where the runtime of the abridged version of the media item is less than the length of available time. Aspects further include transmitting, to the electronic device of the user, the abridged version of the media item.
US11729479B2
A stream of a media item is transmitted from a server computing system to one or more client computing systems. The media item has a timeline for playback of the media item. Participant-generated content is received at the server computing system from one or more participants at any of the one or more client computing systems. The participant-generated content is time-indexed to the timeline of the media item. The participant-generated content is processed to identify key portions of the media item based on indications present within the participant-generated content. A dynamic summary queue is generated that includes the key portions of the media item. The dynamic summary queue is assembled for streaming. A request to view the dynamic summary queue is received from a requestor. In response to the request, a stream of the dynamic summary queue is transmitted to a computing device of the requestor.
US11729475B2
A system and method for providing described video for media content generates a plurality of individual audio files, possibly using text-to-speech, for each line of a described video script. The described video script provides an indication of the timing, such as for example the start time and length, of the individual described video lines. The described video script can then be used to combine the individual audio files into a single audio file for inclusion with the media content.
US11729471B2
System, method, and various embodiments for providing an automatic audio source selection system are described herein. An embodiment operates by determining a state of a first device configured to output first video to a screen and first audio to one or more speakers. A priority of the first device is determined relative to one or more other devices configured to output second video to the screen and second audio to the one or more speakers. An audio source for the one or more speakers is selected based on both the state of the first device and the priority of the first device. Based on the selected audio source, audio is provided to the one or more speakers for output, wherein the output audio corresponds to video output to the screen from the selected audio source.
US11729464B2
Disclosed are methods, systems, and non-transitory computer-readable medium for transition-coded media, measuring engagement of transition-coded media, and distribution of components of transition-coded media. For instance, the method may include: obtaining a media file; determining whether the media file includes transition-coded media; in response to determining the media file includes the transition-coded media, setting up a dynamic media environment; detecting whether a user is interacting with the transition-coded media; and in response to detecting the user is interacting with the transition-coded media, executing the transition-coded media with the dynamic media environment.
US11729454B2
Systems and methods are provided herein for indicating an amount of available storage space. To this end, the systems and methods monitor storage space associated with a media storage device to determine whether an amount of storage space available is less than a threshold. In response to determining the amount of storage space available is less than the threshold, the systems and methods enter a deletion mode. Systems and methods monitor user interactions between a user and a user device after entering the deletion mode. Systems and methods further generate for display a notification at an appropriate time, based on the monitored user interactions, to indicate the amount of storage space available to the user.
US11729449B2
A technique is described for generating a unified list (e.g., a list ribbon) of programs from a variety and disparate channels, the list for display on an over-the-top (OTT) client device. As an example, the unified list can be generated from OTT live channels and from over-the-air OTA and/or Advanced Television Systems Committee (ATSC) live channels. Further, the unified list can include OTT recordings on the cloud and OTA/ATSC recordings on the local hard drive connected to an OTA local DVR. Thus, the OTT device Client obtains the list from the DVR backend, instead of going to the local OTA client box for the local recordings.
US11729446B2
In a system configured to enable mutual communications between a contents server and a video display device, the contents server is configured to accumulate a plurality of video contents, receive operator analysis information transmitted from the video display device, select at least one video content from the plurality of accumulated video contents based on the operator analysis information received by an operator information receiving unit, and transmit the selected content to the video display device. The video display device is configured to receive a digital broadcast wave, select a digital broadcast program, acquire the operator analysis information of the video display device, transmit the acquired operator analysis information to the contents server, receive the video content transmitted from the contents server, and select and display one of the digital broadcast program selected by a digital broadcast program selector and the video content received by a video contents receiving unit.
US11729444B2
A system for providing audience estimation for digital media display sessions displayed on a mobile vehicle, including storage media, a processing system, an interface system including a communications interface, one or more neural networks, and program instructions that the processing system to receive object sensor data, apply an entity classifier thereto to determine a type of each unique audience entity, determine a presence duration of the entity during the digital media display session, and transmit each unique audience entity to an online dashboard.
US11729443B2
In one embodiment, a method receives a network topology of a distributed access architecture and a legacy video network. Video streams include characteristics that are associated with delivery via the legacy video network. The method selects a set of anchor points for a remote physical device in the distributed access architecture where the set of anchor points are associated with a geographic location of the remote physical device. A set of attribute labels are selected for the set of anchor points where the set of attribute labels associated with characteristics of the video streams. The method then generates a definition of video streams based on the anchor points and the attribute labels for a remote physical device configuration and generates the remote physical device configuration for video. The remote physical device configuration is used to provide the video streams to the remote physical device.
US11729437B1
Systems, methods, and articles for optimizing the placement of content, such as advertisements, within content breaks. The systems disclosed herein automatically identify the optimal allocation of content within breaks included in advertisement placement opportunities. This is achieved by scoring placed advertisements and determining whether a prospective advertisement can be placed within a break. The system may score the placed advertisements based on rules provided by a media content provider and multiple buyers.
US11729430B2
Methods and apparatus for video processing are described. The video processing may include video encoding, video decoding, or video transcoding. One example video processing method includes performing a conversion between a video picture of a video and a bitstream of the video. A first syntax element in a first video unit level specifying a deblocking parameter offset for β divided by 2 applied to a chroma component for one or more slices in a first video unit and a second syntax element in the first video unit level specifying a deblocking parameter offset for tC divided by 2 applied to the chroma component for the one or more slices in the first video unit are determined according to a rule in response to the first syntax element and the second syntax element not included in the bitstream.
US11729426B2
A previously encoded or reconstructed version of a neighborhood of a predetermined block to be predicted is exploited so as to result into a more efficient predictive coding of the prediction block. In particular, a spectral decomposition of a region composed of this neighborhood and a first version of a predicted filling of the predetermined block results into a first spectrum which is subject to noise reduction and the thus resulting second spectrum may be subject to a spectral composition, thereby resulting in a modified version of this region including a second version of the predicted filling of the predetermined block. Owing to the exploitation of the already processed, i.e. encoded/reconstructed, neighborhood of the predetermined block, the second version of the predicted filling of the predetermined block tends to improve the coding efficiency.
US11729421B2
The present invention provides a method and a device for deriving an inter-view motion merging candidate. A method for deriving an inter-view motion merging candidate, according to an embodiment of the present invention, can comprise the steps of: on the basis of encoding information of an inter-view reference block derived by means of a variation vector of a current block, determining whether or not inter-view motion merging of the current block is possible; and, if inter-view motion merging of the current block is not possible, generating an inter-view motion merging candidate of the current block by using encoding information of an adjacent block that is spatially adjacent to the inter-view reference block.
US11729420B2
Disclosed are an intra-prediction method using filtering and an apparatus using the method. An image-decoding method comprises: a step of filtering an n upper reference pixel of a block to be predicted and neighboring pixels of the n upper reference pixel so as to obtain the filtered n upper reference pixel; and a step of filtering an n left reference pixel of a block to be predicted and neighboring pixels of the n left reference pixel so as to obtain the filtered n left reference pixel. According to the present invention, intra-prediction may be efficiently performed to improve image-encoding/decoding efficiency.
US11729419B2
Coding efficiency is improved. A motion compensation filter unit acts on a motion vector applied image obtained by acting a motion vector on a reference image. The motion compensation filter unit causes filter coefficients mcFilter[i][k] designated by a phase i and a filter coefficient position k to act on the motion vector applied image. The filter coefficients mcFilter[i][k] includes filter coefficients calculated by using filter coefficients mcFilter[p][k] (p≠i) and filter coefficients mcFilter[q][k] (q≠i).
US11729414B2
According to an embodiment disclosed in the present document, it is possible to derive a history-based motion vector prediction (HMVP) buffer for a current block based on a history, and to derive motion information of the current block based on an HMVP candidate included in the HMVP buffer, thereby increasing inter prediction efficiency.
US11729401B2
An encoding device configured to encode a flag, that indicates whether tile information for a picture having a tile group is present in a parameter set of a video bitstream or in a slice header of the video bitstream, into the video bitstream, encode the tile information in the parameter set when the flag indicates the tile information for the picture is encoded in the parameter set, and encode the tile information in the slice header when the flag indicates the tile information for the picture is encoded in the slice header.
US11729400B2
Sample data and metadata related to spatial regions in images may be received from a coded video signal. It is determined whether specific spatial regions in the images correspond to a specific region of luminance levels. In response to determining the specific spatial regions correspond to the specific region of luminance levels, signal processing and video compression operations are performed on sets of samples in the specific spatial regions. The signal processing and video compression operations are at least partially dependent on the specific region of luminance levels.
US11729399B2
A method for controlling block intra prediction is provided for a decoder. The method includes: obtaining a coded video bitstream; decoding, prediction information of a current coding unit (CU) in a segment of a current picture from the coded video bitstream; determining, according to the prediction information, a prediction type of a chroma coding block (CB) of the current CU, the prediction type being intra prediction or inter prediction; and reconstructing the chroma CB according to the prediction information, where a width of any reconstructed chroma CB intra-predicted from the coded video bitstream is greater than 2.
US11729396B2
In various embodiments, a prediction application computes a quality score for re-constructed visual content that is derived from visual content. The prediction application generates a frame difference matrix based on two frames included in the re-constructed video content. The prediction application then generates a first entropy matrix based on the frame difference matrix and a first scale. Subsequently, the prediction application computes a first value for a first temporal feature based on the first entropy matrix and a second entropy matrix associated with both the visual content and the first scale. The prediction application computes a quality score for the re-constructed video content based on the first value, a second value for a second temporal feature associated with a second scale, and a machine learning model that is trained using subjective quality scores. The quality score indicates a level of visual quality associated with streamed video content.
US11729388B2
A method for decoding image data can include generating a prediction block based on a prediction mode; generating a quantization block by inversely scanning quantization coefficient information; generating a transform block by inversely quantizing the quantization block using a quantization parameter; generating a residual block by inversely transforming the transform block; generating a reconstructed picture by using the prediction block and the residual block; and applying a deblocking filter on the reconstructed picture, wherein it is determined whether the deblocking filtering is applied between two adjacent blocks P and Q containing samples p0 and q0 respectively by using a boundary quantization parameter when a boundary strength is not zero, the boundary quantization parameter is set to an average value of a quantization parameter of block P and a quantization parameter of block Q, and the quantization parameter is derived by adding a residual quantization parameter and a quantization parameter predictor.
US11729387B1
Techniques for automatically configuring settings for a video encoder are described. According to some embodiments, a computer-implemented method includes setting a content delivery service to an automatic video encoder configuration mode, determining statistics for a plurality of frames of a live video, concurrently generating a first spatial adaptive quantization strength value for a first quantization parameter value by a first machine learning model for an input comprising the statistics, and a second spatial adaptive quantization strength value for a second, different quantization parameter value by a second machine learning model for an input comprising the statistics, receiving a quantization parameter value from a rate controller of the content delivery service, encoding the live video at the first spatial adaptive quantization strength value when the quantization parameter value from the rate controller is the first quantization parameter value, encoding the live video at the second spatial adaptive quantization strength value when the quantization parameter value from the rate controller is the second, different quantization parameter value, and transmitting the encoded live video to a viewer device.
US11729379B2
A method, computer program, and computer system is provided for coding video data. Video data including one or more reference locations is received. The one or more reference locations are updated in a history list associated with the received video data based on intra block copy for a single value string mode. The video data is decoded based on the updated reference locations.
US11729376B2
A video decoding method according to the present disclosure includes determining a reference sample line for a current block, deriving an intra prediction mode for the current block, and performing intra prediction of the current block based on the reference sample line and the intra prediction mode.
US11729373B1
A head-mountable device can include display elements and/or cameras that can be calibrated for accurate recording and visual output. Whereas some aspects of a head-mountable device can be calibrated at the time of production, usage and wear of the head-mountable device can result in certain components becoming misaligned. A case or other reference can be used to calibrate the cameras of the head-mountable device to ensure that the captured images are recorded in a target alignment. The case can be operated with the head-mountable device to calibrate the display elements of the head-mountable device to ensure that the images are output in a target alignment. Such calibration can include consideration of any lenses installed in front of the display elements.
US11729354B2
One example method includes joining, by a first client device, a videoconferencing meeting hosted by a video conference provider, the videoconference meeting including a plurality of participants; providing an audio stream and a video stream to a video conference provider; receiving, from a second client device, an audio focus area associated with a video stream provided the first client device; determining, based on the audio focus area, a bounding region within an environment shown in the video stream; directing a microphone array to capture audio from the bounding region; and providing the captured audio as an audio stream to the video conference provider.
US11729350B1
Disclosure herein includes descriptions of a method for transmission of digital audio over analog video data with a single cable. The method comprising receiving, by a video transmitter, a digital video signal and one of a digital or an analog audio signal. Sampling, by an audio analog-to-digital converter (ADC), the audio signal if it is an analog audio signal. Storing, in a First-in-First-Out (FIFO) buffer, digital audio data corresponding to the sampled analog audio signal; reading, by an arbiter, the digitized audio samples, in response detecting an availability of data in the FIFO buffer and formatting the serialized audio bits with a digital start code; inserting the serialized audio bits and the digital start code into a blanking period of the digital video signal, thereby generating a combined digital audio and video signal and converting, by a digital-to-analog converter (DAC), the combined digital audio and video signal to analog, thereby generating a combined analog audio and video stream including audio data in a native form; and transmitting the combined analog audio and video stream to a receiver in one direction. In another embodiment, an analog signal is transmitted in the opposite direction.
US11729333B2
An apparatus includes a memory, and a processor coupled to the memory and configured to store data in the memory, transmit the data stored in the memory to an information processing system, instruct the information processing system to execute a transfer job that includes a first process for transferring the data and a second process related to the first process, and delete the data from the memory in a case where transfer job execution history information indicates that the first process and the second process are completed. The transfer job execution history information includes a history of execution of the transfer job.
US11729332B2
An imaging device includes a light source unit located so as to be inclined with respect to a medium conveying surface or a medium placing surface. The light source unit includes a light emitting element, a light guide provided with the light emitting element on a first end surface side, to guide light emitted from the light emitting element in a predetermined direction, and emit the light toward the medium from an emitting surface extending in the predetermined direction, and a reflector located around the light guide other than the emitting surface. The light guide includes a light diffusing surface on an opposite side to the emitting surface. The reflector does not cover a second end surface opposite to the first end surface of the light guide. A medium side surface of the reflector is located so as to protrude from the second end surface of the light guide.
US11729325B2
An image forming device according to aspects of the present disclosure, including a communication interface, a user interface, and a controller. The controller configured to perform a remote display control of transmitting remote data to an information processing device. The remote data is data making a browser of the information processing device display a remote screen reproducing an operation screen of the image forming device. The controller is configured to perform obtaining decision information used to determine a mode of the remote screen and determining the mode based on the obtained decision information. The controller displays the remote screen having the display content of the mode on the browser by transmitting the remote data in accordance with a restriction parameter.
US11729320B2
A system includes an image processing apparatus configured to perform image reading processing and a management server. The image processing apparatus includes a unit configured to acquire data created by the image reading processing while a user logs in to a registration server communicable with the management server, and a unit configured to transmit the acquired data, wherein the management server includes a unit configured to receive the transmitted data and a unit configured to transmit the received data, and wherein the transmitted data is stored in a storage server communicable with the registration server.
US11729313B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for implementing a spoofed telephone call identifier are disclosed. In one aspect, a method includes the actions of receiving, by a first computing device, data indicating a placement of a telephone call from a second computing device to a third computing device, wherein the data includes a phone number of the second computing device. The actions further include determining characteristics of the phone number of the second computing device. The actions further include, based on the characteristics of the phone number of the second computing device, determining a likelihood that the phone number of the second computing device is spoofed. The actions further include, based on the likelihood that the phone number of the second computing device is spoofed, determining whether to transmit a notification of the telephone call to the third computing device.
US11729309B1
A voice communications computer system (“VCCS”) receives a ring signal from a call device having unverified device identification data. The VCCS identifies an audible frequency component and an electronic frequency component of the ring signal. The VCCS identifies a device identification characteristic or a geographic location characteristic based on the audible or electronic frequency components, and identifies a stored identification characteristic associated with the device identification data. Based on a comparison of the stored identification characteristic with the device identification characteristic or geographic location characteristic, the VCCS generates fraud estimation data. In some cases, the VCCS generates call status data based on the fraud estimation data. The VCCS provides the fraud estimation data or the call status data to a user interface device, which is configured to display data or perform a call action for a call associated with the ring signal.
US11729281B2
Example implementations relate to calibration data transmissions. For example, a computing device includes a storage device to store calibration data of an electronic device coupled to the computing device. The computing device also includes a network interface to establish a network connection with a second computing device. The computing device further includes a processor to automatically transmit, via the network connection, the calibration data to the second computing device based on a location of the second computing device relative to the computing device and based on an association with second computing device via a communication session.
US11729277B2
An electronic device and method are disclosed. The electronic device operates in an edge computing environment, and includes: a memory storing an application, a wireless communication circuitry, and at least one processor. The at least one processor implements the method, including: receiving a query message querying whether application relocation is possible from an external server through wireless communication circuitry, identifying, using at least one processor, whether the application relocation is possible based on a running state of the application, in response to receiving the query message, when the application relocation is impossible, transmitting a first response message indicating that the application relocation is impossible to the external server, or when the application relocation is possible, transmitting a second response message indicating that the application relocation is possible to the external server.
US11729275B2
Methods and systems for automatic installation of applications against a service instance of an online store are described. A change in status of a service instance for the online store is detected. A functionality associated with the changed status is identified, where the functionality is currently absent from the service instance. A software application is identified to provide the functionality. The identified software application is automatically installed against the service instance, to enable the functionality for the online store.
US11729269B1
Embodiments are directed to bandwidth management in distributed file systems. A request stored in a queue may be dequeued. A work credit value may be determined based on a duration since a last job and a work rate associated with the file system such that the work credit value conforms to a maximum threshold value. A job may be initialized based on the dequeued request such that the work credit value may be reduced based on a size of the job. In response to the reduced work credit value being a negative value further actions may be performed, including: determining a time delay based on the reduced work credit value, the work rate, and the size of the job; delaying an execution of the job until the expiry of the time delay such that upon expiry of the time delay, the job is executed to satisfy the request.
US11729268B2
Various embodiments of the present disclosure relate to a computer-implemented method, a system, and a storage medium, where a graph stored in a computing system is logically divided into subgraphs, the subgraphs are stored on different interconnected (or coupled) devices in the computing system, and nodes of the subgraphs include hub nodes connected to adjacent subgraphs. Each device stores attributes and node structure information of the hub nodes of the subgraphs into other devices, and software or hardware prefetch engine on the device prefetches attributes and node structure information associated with a sampled node. A prefetcher on a device interfacing with the interconnected (or coupled) devices may further prefetch attributes and node structure information of nodes of the subgraphs on other devices. A traffic monitor is provided on an interface device to monitor traffic. When the traffic is small, the interface device prefetches node attributes and node structure information.
US11729260B2
Embodiments of the present disclosure provide an Internet-of-Things resource access system and method. The system comprises a protocol management subsystem, a data conversion subsystem, and a load balancing subsystem. The protocol management subsystem is configured to obtain protocol frames from shared storage queues of protocol data packets, use a protocol stack to parse the protocol frames into original data payloads and provide the original data payloads to a data conversion subsystem; the data conversion subsystem is configured to perform protocol management, resource binding and data conversion, load Internet-of-Things resources and convert the original data payloads into observation data through multi-threaded concurrency; and the load balancing subsystem is configured to access the Internet-of-Things resources to the system through virtual IP, connect the Internet-of-Things resource to background service nodes through load balancing servers and send the protocol frames to the shared storage queues of the protocol data packets.
US11729256B2
The disclosed computer-implemented method includes determining that incoming media item requests are to be skewed from a random distribution among server nodes, using a random distribution algorithm, to a directed distribution among the server nodes. The method then includes identifying, in a loading assignment, which media items are to be loaded onto specific server nodes to produce the directed distribution of media item requests. The method next includes preloading the identified media items onto the server nodes according to the loading assignment and receiving media item requests for the preloaded media items. The method then includes routing the received media item requests to the server nodes using the random distribution algorithm, where the random distribution algorithm is skewed to the directed distribution based on the preloading of the media items according to the identified loading assignment. Various other methods, systems, and computer-readable media are also disclosed.
US11729248B2
Systems and method for migrating a web application from a source environment to a cloud service. A cloud service system accesses a temporary container containing a manifest and a plurality of web parts for the web application. The manifest includes a list of contents of the temporary container and defines an appearance and functionality of the web application. The cloud service system then reconstructs the web application on the cloud service by automatically generating a user interface environment for the web application on the cloud service based on the manifest and importing each web part of the web parts to the cloud service. The cloud service system configures each web part and the user interface environment to interact as defined by the manifest. The user interface environment reconstructed on the cloud service replicates the appearance and functionality of the web application operating system in the source environment.
US11729245B2
A computer-readable non-transitory storage medium in which are stored sets of data characterizing a feature cloud model of a realm, wherein each set of data: corresponds to a distinct one of a plurality of digital contributions that collectively originate from a plurality of remote computing devices, each digital contribution characterizing a defined and distinct three-dimensional volume of the realm, wherein each distinct three-dimensional volume includes a portion that does not overlap any other three-dimensional volume; is associated with a global coordinate system; and defines, for the non-overlapping portion in the distinct three-dimensional volume of the distinct contribution, such portion's location in the global coordinate system so as to provide the feature cloud model of the realm.
US11729244B2
Systems and methods are disclosed herein for media quality selection of media assets based on internet service provider data usage limits. One disclosed technique herein discusses receiving a data usage limit from an internet service provider. The data usage limit includes maximum data usage for particular user account data. A media asset is selected from a media streaming server that includes a plurality of qualities having respective data sizes (e.g., for video quality—4K, 1080p, etc.) A determination is made whether a selected data size from a selected quality of the plurality of qualities of the selected media asset exceeds remaining data of the received data usage limit. If so, a request is transmitted to the to the media streaming server to retrieve the selected media asset with a quality having a data size smaller than the respective data size.
US11729240B2
Disclosed herein is a processor to process streaming data. The processor includes a TCP client circuit and a TCP server circuit. A fanout circuit is communicatively coupled to the TCP client circuit and the TCP server circuit. The fanout circuit receives data from the TCP client circuit, determines a rate at which to transmit the received market data, and instructs the TCP server circuit to send the received data at the determined rate.
US11729235B2
A system and method is provided for synchronizing media content in a media distribution network using timestamps. The system includes a decoder configured to parse a plurality of data packets of a media stream to determine a timestamp value for each video frame in the media stream; and a media content synchronizer. The media content synchronizer generates a media content timeline based on the determined timestamp value of each of video frame, generates the media content timeline based on a cadence having monotonic increasing count, determines whether each video frame of the media stream is a next frame in a video sequence of the media stream based on the timestamp value for the respective video frame, and repeats a previous frame in the video sequence to generate the media content timeline when a current frame in the video sequence was dropped based on the determined timestamp value.
US11729226B2
Method, apparatus and computer program product for seamless communication resource transition are described herein. A user may wish to share an external communication resource within a group-based communication system. Settings may be provided allowing the user to more effectively share the external communication resource. The user may select the appropriate settings such that the external communication resource can be transmitted to the group-based communication system for display in accordance with the selected settings.
US11729219B2
A service action category based cloud security system and method implement cloud security by categorizing service actions of cloud service providers into a set of service action categories. The service action categorization is performed agnostic to the applications or functions provided by the cloud service providers and also agnostic to the cloud service providers. With the service actions of cloud service providers thus categorized, cloud security monitoring and threat detection can be performed based on service action categories. Thus, cloud security can be implemented without requiring knowledge of the applications supported by the cloud service providers and without knowing all of the individual service actions supported by the cloud service providers.
US11729212B2
Systems and methods are disclosed for creating simulated phishing attack messages that have characteristics which make them appear genuine, while also having characteristics that a user should recognize as being false. Simulated phishing emails may appear to be more realistic to a recipient user if the user observes that the email has also been sent to an individual known to the recipient within the same company. However, it may not be desirable to send the simulated phishing email to such additional recipients. The systems and methods include communicating a simulated phishing email from a server of a simulated phishing attack system to a recipient user of an entity. The simulated phishing email appears to the recipient user as though it is also addressed to one or more non-recipient users of the entity, even though the email is not sent to the non-recipient users.
US11729211B2
A method of classifying electronic communications includes receiving an electronic message. A whitelist is input comprising at least one entry associated with an authoritative entity. At least one similarity score is computed based on an extent to which the message matches the entry in the whitelist. When the similarity score exceeds that threshold value, an indicator is output of a risk that the message appears to be associated with the authoritative entity. It is determined whether the message was sent from the authoritative entity based on at least one of attempting to verify an email authentication, and comparing an email address of a sender of the message to an email address associated with the authoritative entity. Responsive to determining that the message was sent from the authoritative entity, the message is delivered. Responsive to determining that the message was not sent from the authoritative entity, a security action is performed.
US11729208B2
An impact range estimation apparatus 10 estimates a range of impact due to infection by malware in a network system with a plurality of nodes. The impact range estimation apparatus 10 includes: a reverse propagation probability calculation unit 11 configured to, when a specific node is infected with the malware, based on scenario information that specifies a pattern of attack by the malware and a communications log in the network system before infection by the malware, for each node other than the specific node, calculate a probability that the malware propagates from that other node to the specific node; and a simulation execution unit 12 configured to, using the calculated probability, execute a plurality of times a simulation in which the malware is propagated to the specific node, and for each other node, calculate a number of times that that node becomes a propagation source of the malware.
US11729206B2
Systems and methods are described for verifying whether simulated phishing communications are allowed to pass by a security system of an email system to email account of users. One or more email accounts of the email system with the security system may be identified to use for a delivery verification campaign. Further, one or more types of simulated phishing communications may be selected from a plurality of types of simulated phishing communications. The delivery verification campaign may be configured to include the selection of the one or more types of simulated phishing communications from the plurality of types of simulated phishing communications. The selected one or more types of simulated phishing communications of the delivery verification campaign may be communicated to the one or more email accounts. Further, whether or not each of the one or more types of simulated phishing communications was allowed by the security system to be received unchanged at the one or more email accounts.
US11729201B2
Methods and systems for assessment and management of security in serverless environments are provided. One method includes executing an at least partially automated environment discovery process in which an overall security footprint of the enterprise is determined, and automatically identifying, via an enterprise security assessment tool, one or more security applications and associated settings capable of meeting the set of security requirements of the enterprise based on the sets of attributes associated with a plurality of serverless services.
US11729198B2
In an embodiment, a semantic model and a semantic model training method that obtains a textual description of one or more features associated with a first vulnerability that has been used in one or more attacks. Text is parsed from the first textual description in accordance with one or more rules. The system determines a first label for the first vulnerability that is associated with one or more of a plurality of stages of an attack chain taxonomy. The model is generated or refined to map the parsed text to the first label associated with the one or more stages of the attack chain taxonomy.
US11729196B2
A method, apparatus and system for determining a weakness or risk for devices of an Internet-of-things (IoT) network include determining a representation of a physical environment of the IoT network and expected physical and cyber interactions between the devices of the IoT network based at least in part on operating characteristics of the devices of the IoT network, monitoring the physical environment and actual interactions between the devices to generate a network model including at least one of uncharacteristic physical or cyber interaction paths between the devices, based on the determined network model, determining at least one weakness or risk of at least one of the IoT network or of at least one of the devices, and providing a metric of security of at least one of the IoT network or of at least one of the devices based on at least one of the determined weakness or risk.
US11729193B2
Techniques are described for automatically incorporating lifecycle information for a secured environment (SE) into an intrusion detection system monitoring the secured environment's operations. In one example, a secured environment including at least one component is monitored, where the secured environment is associated with a lifecycle operations manager (LOM) responsible for managing lifecycle operations associated with at least one component in the SE. One or more log files associated with operations of each of the at least one components are obtained, along with log files associated with lifecycle operations executed by the LOM. A determination is made as to whether the particular activities documented in the log files indicate a violation of at least one malicious action rule. In response to determining that the log files are associated with a malicious action rule, a mitigation action associated with the violation is triggered.
US11729192B2
Detection and notification of malware at a user device may be performed by a validation server. The user device may hash elements associated with a document object model of a webpage and send generated hash values to the validation server. The validation server may validate the hash values. Based on detection of hash values corresponding to elements maliciously-injected by malware, the validation server may send one or more notifications to other servers that may communicate with the user device.
US11729189B1
Methods and systems for monitoring network activity. Various embodiments may deploy virtual security appliances to a certain location or with a specific configuration based on data regarding previous attacks and attacker activity. Accordingly, the deployed virtual security appliance(s) are better suited to gather more useful behavior regarding threat actor behavior and attacks.
US11729188B2
Device and method for intrusion detection in a computer network. A data packet is received at an input of a hardware switch unit, an actual value from a field of the data packet being compared in a comparison by a hardware filter with a setpoint value for values from the field, the field including data link layer data or network layer data, a value for a counter determined as a function of a result of the comparison being provided by the hardware switch unit, and a computing device determining a result of the intrusion detection as a function of the value of the counter in the hardware switch unit and independently of information from the data packet, in particular, without an evaluation of information from the data packet by the computing device.
US11729183B2
A system and a method of providing security to an in-vehicle network are provided. The method efficiently operates multiple detection techniques to reduce the required system resources while maintaining robustness against malicious message detection.
US11729174B2
Various aspects of triggering and controlling workflows are disclosed, where a workflow processes data across a plurality of services by performing a predefined operation using predefined parameters when triggered by a predefined input. Specifically, the various aspects include providing access control for workflows triggered using button sharing, encoding workflows and scanning encoded workflows to trigger workflows, using security badges and access control systems used at workplaces to trigger workflows, and enabling workflows to extract information from mobile devices and using the information for subsequent processing.
US11729173B2
An apparatus and method for online service access control are provided. The method for online service access control according to one embodiment includes determining a device having control right for an online service from among a plurality of user devices accessing a user's account for the online service, providing data generated, by a server, for the online service to the device having control right, and providing data generated, by the device having control right, for the online service to the server, wherein the providing of the data generated by the server comprises, when the device having control right is changed to another device according to the determination, providing the device currently having control right with data required to seamlessly provide the online service, which has been provided to the device previously having control right, to the device currently having control right.
US11729162B2
A system and method for providing cable security in a network is generally described. The method includes receiving a request to remove a cable, where the request includes a first password and a second password, and wherein the cable connects a first port and a second port. The method further includes determining a first authenticity of the first password. After determining the first authenticity of the first password, the method further includes suspending a data flow through the cable, virtually mapping, by a storage device configuration unit, the first port to a third port, and transmitting the data flow from the third port to the second port. The method further includes determining an authenticity of the second password. After determining the authenticity of the second password, the method includes unlocking a physical lock connected to the cable.
US11729161B1
A network system to provide a centralized system to connect to third-party systems by using pre-built, secure, and pre-tested standardized connectors to data and services provided via APIs. A service provider pre-configures third-party systems connections to establish a type of certificate required, establish a security level required for each third-party system connection, pre-configure a software connection, and test the connection. The service provider presents a graphical user interface to a user of a client system with representations of each pre-configured third-party system connection. When a client selects a third-party system connection to connect with the client system data, the service provider generates a certificate signing request, communicates a private key to the client system, and communicates the client system data and the certificate signing request to a certificate authority system. Based on the obtained certificates, the service provider provides access to the required APIs via the pre-configured connection.
US11729155B2
A first host receives a packet from a first compute node for a second compute node of a second host. The payload is larger than a maximum transmission unit size. The first packet is encapsulated with an outer header. The first host analyzes a length of at least a portion of the outer header in determining a size of an encrypted segment of the payload. Then, the first host forms a plurality of packets where each packet in the packets includes an encrypted segment of the payload, a respective encryption header, and a respective authentication value. The payload of the first packet is segmented to form a plurality of encrypted segments based on the size. The first host sends the packets to the second host and receives an indication that a packet was not received. A second packet including the encrypted segment is sent to the second compute node.
US11729146B1
A method of automatic security group generation by a firewall management service. The method may include receiving a security policy definition allowing cloud resource instances labeled by a first tag to communicate to cloud resource instances labeled by a second tag; creating a first security group comprising an inbound firewall rule for the cloud resource instances associated with the first tag, wherein the inbound firewall rule specifies cloud resource instances associated with a second security group as source communication endpoints; creating a second security group comprising an outbound firewall rule for the cloud resources instances associated with the second tag, wherein the outbound firewall rule specifies cloud resource instances associated with the first security group as destination communication endpoints; and causing a firewall service to implement the first security group and the second security group.
US11729141B2
The present disclosure relates to network connection methods and devices for connecting a terminal device to a network through a network access device. The network access device may include a processor and a connection configuration component. The processor receives a connection request from the terminal device. The processor also authenticates the terminal device based on the connection request, and obtains a verified Internet protocol (IP) address from the connection configuration component. The processor further transmits the verified IP address to the terminal device after the terminal device is authenticated, wherein the terminal device is configured to be connected to the network by using the verified IP address.
US11729129B2
Connected gateway servers relay an electronic message from a first client device to a second client device by storing the message in respective user message queues associated with the sender and/or recipient of the message and then sending the message along a sequence of gateway servers to a gateway server that hosts the second client device. Upon receiving the electronic message at a first gateway server, a second gateway server that is hosting the second client device is identified and a sequence of gateway servers starting at the first gateway server and ending at the second gateway server is determined. Each gateway server in the sequence relays the message to the following gateway server in the sequence while maintaining user message queues. Failure of the last gateway server in the sequence results in the penultimate gateway server in the sequence assuming the responsibility of hosting the second client device.
US11729102B2
An active-active cluster control method includes that a control node receives a first query request from a first network processing node in an active-active cluster, configures an outbound forwarding rule based on forwarding information, generates an inbound forwarding rule, and sends the outbound forwarding rule to the first network processing node. The control node may further receive a second query request, determine that forwarding information of a second packet matches the inbound forwarding rule, obtain the recorded inbound forwarding rule, and send the inbound forwarding rule to the second network processing node.
US11729096B2
Embodiments may be generally direct to apparatuses, systems, method, and techniques to provide multi-interconnect protocol communication. In an embodiment, an apparatus for providing multi-interconnect protocol communication may include a component comprising at least one connector operative to connect the component to at least one off-package device via a standard interconnect protocol, and logic, at least a portion of the logic comprised in hardware, the logic to determine data to be communicated via a multi-interconnect protocol, provide the data to a multi-protocol multiplexer to determine a route for the data, route the data on-package responsive to the multi-protocol multiplexer indicating a multi-interconnect on-package mode, and route the data off-package via the at least one connector responsive to the multi-protocol multiplexer indicating a multi-interconnect off-package mode. Other embodiments are described.
US11729092B2
The disclosed invention provides system and method for multi-path mesh network communications. The network system utilizes multiple communication paths and linearly encoded and disassembled packets through mathematical coding techniques that respectively travel the communication paths. The system includes an encoder, a transmitter, a decoder and a receiver. The encoder receives data from an external source and linearly encodes and simultaneously disassembles the data to generate copackets. None of the individual copackets contain decodable information of the data. The transmitter is coupled to the multiple communication paths and respectively transmits the copackets through different communication paths. The receiver receives the copackets transmitted through the communication paths. The decoder decodes available copackets and reassembles the data from the available copackets if a number of the available copackets are no less than a mathematically calculated number. The reassembled data has the complete information of the data originally transmitted.
US11729089B2
Techniques for network routing border convergence are described. Backup paths for external connections for a network are established and provide for a temporary path for network traffic during network routing convergence, preventing traffic loss at network border nodes.
US11729088B2
A system and methods of use for a broadcast switch system, broadcast management switching system, and methods of use in network-on-chip are presented. The invention relates generally to broadcasting transactions in a network-on-chip (NoC). More specifically, and without limitation, the invention provides for transacting from master to multiple slaves and for receiving responses. The invention relates to a broadcast switch for broadcasting transactions. More specifically, and without limitation, the invention relates to a broadcast switch system, broadcast management switching system, and methods of use in NoC.
US11729085B2
A method and system for packet tracing is described. In one embodiment, a method includes selecting a packet for tracing through a cluster of a plurality of nodes. The method includes preparing the packet for tracing by generating a cluster-wide unique ID, associating the unique ID with the packet, generating a running counter, and associating the counter with the packet. The method includes generating a first record buffer on a first node of the plurality of nodes and recording the unique ID and an initial value of the counter. The method includes recording a description of an operation performed on the packet in the first record buffer along with a value of the counter. The method also includes transferring the packet to a second node, along with the unique ID, the value of the running counter, and an attribute that indicates that the packet is to be traced.
US11729081B2
In an approach to optimize server connection timeout errors in a cloud environment, embodiments create a knowledge corpus associated with connection timeout patterns based on historical learning of transaction parameters and predicts a criticality of a transaction based on one or more identified contextual situations. Further, embodiments dynamically adjust a connection timeout range of the transaction based on the predicted criticality and one or more identified contextual situations of the transaction, and selectively identify a connection timeout range for the transaction based on an evaluation of the one or more contextual situations. Additionally, embodiments analyze generated timeout errors on a remote server from within a service mesh, and adjust timeout values of the transaction based on the analyzed generated timeouts errors. Responsive to the transaction receiving a timeout error, embodiments output a recommended timeline detailing when the transaction can be reinitiated.
US11729080B2
Agentless method to automatically detect low latency groups in containerized infrastructures includes obtaining information about communication across workloads within a cluster of containers implemented by an operating environment. The information identifies multiple pairs of containers. Each pair includes a network source container and a corresponding network destination container. The information includes, for each pair of containers, a corresponding latency associated with a network call between the network source container and the corresponding network destination container. An undirected graph is generated using the obtained information. The undirected graph represents a node-wide latency within the cluster. Using the undirected graph, nodes within the cluster with a latency less than a threshold latency level are grouped. Grouped nodes with latencies less than the threshold latency level are provided.
US11729079B2
In accordance with an example embodiment of the present invention, disclosed is a method and an apparatus thereof for selecting a packet loss concealment procedure for a lost audio frame of a received audio signal. A method for selecting a packet loss concealment procedure comprises detecting an audio type of a received audio frame and determining a packet loss concealment procedure based on the audio type. In the method, detecting an audio type comprises determining a stability of a spectral envelope of signals of received audio frames.
US11729071B1
In one embodiment, a device receives application experience metrics for a software-as-a-service application served by a plurality of application endpoints. The device generates, based on the application experience metrics, a predictive model that predicts application experience scores for connections between a service provider network and the plurality of application endpoints. The device selects a particular application endpoint for the service provider network, based on an application experience score predicted by the predictive model. The device sends an indication an indication of the particular application endpoint selected by the device to the software-as-a-service application. The indication is used to assign a connection between the service provider network and the particular application endpoint.
US11729062B1
Computer-implemented methods, media, and systems for context-sensitive defragmentation and aggregation of containerized workloads running on edge devices are disclosed. One example method includes monitoring telemetry data from multiple software defined wide area network (SD-WAN) edge devices that run multiple workloads, where the telemetry data includes at least one of resource utilization at the multiple SD-WAN edge devices, inter-workload trigger dependency, or inter-workload data dependency among the multiple workloads. It is determined, based on the telemetry data, that at least two of the multiple workloads running on at least two SD-WAN edge devices have the inter-workload trigger dependency or the inter-workload data dependency. In response to the determination that the at least two of the multiple workloads have the inter-workload trigger dependency or the inter-workload data dependency, a first process of migrating the at least two of the multiple workloads to a first SD-WAN edge device of is initiated.
US11729051B2
A control node can be automatically deployed at a remote location according to some examples described herein. In one example, a system can automatically set up a control node at a remote location by performing various operations. The operations can include interacting with the remote location to deploy an instance of the control node at the remote location. The operations can include providing a configuration script to the remote location for use by the instance in configuring one or more managed nodes. The operations can include providing connection information to the remote location for use by the instance in establishing a network connection to the one or more managed nodes. The system can then initiate a configuration process in which the control node establishes the network connection to the one or more managed nodes and then configures the one or more managed nodes in accordance with the configuration script.
US11729046B2
An apparatus of wireless communications comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and computer program code configured to, with the at least one processor, cause the apparatus at least to: detect a radio link failure of a master cell group; suspend master cell group transmission for radio bearers, based on the detecting; and transmit or report a radio resource control indication over at least one of a signaling radio bearer between the apparatus and a secondary node, or a secondary cell group leg of a split signaling radio bearer.
US11729042B2
An Internet Protocol Security (IPsec) acceleration method includes generating, by an Internet Key Exchange (IKE) device, an IKE link establishment session packet according to an IPSec configuration parameter and a security policy in a security policy database (SPD), sending, by the IKE device, the IKE link establishment session packet to a peer device, establishing a security association (SA) with the peer device, and sending, by the IKE module, the SA to a data forwarding device, where the IKE device and the data forwarding device are discrete devices.
US11729037B2
Techniques are provided for utilizing a hybrid of ultra-wideband (UWB) and narrowband (NB) signaling to provide more efficient operating range and operating efficiency. For example, a first device may transmit a packet via an NB signal to a second device, whereby the packet comprises information indicating a time period for reception of a plurality of fragments, respectively, via a UWB signal. The first device may then transmit a first fragment of the plurality of fragments to the second device via the UWB signal, whereby the first fragment comprises an intermediary base sequence, the intermediary base sequence being aperiodic and comprising a first set of first sequences and a second set of second sequences. In some embodiments, the intermediary base sequence may contain at least one gap interval that may be used to identify a signature of the link between the first device and the second device.
US11729034B2
Provided are methods and apparatuses for performing a random access of a terminal in a wireless communication system. A method, performed by a terminal, of performing a random access, according to an embodiment, includes receiving preamble configuration information from a base station, obtaining a RACH (random access channel) preamble scaled in length in proportion to a difference between an expected minimum distance and an expected maximum distance to the base station from opposed edges of a cell served by the base station, based on the preamble configuration information and transmitting the obtained RACH preamble to the base station to access a NTN (non-terrestrial network).
US11729028B2
In one aspect, an apparatus includes: a fast Fourier transform (FFT) engine to receive and convert a plurality of orthogonal frequency division multiplexing (OFDM) samples into a plurality of frequency carriers; a detector coupled to the FFT engine to determine a channel estimate for a first frequency carrier using a first channel estimate for the first frequency carrier and a plurality of other channel estimates, each of the plurality of other channel estimates for one of a plurality of neighboring frequency carriers within an evaluation window, and determine a log likelihood ratio (LLR) for the first frequency carrier using the channel estimate for the first frequency carrier; and a decoder coupled to the detector to decode a first OFDM symbol comprising the first frequency carrier using the LLR for the first frequency carrier.
US11729027B2
A UE determines a respective set of subcarriers from N subcarriers in each OFDM symbol of M1 consecutive OFDM symbols within a slot. The respective set of subcarriers carries a respective set of SRSs that form transmission combs of a transmission comb size. The respective set of subcarriers in one of the M1 consecutive OFDM symbols do not overlap in frequency domain with the respective set of subcarriers in any other one of the M1 consecutive OFDM symbols. The UE applies the respective set of phase rotations to the respective set of SRSs in each OFDM symbol to obtain a cyclic shift. The UE maps the respective set of SRSs applied with phase rotations to the respective set of subcarriers in each OFDM symbol. The UE transmits the respective sets of SRSs in the M OFDM symbols.
US11729014B2
A modular door and frame that can be manufactured and supplied to end users with various combinations of intelligent features. The intelligent features allow functions to be performed by the door and/or frame. Also, conditions or events to be detected and monitored at the intelligent door and/or remote locations. Data relating to the various functions, events, or conditions can be communicated across a network that is communicatively coupled to the door.
US11729008B2
A system, topology, and methods for multiplexing a plurality of POE ports at a POE switch via a single standard wired connection to the downstream where the multiplexed signals and power may be demultiplexed to a plurality of ports.
US11729006B2
A method for securing the communications between a publisher and a subscriber in an Internet of things networks. An example method includes receiving a challenge vector from a subscriber and determining a response vector using a physically unclonable function (PUF) for each challenge value in the challenge vector to generate a response value. The response vector it is sent to the subscriber.
US11729000B2
Methods and systems for introducing self-contained intent functionality into decentralized computer networks is described. Specifically, the methods and systems for encoding user intent (e.g., what functions a value may be used for) into data structures for computer programs and/or transaction protocols intended to automatically execute, control, or record events and actions according to predetermined terms or criteria are described herein. For example, the methods and systems may include using a permission structure native to one or more cryptocurrencies to provide additional functionality that allows for an intent to be introduced into the computer program and/or transaction protocol. This intent may be introduced using a routing data structure indicating exchange eligibility of resource sources.
US11728997B2
The disclosed embodiments are related to securely updating a semiconductor device and in particular to a key management system. In one embodiment, a method is disclosed comprising receiving a request for an activation code database from a remote computing device, the request including at least one parameter; retrieving at least one pair based on the at least one parameter, the pair including a unique ID (UID) and secret key; generating an activation code for the UID; and returning the activation code to the remote computing device.
US11728995B2
A reward points transfer system and process using blockchain is disclosed. Transaction account issuers may write reward transfer messages to the blockchain to initiate a transfer of reward points for a transaction account holders account to one or more rewards partners. Rewards partners may retrieve the reward transfer messages from the blockchain, and write a reward transfer response message to the blockchain to confirm receipt of the reward points transfer and to update the status of the transfer. The transaction account issuers and rewards partners may encrypt the messages and generate hashes based on the messages prior to writing to the blockchain, to ensure that the messages are not tampered with during the transfer process.
US11728980B2
The present invention relates to cryptographic protection of information by using keys derived from quantum keys from an associated quantum key distribution (QKD) system. The system includes a transmitting node and a receiving node of a single-pass QKD system, and two encryptors connected by a classical communication channel. The one encryptor is further connected to the transmitting node of the QKD system by a first local communication link, and the other encryptor is connected to the receiving node of the QKD system by a second local communication link. A method of implementing the system includes generating encryption keys and authentication keys based on quantum keys of a size not less than the one specified in operation of the system, exchanging service data in course of execution of the quantum protocol using the encryption keys and authentication keys, and providing identity of the encryption keys and the authentication keys.
US11728975B2
Systems are provided for managing access to a log of dataset that is generated when the dataset is accessed. A system stores, with respect to each of a log producer and a log accessor, an encrypted symmetric key for dataset that is encrypted using a corresponding public key. The system returns the encrypted symmetric key for the log producer, such that the log producer can decrypt the dataset that is encrypted using the symmetric key. A log of the dataset is generated when the log producer accesses the dataset.
US11728971B2
Technologies for binary data distribution include a source computing device and a recipient computing device. The source computing device profiles a binary file payload to generate a payload fingerprint and generates a text-encoded payload as a function of the binary file payload. The source computing device combines the text-encoded payload and metadata including the payload fingerprint to generate a message data structure, and serializes the message data structure to generate a serialized message. The source computing device may sign the text-encoded payload and the metadata to generate a signature included in the serialized message. The source computing device transmits the serialized message to the recipient computing device, which loads the text-encoded payload and the payload fingerprint from the serialized message, decodes the text-encoded payload to recover the binary file payload, and verifies the binary file payload with the payload fingerprint. Other embodiments are described and claimed.
US11728969B2
There may be provided a blockchain-implemented security method. It may be implemented using a blockchain network. Embodiments of the blockchain-implemented security method involve a first party and a second party. The blockchain-implemented security method generates a plurality of n cryptographic locks based on combinations of encrypted versions of a first plurality of n secrets generated by the first party and encrypted versions of a second plurality of n secrets generated by the second party. One secret belonging to the first plurality of n secrets generated by the first party is randomly selected. And a cryptographic key that unlocks a particular cryptographic lock of the plurality of n cryptographic locks is generated, wherein the particular cryptographic lock corresponds to the randomly selected one secret belonging to the first plurality of n secrets generated by the first party.
US11728966B2
The method of constructing QAP-based Homomorphic Encryption (HE) in the semi-public setting is introduced, which comprises: encryption, computation, and decryption. The data receiver produces a semi-public key Keys-pub. The data provider can encode his k-qubit plaintext |x to a k-qubit ciphertext |ψen=QP|x via a k-qubit invertible operator QP randomly generated by Keys-pub. From the provider, the message En(ζp) of QP encoded by a cryptosystem Gcrypt in Keys-pub is transmitted to the receiver through a small-resource communication channel and the ciphertext |ψen is conveyed to the cloud. The receiver creates the instruction of encoded computation Uen=PMQP and transports to the cloud, where M is the required k-qubit arithmetic operation, P a k-qubit permutation, and a k-qubit operator to mingle with M. According the instruction, the cloud performs the encrypted evaluation Uen|ψen and transfer to the receiver. The decryption Keypriv Uen|ψen is conducted by the receiver via the private key Keypriv=†P†, a complex-transpose of the product P, to obtain the final result M|x.
US11728965B2
A fully homomorphic white-box implementation of one or more cryptographic operations is presented. This method allows construction of white-box implementations from general-purpose code without necessitating specialized knowledge in cryptography, and with minimal impact to the processing and memory requirements for non-white-box implementations. This method and the techniques that use it are ideally suited for securing “math heavy” implementations, such as codecs, that currently do not benefit from white-box security because of memory or processing concerns. Further, the fully homomorphic white-box construction can produce a white-box implementation from general purpose program code, such as or C++.
US11728963B2
A clock and data recovery device of a memory system receives a multiplexed data signal obtained by multiplexing a plurality of data units, each of which is to be transmitted to one of a plurality of memories for storage therein, in an area corresponding to each memory in an amplitude direction and a time direction. The clock and data recovery device includes a clock generation circuit configured to generate a clock, and a data recovery circuit configured to execute phase synchronization with respect to a synchronization signal included in the multiplexed data signal using the generated clock and to recover one of the data units from the area corresponding to one of the memories, from the multiplexed data signal.
US11728955B2
A system, method, and computer program product for implementing dynamic telecom network agent filtering is provided. The method includes retrieving peripheral data associated with user equipment (UE) enabled with respect to a telecom network associated with a telecom network hardware device. The peripheral data is mapped with a pre-defined filter selection model and a filtering agent model is selected. Likewise, filtering agents associated with the UE are selected and environmental characteristics associated with the telecom network are retrieved. A location of the UE is tagged and the filtering agents are pushed to the UE. Network commands associated with execution of the filtering agents are generated and the filtering agents are executed with respect to the UE. In response, noise and distortion occurring during operation of the UE with respect to the telecom network is reduced.
US11728952B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine a block error rate (BLER) target for communications associated with the user equipment; determine a resource allocation pattern for transmission of channel state information reference signals (CSI-RS) based at least in part on the BLER target; and monitor one or more resources, indicated by the resource allocation pattern, for the CSI-RS. Numerous other aspects are provided.
US11728951B2
Channel State Information (CSI) is reported by a subscriber station to a base station. The CSI is reported periodically for at least two physical uplink control channels (PUCCH). In case of a collision between a report for a first PUCCH and a report for the second PUCCH, each of the report types is partitioned into one of a number of classes, which include: a first class for rank indicator related report types and wideband (WB) W1 report types; a second class for WB report types or WB channel quality indicator report types; and a third class for subband related report types or W1 report types. A priority rule assigns a priority to each of the classes. The CSI feedback reports are transmitted according to the priority rule such that the report type included in a higher class is transmitted and the report type included in the lower class are dropped.
US11728939B2
The present disclosure describes methods and systems applicable to transport block communication as part of multiple access wireless communications. The methods and systems include a base station (120) that determines a first order for a first plurality of non-orthogonal multiple access (NOMA) layers (705). The base station (120) receives, from a user equipment (110), the first plurality of NOMA layers that carry the transport block (710). The base station (120) combines the first plurality of NOMA layers following the determined first order (715) and determines that decoding the transport block from the first plurality of NOMA layers has failed (720). The base station (120) then determines a second order for a second plurality of NOMA layers (725) and receives, from the user equipment (110), the second plurality of NOMA layers that carry the transport block (730). The base station (120) then combines the second plurality of NOMA layers following the second order to decode the transport block from the second plurality of NOMA layers (735).
US11728928B2
A blockchain consortium network can be implemented in which nodes of one or more blockchains generate data for pipeline-based processing by a consortium pipeline system. The generated data can include private blockchain data, public blockchain data, and machine data, such as logs or operational metrics from the nodes. The data is collected from different network levels and can be transformed via pipeline processes of the consortium pipeline system to securely share data in the blockchain consortium network.
US11728926B2
Embodiments of this application provide a communication method, a terminal device, and a network device. Referring to the method, blind detection of a terminal device can be performed in different scheduling periods based on a maximum number of blind detection in a preset time period, thereby helping to reduce energy consumption that is caused to a terminal device by blind detection, and reduce blind detection complexity.
US11728922B2
A non-terrestrial network (NTN) node transmits configuration information including an indication of a maximum transmission block size (TBS) for a physical uplink shared channel (PUSCH) transmission or a physical downlink shared channel (PDSCH). A TBS for the PUSCH or PDSCH is determined based on at least the indicated TBS, and one of a signal indicates one of a maximum modulation and coding scheme (MCS) for the PUSCH or PDSCH transmission or whether the PUSCH or PDSCH transmission uses a default MCS, or the MCS is determined based on at least the indicated maximum MCS, and the PUSCH is transmitted or the PDSCH is received based on the determined TBS and the determined MCS. A maximum TBS, a maximum MCS, or a number of hybrid automatic repeat request (HARD) processes is indicated by a master information block (MIB), a system information block (SIB), or radio resource control (RRC) signaling.
US11728921B2
The present invention relates to a method for transmitting an aggregate MPDU and a response frame thereto and a wireless communication terminal using the same, and more particularly, to a wireless communication method and a wireless communication terminal for setting various formats of the aggregate MPDU and the response frame thereto and performing an efficient data communication by using the same. To this end, provided are a wireless communication terminal including: a processor; and a communication unit, wherein the processor receives an aggregate MPDU (A-MPDU) consisting of one or more MAC protocol data units (MPDUs), determines a format of a response frame for the received A-MPDU, and
transmits a response frame of the determined format, wherein the format of the response frame for the A-MPDU is determined based on at least one of the number of traffic IDs (TIDs) soliciting an immediate response in MPDU(s) successfully received in the A-MPDU and MPDU delimiter information of the A-MPDU and a wireless communication method using the same.
US11728920B2
Provided is an optical communication system configured as an optical ring network including: a first optical communication device configured to transmit a first optical signal having a first wavelength in a first direction, and to transmit a second optical signal having a second wavelength in a second direction opposite to the first direction; and a second optical communication device configured to generate a first reflected signal by reflecting the first optical signal when the first optical signal is received, to generate a second reflected signal by reflecting the second optical signal when the second optical signal is received, and to transmit the first and second reflected signals to the first optical communication device, wherein the first optical communication device analyzes a connection state of the second optical communication device based on the first and second reflected signals.
US11728919B2
An optical communications apparatus, including a reconfigurable optical add/drop multiplexer, in which an optical deflection component may perform angle deflection on a plurality of first sub-wavelength light beams to obtain a plurality of second sub-wavelength light beams and a plurality of third sub-wavelength light beams, and propagate the plurality of second sub-wavelength light beams to a second optical switch array. A third wavelength dispersion component combines the plurality of second sub-wavelength light beams into a second light beam. A first output component outputs the second light beam from a dimension. A second wavelength dispersion component combines the plurality of third sub-wavelength light beams into a third light beam, and makes the third light beam incident to a third optical switch array. A second output component outputs the third light beam to drop a signal.
US11728916B2
Systems, methods, and apparatuses are discussed that enable robust, high-speed communication of sensor data. One example system includes a sensor bus, an electronic control unit (ECU), and one or more sensors. The ECU is coupleable to the sensor bus and configured to generate a synchronization signal, and is configured to output the synchronization signal to the sensor bus. The one or more sensors are also coupleable to the sensor bus, and at least one sensor of the one or more sensors is configured to sample sensor data in response to the synchronization signal and to output the sampled sensor data to the sensor bus.
US11728912B2
A system that incorporates aspects of the subject disclosure may perform operations including, for example, receiving, via an antenna, a signal generated by a communication device, detecting passive intermodulation interference in the signal, the interference generated by one or more transmitters unassociated with the communication device, and the interference determined from signal characteristics associated with a signaling protocol used by the one or more transmitters. Other embodiments are disclosed.
US11728911B2
Techniques for identifying an orientation for an antenna in a wireless communication device. A plurality of estimates of antenna gain are determined for an antenna associated with a wireless access point (AP), the plurality of estimates of antenna gain relating to a plurality of wireless stations (STAs) associated with the AP. An orientation for the antenna is determined based on the plurality of estimates of antenna gain and a plurality of properties for the antenna.
US11728903B2
A system for powering a network element of a fiber optic wide area network is disclosed. When communication data is transferred between a central office (CO) and a subscriber terminal using a network element to convert optical to electrical (O-E) and electrical to optical (E-O) signals between a fiber from the central office and twisted wire pair, coaxial cable or Ethernet cable transmission lines from the subscriber terminal, techniques related to local powering of a network element or drop site by the subscriber terminal or subscriber premise remote powering device are provided. Certain advantages and/or benefits are achieved using the present invention, such as freedom from any requirement for additional meter installations or meter connection charges and does not require a separate power network.
US11728899B2
Consistent with an aspect of the present disclosure, electrical signals or digital subcarriers are generated in a DSP based on independent input data streams. Drive signals are generated based on the digital subcarriers, and such drive signals are applied to an optical modulator, including, for example, a Mach-Zehnder modulator. The optical modulator modulates light output from a laser based on the drive signals to supply optical subcarriers corresponding to the digital subcarriers. These optical subcarriers may be received by optical receivers provided at different locations in an optical communications network, where the optical subcarrier may be processed, and the input data stream associated with such optical subcarrier is output. Accordingly, instead of providing multiple lasers and modulators, for example, data is carried by individual subcarriers output from an optical source including one laser and modulator. Thus, a cost associated with the network may be reduced. Moreover, each of the subcarriers may be detected by a corresponding one of a plurality of receivers, each of which being provided in a different location in the optical communication network. Thus, receivers need not be co-located, such that the network has improved flexibility.
US11728896B2
Methods and devices implementing a combination of multi-dimensional pulse position modulation (PPM) with wavelength division multiplexing (WDM) or wavelength division multiplexing multiple access (WDMA) for long range space communications are disclosed. The described multi-dimensional PPM scheme can use the laser wavelength and/or polarization as the additional dimension(s) to the time dimension. Through examples it is shown that the disclosed teachings result in a higher photon information efficiency. Various exemplary embodiments are also presented to highlight the applications benefiting from the disclosed methods and devices.
US11728885B1
A satellite having a set of antenna elements with predefined directions and beam angles is described. This satellite may dynamically select at least a given antenna element based at least in part on utilization and/or availability of a terrestrial wireless communication network used by an electronic device that communicates with the satellite. Moreover, the satellite may change its attitude based at least in part on the given antenna element, where the changed attitude positions a region in a predefined beam angle of the given antenna element. The satellite may dynamically select the region to which it transmits wireless signals. For example, the region may be selected based at least in part on weather conditions associated with the region and/or priority of content conveyed by the wireless signals. Alternatively, the satellite may receive information specifying the region, the utilization and/or the availability of the terrestrial wireless communication network in the region.
US11728884B2
Aspects of the disclosure describe methods and systems for transmitting data via a satellite to a ground node. In one exemplary aspect, a method comprises splitting, on a satellite, a data segment into a plurality of data chunks, wherein an amount of the data chunks equals a number of ground nodes that the data chunks will be transmitted to. For each respective data chunk, the method comprises determining whether the satellite has a stable connection with the respective ground node. When the satellite has the stable connection with the respective ground node, the method comprises transmitting, by the satellite, the respective data chunk to the respective ground node, and when the satellite does not have the stable connection with the respective ground node, the method comprises transmitting, by the satellite, the respective data chunk to a neighboring satellite for storage until the stable connection is established.
US11728883B2
A network analytics control module may include processing circuitry configured to receive three dimensional location information and corresponding signal quality information for a particular asset in an air-to-ground (ATG) network, make a service quality inference for the particular asset based at least in part on the received information, and provide an instruction for a network control activity based on the service quality inference.
US11728882B2
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for joint source channel coding for efficiently relaying a set of bits mapped to a modulation symbol. A method that may be performed by a wireless relay node includes obtaining a set of bits to convey to a second wireless node. The method may include mapping the set of bits to a first modulation symbol of a set of modulation symbols, wherein the mapping is chosen based on an interpreted value of the set of bits. The method may include transmitting the first modulation symbol to the second wireless node.
US11728867B2
An apparatus and method provide for receiving, from a network node, a set of reference signals. A set of beams are identified based on the set of reference signals. A subset of coefficients with non-zero values are determined from a set of coefficients, each coefficient of the subset of coefficients being associated with a pair of values comprising an amplitude value and a phase value, each coefficient of the set of coefficients corresponding to a respective beam of the set of beams for each respective layer of the set of layers and a respective frequency-domain index of a set of frequency domain indices for each layer of the set of layers. The set of layers are partitioned into a plurality of groups of layers. A beam bitmap vector is generated for each group of the plurality of groups of layers, the beam bitmap vector indicating a subset of beams of the set of beams within the layer-group, the subset of beams being associated with the subset of coefficients. A coefficient bitmap vector is generated for each beam of the subset of beams for each group of the plurality of groups of layers, the coefficient bitmap vector indicating a respective frequency domain index associated with each of the subset of coefficients. A channel state information (CSI) report comprising the beam bitmap vector is transmitted to the network node for each group of the plurality of groups of layers, the coefficient bitmap vector for each beam of the subset of beams, or a plurality of pairs of coefficient values corresponding to the subset of coefficients, each pair of the plurality of pairs of coefficient values comprising a respective amplitude value and a respective phase value.
US11728862B1
A communication system that includes a management server communicatively coupled to a gNB and a plurality of remote antenna arrays distributed spatially over a geographical area. The management server causes each remote antenna array of the plurality of remote antenna arrays to obtain one or more signal synchronization block (SSB) signals in a mmWave frequency band from the gNB via a dedicated communication medium. Each remote antenna array of the plurality of remote antenna arrays obtains different SSB signals via the dedicated communication medium. The management server further causes each remote antenna array of the plurality of remote antenna arrays to execute beamforming to direct one or more beams of RF signals corresponding to the obtained one or more SSB signals to serve its corresponding UEs.
US11728855B2
Methods, systems, and devices for wireless communications are described for mitigation of blockages in wireless signals between wireless devices. A UE may detect that a blockage is present (e.g., a hand blockage), such as by detecting that a received signal strength from a transmitting device (e.g., a base station or access network entity) has dropped by greater than a threshold value. Based on the blockage detection, the UE may measure an amplitude of one or more reference signals at one or more antenna elements of multiple antenna elements. The UE may also measure one or more reference signals for one or more phase shifter values that are applied to the multiple antenna elements. The UE may determine a set of amplitude weightings, and a set of phase weightings, for the multiple antenna elements based on the measuring, and apply the sets of weightings for communications with the transmitting device.
US11728841B2
In an embodiment, a method for providing regulatory information by a first device in an ultra-wide band (UWB) system is provided. The method includes indicating availability of the regulatory information to a second device; and providing the regulatory information to the second device based on the availability of the regulatory information, wherein the regulatory information includes at least one of a confidence level indicating a source of the regulatory information, a country code, a time stamp.
US11728822B2
Certain aspects of the present disclosure provide a digital-to-analog converter (DAC) system. The DAC system generally includes a plurality of current steering cells, each comprising a current source coupled to at least two current steering switches, wherein control inputs of the at least two current steering switches are coupled to an input path of the DAC system. The DAC system may also include a current source toggle circuit configured to selectively disable the current source of at least one of the plurality of current steering cells, and a feedforward path coupled between the input path and at least one control input of the current source toggle circuit.
US11728809B2
Disclosed herein is a sensor having an extended sensing distance range beyond conventional proximity sensors. The sensor includes an electrical component structure having a topology in which current is concentrated close to a periphery of the electrical component to produce an extended sensing field. A frequency adjustment circuit can be used to control a frequency of the sensing field to avoid jammers or other interfering signals.
US11728806B2
A pulse generator and a method for generating pulses are provided. The pulse generator includes at least one first transmission line with a first and a second end; at least one second transmission line with a first and a second end; a voltage source; a switching unit; and a charge control device. The charge control device is adapted to connect an output of the voltage source to the first end of the at least one first transmission line. A first switch S1 in the switching unit is adapted to connect or disconnect the second end of the at least one first transmission line to the first end of the at least one second transmission line for predetermined time spans. A second switch S2 in the switching unit is adapted to connect or disconnect the first end of the at least one second transmission line to a fixed potential. The opening or closing states of S1 and S2 in the switching unit are mutually exclusive. A second end of the at least one second transmission line is adapted to be connected to a load. The switching unit is further adapted to operate the first switch, S1, and the second switch, S2, in a predetermined order to alter a pre-charging state of the first transmission line.
US11728805B2
Circuits for protecting devices, such as gallium nitride (GaN) devices, and operating methods thereof are described. The circuits monitor a magnitude of the current in a device and reduce the magnitude of the current and/or shut down the device responsive to the magnitude of the current exceeding a threshold. These circuits safeguard devices from damaging operating conditions to prolong the operating life of the protected devices.
US11728803B2
According to one embodiment, a multichannel switch integrated circuit (IC) includes a multichannel switch circuit and a common test terminal. The multichannel switch circuit includes a plurality of switch circuitries. Each of the switch circuitries includes: an output transistor that outputs an output signal through an output terminal; an overcurrent detection circuit that detects a detection current according to a current flowing through the output transistor; and a diode having an anode that receives the detection current. The common test terminal is connected to each channel switch circuitry, connected to the overcurrent detection circuit through the diode, and connected to a cathode of the diode.
US11728787B2
A filter device includes a first filter and a second filter. The first filter and the second filter are disposed in parallel between a first terminal and a second terminal. A first passband of the filter device includes at least part of a second passband of the first filter. The first passband includes at least part of a third passband of the second filter. The second passband is narrower than the first passband. The third passband is narrower than the first passband. The third passband has a center frequency higher than a center frequency of the second passband. The first filter includes multiple elastic wave resonators and a first capacitive element. The first capacitive element is connected in parallel with the first elastic wave resonator.
US11728785B2
Acoustic resonator devices, filter devices, and methods of making acoustic resonator devices and filter devices. An acoustic resonator device includes a substrate with a cavity and an alignment pattern in a surface of the substrate. The cavity and the alignment pattern have a same depth. A back surface of a piezoelectric plate is attached to the surface of the substrate. A portion of the piezoelectric plate that spans the cavity forms a diaphragm. An interdigital transducer (IDT) is on a front surface of the piezoelectric plate. Interleaved fingers of the IDT are on the diaphragm.
US11728780B2
Disclosed herein are example techniques to facilitate calibrating a portable playback device. An example implementation involves determining that a playback device is to perform an equalization calibration of the playback device and initiating the equalization calibration. Initiating the equalization calibration involves (i) outputting audio content, (ii) capturing audio data representing reflections of the audio content within an area in which the playback device is located, (iii) determining an acoustic response of the area in which the playback device is located, (iv) selecting a stored acoustic response from the acoustic response database that is most similar to the determined acoustic response of the area in which the playback device is located, and (v) applying to the audio content, via the playback device, a set of stored audio calibration settings associated with the selected stored acoustic area response.
US11728775B2
Envelope tracking systems for power amplifiers are provided herein. In certain embodiments, an envelope tracker system includes a first power amplifier that amplifies a first radio frequency (RF) signal and receives power from a first supply voltage, a second power amplifier that amplifies a second RF signal and receives power from a second supply voltage, and an envelope tracker including a first modulator that generates a first output current based on an envelope of the first RF signal and a plurality of regulated voltages, a second modulator that generates a second output current based on an envelope of the second RF signal and the regulated voltages, a first combiner that combines a first DC voltage with the first output current to generate the first supply voltage, and a second combiner that combines a second DC voltage with the second output current to generate the second supply voltage.
US11728773B2
Apparatus and methods for bias switching of power amplifiers are provided herein. In certain configurations, a power amplifier system includes a power amplifier that provides amplification to a radio frequency (RF) signal and a bias control circuit that biases the power amplifier. The power amplifier includes an amplification transistor that receives the RF signal at an input, and a first bias network and a second bias network each connected to the input. The bias control circuit includes a first switch, a first reference current source that provides the first reference current to the first bias network through the first switch, a second switch, and a second reference current source that provides the second reference current to the second bias network through the second switch.
US11728763B1
A lock assembly includes a driving member, a locking member, and a latch. The driving member includes a connection end, and a driving end movable with respect to the connection end. The connection end is arranged on a fastener. The locking member is rotatably arranged on a carrier through a first rotation shaft. The driving end is rotatably connected to the locking member through a second rotation shaft. The locking member includes a hook. The latch is arranged on the fastener. The hook is capable of hooking the latch. The driving end is configured to capable of driving the hook to disengage from the latch, and driving the carrier to rotate with respect to the fastener, or the driving end is configured to drive the hook to hook the latch so that the carrier is secured to the fastener.
US11728758B1
A ground-mounted system for supporting photovoltaic panels singularly or in an array of interconnected panels includes a support base, a plurality of legs connected to the support base on one side and to clips on an opposed side, where the clips connect to a photovoltaic panel.
US11728747B2
According to at least one aspect of the disclosure, an inverter is provided comprising an input configured to receive input DC power from a DC source, an output configured to provide output AC power to a load, a plurality of DC rails coupled to the input and configured to receive the input DC power from the DC source, a plurality of switches coupled between the plurality of DC rails and configured to convert the input DC power into the output AC power, each switch of the plurality of switches having a parasitic capacitance, and at least one ZVS network coupled across at least two switches of the plurality of switches, the ZVS network including at least two inductors configured to resonate with the parasitic capacitance of at least one switch of the plurality of switches to provide soft switching of at least one switch of the plurality of switches.
US11728725B2
An alternating current to direct current conversion circuit includes a rectifier circuit, a first DC to DC conversion module and a second DC to DC conversion module. The first DC to DC conversion module includes multiple power switches and an inductor and is coupled between the rectifier circuit and the second DC to DC conversion module. Multiple power switches in the first DC to DC conversion module are controlled to be turned on simultaneously, so that a voltage across each of the power switches in the first DC to DC conversion module is reduced. The alternating current to direct current conversion circuit includes no power switch with a high withstand voltage, so that the alternating current to direct current conversion circuit has a small volume, low switching loss, less energy loss, and good heat dissipation, thereby increasing power density.
US11728719B2
A linear power supply circuit includes an output transistor provided between an input terminal to which an input voltage is applied and an output terminal to which an output voltage is applied, and a driver configured to drive the output transistor based on the difference between a voltage based on the output voltage and a reference voltage. The driver includes a differential amplifier, a converter, and a first capacitor provided between the output of the differential amplifier and a ground potential. The linear power supply circuit further includes a source follower circuit including a first transistor, and moreover includes a second transistor connected in series with the output transistor and constituting together with the first transistor a current mirror circuit, and a second capacitor connected to the control terminal of the first transistor.
US11728718B2
A laundry appliance includes a drum rotationally positioned within a structural cabinet. An impeller is rotationally positioned within the drum. The impeller is selectively and independently operable with respect to the drum. A binary motor has a first motor and a second motor disposed within a common housing. A first drive belt extends between the first motor and the drum. A second drive belt extends between the second motor and the impeller. The first and second motors engage the first and second drive belts on a belt side of the common housing.
US11728715B2
An electric motor is provided and includes inner and outer rotors, a stator supportive of back iron radially interposed between the inner and outer rotors and a winding structure. The winding structure includes first phase coils radially interposed between the inner rotor and a first side of the back iron, the first phase coils extending axially along the first side of the back iron, second phase coils radially interposed between a second side of the back iron and the outer rotor, the second phase coils extending axially along the second side of the back iron and end windings respectively extending radially between corresponding ones of the first and second phase coils.
US11728709B2
A system and a method for use of electric motors in fracturing operations are disclosed. The system includes an electric motor, a turbine generator, an encoderless vector control subsystem, and at least one pump. The turbine generator is adapted to generate electric power for the system. The encoderless vector control subsystem is coupled between the turbine generator and the electric motor to control the electric motor using determined parameters that are based in part on vibration induced in a feature associated with the turbine generator. The at least one pump is adapted to receive torque input from the electric motor.
US11728704B2
A motor for a surgical instrument includes a rotor and a stator. The rotor includes a shaft and a magnet. The stator includes (i) a cavity in which the rotor is disposed, and (ii) a coil assembly. The coil assembly includes multiple phase sets. The phase sets include multiple sets of wires. Each of the phase sets includes multiple coils and corresponds to a respective one of the sets of wires. The coils in each of the phase sets are at respective positions about the rotor. One of the sets of wires includes at least three wires. The stator causes the rotor to axially rotate a surgical tool of the surgical instrument based on current received at the sets of wires.
US11728699B2
A stator assembly and an electric motor are provided. The stator assembly has an upper end cover, a stator core, an insulation frame, a fixing piece and a communicating piece. The stator core is located below the upper end cover. The insulation frame is arranged on the stator core. The fixing piece is arranged at a top of the insulation frame. One end of the communicating piece is sandwiched between the fixing piece and the upper end cover, and another end extends in a thickness direction of the upper end cover and is connected to the stator core. The fixing piece fixes the insulation frame, the communicating piece and the upper end cover.
US11728697B2
A stator for an electric motor is described. An example stator includes a stator core having teeth that are radially arranged about a common central axis of the stator and located in a spaced apart manner from one another. Each tooth has an inward portion and an outward portion. The example stator further includes an electrically transmissive coil of wire that is wound contiguously upon the inward portions of at least a subset of teeth from the plurality of teeth. The stator also includes wedge members that are radially arranged about the common central axis and located intermittently with the plurality of teeth such that each wedge member abuts with the outward portions of adjacently located teeth.
US11728696B2
A lamination stack for use in a rotating electrical machine includes a plurality of sheets of ferritic material. Each of the sheets has first and second sides that include asperities, and the asperities have a height of about two microns and a width of about two microns. A layer of electrically insulating material is provided between adjacent pairs of the ferritic sheets in the stack, and the asperities extend into the electrically insulating material.
US11728694B2
A wireless power transmitter according to one embodiment of the present disclosure transmits wireless power to a wireless power receiver, receives a first received power packet including an estimated received power value indicating a first calibration data point from the wireless power receiver after a negotiation phase, transmits ACK in response to the first received power packet, receives a second received power packet including an estimated received power value indicating a second calibration data point from the wireless power receiver, transmits ACK in response to the second received power packet, receives a new second received power packet including an estimated received power value indicating a third calibration data point from the wireless power receiver, transmits ACK in response to the new second received power packet, and constructs a power calibration curve using the first received power packet, the second received power packet, and the new second received power packet.
US11728685B2
A power supply system includes a first power supply apparatus configured to perform power transmission by an electromagnetic wave having a first frequency band, and a second power supply apparatus configured to perform power transmission by an electromagnetic wave having a second frequency band. The first power supply apparatus and the second power supply apparatus are provided so as to be 2H×{tan(θ)} or greater distant from each other, when each of the first power supply apparatus and the second power supply apparatus is provided in height H from a floor surface, where H is a positive number, and when a direction of a maximum value ±3 dB is in a range from −θ to +θ in a case where a perpendicular downward direction from each position is a standard.
US11728678B2
A method for regulating input impedance of a switching regulator, the method comprising: obtaining, at an impedance controller: (a) a measured voltage value that is indicative of an input current of the switching regulator and (b) an input voltage of the switching regulator, wherein a ratio of the input voltage to the input current defines an actual input impedance of the switching regulator; generating a control signal by the impedance controller, in accordance with a difference between the actual input impedance of the switching regulator and a desired input impedance of the switching regulator, wherein the desired input impedance is a predefined impedance; and controlling a feedback node feeding the switching regulator, in accordance with the control signal, to realize an output voltage of the switching regulator for achieving the desired input impedance, wherein the feedback node is external to the switching regulator, thereby regulating the input impedance of the switching regulator externally to the switching regulator.
US11728676B2
A power conversion device which converts electrical power generated by a distributed energy resource into electrical power corresponding to a power system is provided, comprising a communication unit which periodically receives, via communication, reception information indicating whether an accident has occurred in the power system, a disconnection unit which disconnects the distributed energy resource from the power system when the communication unit receives the reception information indicating accident occurrence, and a control unit which starts an islanding determination process for determining whether the distributed energy resource is in an islanding state by detecting a change in AC characteristics in the power system, when the communication unit does not receive the reception information for a predetermined first period.
US11728668B2
An electronic device may have a power system with a battery. The device may include power management circuitry that helps distribute power from the battery to components within the device. To prevent an excessive load from being applied to the battery and the battery from dropping below a cut-off voltage, power management circuitry may control power consumption by components in the device. Power consumption models in the power management circuitry may be used to ensure that maximum allowable power consumption levels are not exceeded. To help accurately and quickly manage power consumption decisions, each component may have characteristic power consumption values that characterize the power consumption profile of the component. These characteristic power consumption values may be provided to the power management circuitry with a request for power consumption and the power management circuitry may determine maximum allowable power consumption for the component based on the characteristic power consumption values.
US11728664B2
An electrically operable aerosol-generating system is provided, including: a charging device including a primary power source and a housing to retain the power source; and an aerosol-generating device including a secondary power source and having proximal and distal ends and a body extending therebetween, the charging device having a docking arrangement including a docking space between a first end and an opposing second end spaced therefrom, the first and second ends being walls of the housing, electrical contacts on at least one of the proximal or distal ends of the device to engage with corresponding electrical contacts on at least one of the first and second ends of the docking arrangement, and the electrical contacts include a positive and a negative electrical contact, at least one of which being an annular electrical contact, arranged concentrically on the at least one of the proximal or distal ends.
US11728662B2
A cell balancing device based on a capacitor network, a cascadable balancing battery pack, and a control method thereof, used for battery pack balancing control, and the battery pack being composed of n battery units connected in series; the cell balancing device comprises: n half bridge circuits, each half bridge circuit being connected in parallel to two ends of a battery unit, the midpoint of each half bridge circuit being connected in parallel to a corresponding switch capacitor, and each half bridge circuit comprising two switch transistors connected in series; an energy storage capacitor network, comprising a basic energy storage capacitor network composed of n switch capacitors connected in series; a chain-type driving capacitor network, one end thereof being electrically connected to one of the half bridge circuits or the energy storage capacitor network, and the other end thereof being electrically connected to a drive pulse generator, and the drive pulse generator being electrically connected to the chain drive capacitor network; and a control logic circuit electrically connected to the battery pack, the drive pulse generator, and a master control panel. Using the present solution, the cell balancing device of the present application has excellent balancing effects, reliable performance, strong universality, and strong scalability.
US11728658B2
Controlling a hybrid power system includes calculating a power system state vector based on energy demand and a stored data array including a matrix defined by a power system hardware configuration. The control further includes producing a power request based on the power system state vector, and varying a flow of energy amongst energy devices using drive linkages in the hybrid power system based on the power request. Related apparatus, control logic and controller structure is disclosed.
US11728653B2
Systems and methods for autonomously regulating grid edge devices (GEDs) are disclosed. In one embodiment, a method may include obtaining a first setpoint voltage for a GED. The GED may be implemented on a secondary side of a distribution line providing electricity for a consumer. The method may also include generating an average VAR value based on VARs generated by the GED over a first time interval. The method may include generating an average voltage value based on voltage received by the GED over a first time interval. The method may include adjusting the first setpoint voltage to a second setpoint voltage based on a difference between the average voltage value and the first setpoint voltage exceeding a voltage threshold value.
US11728648B1
A solar system installed at a house or building, which may include solar panels and a solar inverter. When the solar system is installed at the house or building, the power load associated with the solar system might overload an electrical panel. This might force the owner of the house or building to spend thousands of dollars on an electrical panel upgrade. To avoid such an expensive upgrade, a smart load manager (SLM) is disclosed that can communicate with the solar inverter and can control it. The SLM can function as a real-time load shedding device, thereby avoiding the cost of a load center/panel upgrade, while enabling a safe and cost-effective solar system installation.
US11728646B2
A hybrid power generation system is formed by the combination of an energy storage system (ESS) and a rotating synchronous power generator (SPG). Energy is stored in or released from the ESS in response to measurements of the at least one angle parameter, selected from rotor, torque, or power angle of the SPG, to provide active frequency damping of electrical power output. The control of ESS energy exchange increases the stabilizing impact of the SPG inertia on the frequency of electricity in an electrical network or power grid. The hybrid power generation system can have an effective equal area criterion for stability limit that is greater than that of the SPG operating without the ESS. The hybrid power generation system can enable the electrical network to have a greater proportion of variable or distributed energy resource (DER) power generation systems without otherwise exceeding stability limits.
US11728645B2
A photovoltaic system, including: a plurality of photovoltaic panels having outputs connected in series as a string to provide a string output; a converter coupled to the string to receive the string output as an input and generate a direct current output from the input; a series connection of the string output and the direct current output; and a bus powered at least in part by the series connection of the string output and the direct current output.
US11728644B2
An electronic device including a first transistor, a second transistor, a third transistor, and a resistance element is provided. The first transistor includes a first gate and is coupled between a first electrode and a second electrode. The second transistor includes a second gate, a third electrode, and a fourth electrode. The second gate is coupled to the second electrode. The third electrode is coupled to a control electrode. The third transistor includes a third gate, a fifth electrode, and a sixth electrode. The third gate is coupled to the control electrode. The fifth electrode is coupled to the fourth electrode. The sixth electrode is coupled to the second electrode. The resistance element is coupled between the third electrode and the first gate.
US11728640B2
Systems and methods for fault detection and protection in electric power systems that evaluates electromagnetic transients caused by faults. A fault can be detected using sampled data from a first monitored point in the power system. Detection of fault transients and associated characteristics, including transient direction, can also be extracted through evaluation of sample data from other monitored points in the power system. A monitoring device can evaluate whether to trip a switching device in response to the detection of the fault and based on confirmation of an indication of detection of fault transients at the other monitored points of the power system. The determination of whether to trip or activate the switching device can also be based on other factors, including the timing of receipt of an indication of the detection of the fault transients and/or an evaluation of the characteristics of the detected transients.
US11728638B2
A control system and method for tie point fault interrupter and sectionalizing recloser devices in an electrical grid feeder. The technique enables automated sectionalizing reclosers equipped with three-phase current sensing and single- or three-phase voltage sensing, and able to detect pulse-closing operations, to isolate faults and restore load based on pulse count rather than requiring source re-energization and waiting for loss of voltage timers. The system includes a fault interrupter initiating a pulse-testing sequence upon detecting loss of voltage, where a number of preliminary pulses are used to distinguish transient faults from persistent faults, and pulses are counted by the sectionalizing reclosers to determine which of these devices should open. An alternate configuration is disclosed for reinitializing faults, including the fault interrupter closing if initial pulse testing indicates no fault, and subsequent cycles cause a sectionalizing recloser adjacent the fault to open, allowing the fault interrupter to close and hold.
US11728630B2
A method of electric wire routing includes: routing an electric wire in an electric wire routing path which is provided in a case and has a concave shape in a cross-sectional view; and covering an upper portion of the electric wire routing path with a cover. A pair of guide pins are inserted into a through hole formed in a bottom portion of the electric wire routing path in the case from below to a position above a side wall portion which forms the electric wire routing path. The electric wire is passed between the guide pins. The cover is assembled to the upper portion of the electric wire routing path while the guide pins are pulled out from the through hole.
US11728629B1
Power lines are installed with a rope brake apparatus that enables a rope to be suspended above the ground during installation and that thereby eliminates the need to block off the ground between power poles. The rope brake apparatus has a pair of opposed cam cleats mounted on a base adjacent each other for allowing movement of a rope between them in one direction and for preventing movement of a rope between them in an opposite direction.
US11728621B2
An electronic device includes laser emitters, and a laser driver generating a laser drive signal for the laser emitters based upon a feedback control signal. A steering circuit selectively steers the laser drive signal to a different selected one of the plurality of laser emitters and prevents the laser drive signal from being steered to non-selected ones of the plurality of laser emitters, during each of a plurality of time periods. Control circuitry senses a magnitude of a current of the laser drive signal and generates the feedback control signal based thereupon. The feedback control signal is generated so as to cause the laser driver to generate the laser drive signal as having a current with a substantially constant magnitude.
US11728619B2
A method for improving wide-band wavelength-tunable laser. The method includes configuring a gain region between a first facet and a second facet and crosswise a PN-junction with an active layer between P-type cladding layer and N-type cladding layer. The method further includes coupling a light excited in the active layer and partially reflected from the second facet to pass through the first facet to a wavelength tuner configured to generate a joint interference spectrum with multiple modes separated by a joint-free-spectral-range (JFSR). Additionally, the method includes configuring the second facet to have reduced reflectivity for increasing wavelengths. Furthermore, the method includes reconfiguring the gain chip with an absorption layer near the active layer to induce a gain loss for wavelengths shorter than a longest wavelength associated with a short-wavelength side mode. Moreover, the method includes outputting amplified light at a basic mode via the second facet.
US11728617B2
A semiconductor laser device includes: a housing including: a first upper upward-facing surface, a second upper upward-facing surface, a mounting surface, inner lateral surfaces, a first wiring part disposed on the first upper upward-facing surface, and a second wiring part disposed on the second upper upward-facing surface; a submount including: a first main surface fixed to the mounting surface of the housing, and a second main surface opposite to the first main surface; a semiconductor laser element fixed to the second main surface of the submount; a first wire connected to the first wiring part for electrical connection of the semiconductor laser element; and a second wire connected to the second wiring part for electrical connection of the semiconductor laser element.
US11728608B2
A long reach cable cutting tool includes a handle, a motor electrically connectable to a battery, a trigger electrically connected to the motor to provide power from the battery to the motor when the trigger is activated, a pump connected to the motor, the pump is activated to displace a first fluid, a hydraulic actuating system connected to the hydraulic pump, the hydraulic actuating system is movable by the displacement of the first fluid to displace a second fluid, a pole having a first end and a second end, the pole connected to the handle at the first end, and a tool head connected to the pole at the second end, the tool head including a tool head hydraulic actuator hydraulically connected to the hydraulic actuating system, the tool head hydraulic actuator is movable by the displacement of the second fluid to cause relative movement of the actuator with respect to the tool head.
US11728607B2
A coupling device for coupling a plurality of cable units to a component carrier includes a base plate that is flat in at least one plane. A connecting device is disposed on a first side of the base plate and is configured to mechanically couple the base plate to the component carrier. An opening extends through the base plate for each cable end of a plurality of cable ends of the cable units. The opening in each case is disposed on the base plate at a position corresponding to the respective cable unit.
US11728606B2
Examples of the present disclosure describe a flexible connector mechanism that may be used to form an electrical connection and/or a communication link between one or more devices. The flexible connector mechanism may comprise one or more interface components that may each comprise one or more contact portions. The interface components may be configured to be selectively coupled to one or more corresponding components of a coupleable object. The flexible connector mechanism may also comprise a flexible portion that enables the interface components to be manipulated along one or more planes or axes. The flexibility of the flexible portion may enable the interface components of the flexible connector mechanism to be adjusted into, and maintained in, an optimal (or operable) position when coupled to a coupleable object in motion.
US11728603B2
A novel electrical box to house one or more ISO micro relays, is adapted to support IP67 and IP69K Ingress Protection ratings. The housing of the electrical box is molded with blade sockets that correspond to blade positions of the ISO micro relay. The housing is also molded with terminal seats and cylindrical openings which vary, depending on the blade socket, enabling terminals of different sizes, orientations, and positions relative to the respective blades, to be easily inserted into the back of the housing. The resulting position of the terminals ensures that electrical connections to the ISO micro relay are made and ingress protection of components inside the electrical box is ensured.
US11728587B2
A flat plug-in connector assembly includes a flat contact, a mating plug connector, and a contact chamber. The flat contact has a middle strip having opposite first and second sides and further has a first end that forms a blade contact section. The mating plug connector includes a pair of contact springs for accommodating the blade contact section. The flat contact further includes first and second spring arms for damping relative movements between the blade contact section and the contact springs. The first and second spring arms are integrally formed in one piece at the first and second sides of the flat contact. The first and second spring arms have first and second free end sections in a form of first and second detent hooks. The flat contact is inserted in the contact chamber with the first and second detent hooks being displaceable supported in the contact chamber.
US11728580B2
A terminal includes: a flat surface portion; an extending portion continuous with the flat surface portion; a branch portion continuous with the extending portion and extending in a direction different from that in which the extending portion extends; and rotation stop portions continuous with the branch portion. When the terminal is attached to a bolt protruding from a fixing member and including a seat separated from the fixing member, the flat surface portion contacts the seat, the rotation stop portions extend from the branch portion toward a base end of the bolt in a protruding direction of the bolt, and at least a pair of the rotation stop portions are positioned to sandwich the seat in a direction intersecting the protruding direction to prevent rotation of the terminal with respect to the bolt.
US11728579B2
A method of transporting grounding plates is provided, having a step of providing a plurality of grounding plates made from an electrically conductive material. Each grounding plate has a plate body with first and second faces that are planar, opposed, and parallel to each other, and a grounding connector formed from the same material and having a first end connected to the plate body. The grounding connector is bendable about the first end from a planar configuration to a functional configuration. In the planar configuration, the grounding connector is aligned with and parallel to the first and second faces of the plate body, and in the functional configuration, the grounding connector is at an angle relative to the first face of the plate body. The method has the further steps of stacking the plurality of grounding plates in the planar configuration and transporting the stack to a destination.
US11728577B2
An array antenna is provided with a plurality of radiating patches, wherein each of the patches, operates in one frequency band along one direction and in a different frequency band along a second direction orthogonal to the first direction. The signals from each radiating patch are coupled to two delay lines, which traverse over a variable dielectric constant plate. A voltage potential is controllably applied to each delay line to change the dielectric constant of the VDC plate in the vicinity of that delay line, thereby introducing delay in signal travel. In order to isolate the voltage potential from the two orthogonal delay lines applied to each radiating patch, at least one of the delay lines is connected to a coupling patch, which capacitively couples the RF energy to the radiating patch.
US11728576B2
This document describes techniques and apparatuses for a plastic air-waveguide antenna with conductive particles. The described antenna includes an antenna body made from a resin embedded with conductive particles, a surface of the antenna body that includes a resin layer with no or fewer conductive particles, and a waveguide structure. The waveguide structure can be made from a portion of the surface on which the embedded conductive particles are exposed. The waveguide structure can be molded as part of the antenna body or cut into the antenna body using a laser, which also exposes the conductive particles. If the waveguide is molded as part of the antenna body, the conductive particles can be exposed by an etching process or by using the laser. In this way, the described apparatuses and techniques can reduce weight, improve gain and phase control, improve high-temperature performance, and avoid at least some vapor-deposition plating operations.
US11728575B1
The present application discloses a VICTS antenna based on an RGW structure, comprising an RGW feeding layer and a radiation layer arranged in sequence, wherein the RGW feeding layer comprises an RGW power splitter and a dielectric substrate for slow wave design, and the RGW power splitter is arranged under the dielectric substrate, wherein a power splitting network cover plate is arranged between the RGW feeding layer and the radiation layer, wherein the RGW power splitter comprises a feeding network and a waveguide feeding port, through which signals are input into the feeding network; the radiation layer is composed of a plurality of CTS arrays. During signal transmission, the signals are input into the feeding network through the waveguide port, and then the signals are fed into each CTS array by the feeding network; the radiation layer is configured to rotate.
US11728561B2
The present disclosure provides an antenna for wireless communication that includes a first planar conductor, which is adapted to resonate at frequencies of a first frequency range; and a second planar conductor, which is adapted to resonate at frequencies of a second frequency range that spans lower frequencies than the first frequency range. Thus, a compact and efficient antenna layout is provided that enables reception and transmission of radio signals on multiple frequency bands.
US11728557B2
A passive-intermodulation-mitigating mounting assembly for a fixture, such as can be affixed to a utility or communications monopole can include a first bracket and a second bracket respectively defining a first through hole and a second through hole. In some examples, a mounting plate supports an antenna or a radio. A fastener can extend through the first through hole and the second through hole, for instance to couple the first bracket with the second bracket to attach the mounting assembly to a fixture. The passive-intermodulation-mitigating mounting assembly can include a bushing that can be inserted into a through hole, and the bushing can physically and electrically isolate the fastener from one or more of the brackets. The isolation of the bushing helps inhibit the passive-intermodulation of the mounting assembly when the fastener extends, via the first bushing, through at least one of the through holes.
US11728546B2
Several embodiments of a microporous battery separator for lithium rechargeable batteries and/or related methods of making and/or using such separators are disclosed. A dry process battery separator or membrane separator exhibits a thickness that is less than about 14 μm and has increased strength performance as defined by reduced splittiness. The mode of splitting failure has been investigated, and the improvement in splittiness quantified by a test method known as the Composite Splittiness Index (CSI).
US11728533B2
Systems and methods for managing the temperature of an energy storage system are provided. In some embodiments, the energy storage system includes a housing, a first terminal, a second terminal, an energy storage element disposed within the housing, a thermal management system, and a controller. In some embodiments, the energy storage element are configured to electrically connect to a load or a grid via the second terminal. The thermal management system is configured to manage a temperature within the housing and also configured to receive power from an external power source via the first terminal.
US11728531B2
Disclosed is a battery module, as well as a battery pack and a vehicle comprising the same. The battery module includes a plurality of battery cells arranged side by side to face each other in at least one direction, a cooling plate located below the plurality of battery cells, and a heat transfer tape adhered to the battery cells to transfer heat of the battery cells to the cooling plate.
US11728526B2
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors.
US11728517B2
An electrochemical cell is provided, which includes a cathode comprising a three dimensional (3D) porous cathode structure, an anode, an electrolyte separator, comprised of a ceramic material, located between the cathode and the anode, and a cathode current collector, wherein the cathode is located between the cathode current collector and the electrolyte separator. The 3D porous cathode structure includes ionically conducting electrolyte strands extending through the cathode from the cathode current collector to the electrolyte separator, pores extending through the cathode from the cathode current collector to the electrolyte separator, and an electronically conducting network extending on sidewall surfaces of the pores from the cathode current collector to the electrolyte separator.
US11728514B2
An additive represented by Chemical Formula 1, an electrolyte for a rechargeable lithium battery including the same, and a rechargeable lithium battery,
wherein, in Chemical Formula 1, R1 to R6 are each independently a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C1 to C10 alkoxy group, a substituted or unsubstituted C2 to C10 alkenyl group, a substituted or unsubstituted C3 to C10 cycloalkyl group, a substituted or unsubstituted C3 to C10 cycloalkenyl group, or a substituted or unsubstituted C6 to C20 aryl group.
US11728511B2
A solid-state electrolyte for a lithium battery that includes a hard-inorganic electrolyte and at least two soft electrolytes (SEs), where the melting point of the solid-state electrolyte is less than the melting point of a highest melting SE included in the solid-state electrolyte. The SEs include ammonium or phosphonium salts of closo-borates and can include lithium closo-borates salts. The hard-inorganic electrolyte is a lithium thiophosphate (LPS), where the plurality of SEs is melt-diffused throughout the homogeneous combined hard-inorganic electrolyte and a plurality of SEs at a temperature below the highest melting point SE, generally below 100° C. The relative density of the solid-state electrolyte is greater than 90 percent.
US11728505B2
A battery cover plate assembly, a cell, a battery module, a power battery, and an electric vehicle are provided. The battery cover plate assembly includes a cover plate, an inner lead-out member, and an outer electrode terminal. The inner lead-out member and the outer electrode terminal are electrically connected by using a current interrupt apparatus. A flipping member of the current interrupt apparatus is electrically connected to the outer electrode terminal. A score member is electrically connected to the inner lead-out member. A score is formed on the score member and is electrically connected to the flipping member. The inner lead-out member is mounted on the cover plate through a cover plate insulator. The cover plate insulator has a first engagement portion engaged with the cover plate and a second engagement portion engaged with the inner lead-out member.
US11728502B2
A method for replenishing an electrolyte of a molten carbonate fuel cell stack includes: preparing an electrolyte colloidal solution containing 10% to 20% of the electrolyte and having a viscosity of 200 to 800 Pa·s; replenishing the electrolyte of the cell stack using the electrolyte colloidal solution prepared in step 1 to allow the electrolyte to adhere to an electrode and an internal channel of the cell stack; discharging excess electrolyte colloidal solution in the cell stack; and drying and discharging water or an organic solvent in the cell stack under an inert gas condition to complete replenishment of the electrolyte of the cell stack, and performing a discharge performance test.
US11728499B2
In this fuel cell, a cathode-side porous film that covers a cathode electrode is interposed between the cathode electrode and an air supply layer, the cathode electrode constituting electrolyte film/electrode structures. In addition, breathing holes are formed in the cathode-side porous film, and the air flowing through air supply passages passes through the breathing holes and is supplied to the cathode electrode.
US11728498B2
The systems, devices, and methods described herein relate to heating and cooling automotive fuel cells. A proportional-integral-derivative (PID) controller may be used to control the temperature of fluid in the fuel cells. The PID may be configured to calculate and control the saturation limits of the I-term of the PID controller to reduce integral wind-up.
US11728495B2
A fuel cell system includes a combined cooling circuit for a motor vehicle that provides a method of cooling a fuel cell of a fuel cell system.
US11728491B2
Provided is a sheet-type cell with excellent reliability. The sheet-type cell of the present invention includes power generation elements, including a positive electrode, a negative electrode, a separator, and an electrolyte solution, and a sheet-type outer case made of a resin film in which the power generation elements are contained. The electrolyte solution is an aqueous electrolyte solution. The resin film has an electrically insulating moisture barrier layer. The sheet-type cell is a primary cell. The moisture barrier layer of the resin film is preferably composed of at least an inorganic oxide. The pH of the electrolyte solution is preferably 3 or more and less than 12.
US11728486B1
The present invention provides a nanoporous carbon composite (NCC) for use as an electrode material. NCC comprises active electrode material, one or more additives in a form of particles or fibers, and a nanoporous carbon phase that binds pieces of the active electrode material and pieces of the additive with each other. The nanoporous carbon phase is derived from a polyimide precipitate prepared from imidization of a poly(amic acid) solution. NCC further comprises micro-cracks distributed throughout the NCC to build a three-dimensional (3D) network, wherein the micro-crack is bounded in one or more parts by a surface of the active electrode material or the additive.
US11728485B2
An anode for a fluoride ion electrochemical cell is provided and includes a layered material of hard carbon, nitrogen doped graphite, boron doped graphite, TiS2, MoS2, TiSe2, MoSe2, VS2, VSe2, electrides of alkali earth metal nitrides, electrides of metal carbides, or combinations thereof. The anode may be included in a fluoride ion electrochemical cell, which additionally includes a cathode and a fluoride ion electrolyte arranged between the cathode and the anode. At least one of the cathode and the anode reversibly exchange the fluoride ions with the electrolyte during charging or discharging of the electrochemical cell.
US11728478B2
Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
US11728468B2
Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a metal used for the current collector, and/or a lamination process that adheres the active material to the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 μm thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
US11728464B2
A light emitting element includes a first semiconductor layer; an active layer on the first semiconductor layer; a second semiconductor layer on the active layer; an insulating film surrounding an outer peripheral surface of each of the first semiconductor layer, the active layer and the second semiconductor layer; and a polymer film including a polymer chain and on at least a portion of a surface of the insulating film.
US11728456B2
A semiconductor device is provided, which includes an active structure and a first semiconductor layer. The active structure includes an active region having a topmost surface and a bottommost surface, and a first dopant distributing from the topmost surface to the bottommost surface. The first semiconductor layer is located under the active structure and includes a second dopant. The active region includes a semiconductor material including As.
US11728449B2
Embodiments of the present disclosure relate to photovoltaic devices, CIGS containing films, and methods of manufacturing CIGS containing films and photovoltaic devices to improve quantum efficiency, reduce interface charges, electron losses, and electron re-combinations. The CIGS layers in the photovoltaic devices described herein may be deposited using physical vapor deposition, followed by in-situ oxygen annealing, and further followed by deposition of a cap layer over the CIGS layer without subjecting the CIGS layer to an air break.
US11728448B2
The invention relates to a method for fabricating a semiconductor device. The method includes steps of providing a cavity structure, the cavity structure including a seed area including a seed material. The method further includes growing, within the cavity structure, a first embedding layer in a first growth direction from a seed surface of the seed material. The method includes further steps of removing the seed material, growing, in a second growth direction, from a seed surface of the first embedding layer, a quantum dot structure and growing, within the cavity structure, on a surface of the quantum dot structure, a second embedding layer in the second growth direction. The second growth direction is different from the first growth direction. The invention further relates to devices obtainable by such a method.
US11728444B2
An arrangement for an optoelectronic component includes a substrate and an optical semiconductor chip arranged on the substrate. The optical semiconductor chip has an optically active region, a first optically non-active region, and a second optically non-active region. A connection structure connects a chip-side electrical connection to the optically active region. An electrical connection connects the chip-side electrical connection to a second substrate-side electrical connection. A coating is provided in a layer stack in the optically active region, in the first optically non-active region, and in the second optically non-active region. The layer stack includes a first layer and a second layer arranged above the first layer. The chip-side electrical connection and the connection structure in the first optically non-active region and the protective layer in the second optically non-active region are each arranged between the first layer and the second layer.
US11728443B2
Systems and methods for shut-down of a photovoltaic system. In one embodiment, a method implemented in a computer system includes: communicating, via a central controller, with a plurality of local management units (LMUs), each of the LMUs coupled to control a respective solar module; receiving, via the central controller, a shut-down signal from a user device (e.g., a hand-held device, a computer, or a wireless switch unit); and in response to receiving the shut-down signal, shutting down operation of the respective solar module for each of the LMUs.
US11728441B2
A semiconductor apparatus includes a first semiconductor layer, a second semiconductor layer, and a structure provided between the first and second semiconductor layers. The semiconductor apparatus further includes a first electrode supported by a first insulating layer, a second electrode supported by a second insulating layer, a first wire bonded to the first electrode through a first opening provided in the first semiconductor layer, and a second wire bonded to the second electrode through a second opening provided in the first semiconductor layer, and an annular member made of a non-insulating material and provided between the first semiconductor layer and the first electrode. A distance from the second semiconductor layer to a first joint between the first electrode and the first wire is longer than a distance from the second semiconductor layer to a second joint between the second electrode and the second wire.
US11728438B2
A substrate in a split-gate memory device has a memory cell region including a connecting subregion and a functional subregion. A source region is formed in the substrate, and first and second gate structures mirrored to each other are formed on the substrate on opposing sides of the source region. In the connecting subregion, control gates of the first and second gate structures and the source region are electrically connected by electrical connections. In the split-gate memory device, the arrangement of the functional and connecting subregions in the memory cell region and external connection of the control gates in the first and second gate structures and the source region in the connecting subregion, which are exposed by etching, by the electrical connections in the connecting subregion result in area savings of the memory cell region.
US11728434B2
A semiconductor device includes a first fin type pattern on a substrate, a second fin type pattern, parallel to the first fin type pattern, on the substrate, and an epitaxial pattern on the first and second fin type patterns. The epitaxial pattern may include a shared semiconductor pattern on the first fin type pattern and the second fin type pattern. The shared semiconductor pattern may include a first sidewall adjacent to the first fin type pattern and a second sidewall adjacent to the second fin type pattern. The first sidewall may include a first lower facet, a first upper facet on the first lower facet and a first connecting curved surface connecting the first lower and upper facets. The second sidewall may include a second lower facet, a second upper facet on the second lower facet and a second connecting curved surface connecting the second lower and upper facets.
US11728424B2
According to an aspect, a semiconductor device for integrating multiple transistors includes a wafer substrate including a first region and a second region. The first region defines at least a portion of at least one first transistor. The second region defines at least a portion of at least one second transistor. The semiconductor device includes an isolation area located between the first region and the second region, at least one terminal of the at least one first transistor contacting the first region of the wafer substrate, at least one terminal of the at least one second transistor contacting the second region of the wafer substrate, and an encapsulation material, where the encapsulation material includes a portion located within the isolation area.
US11728419B2
A high electron mobility transistor (HEMT) includes a channel layer comprising a group III-V compound semiconductor; a barrier layer comprising the group III-V compound semiconductor on the channel layer; a gate electrode on the barrier layer; a source electrode over gate electrode; a drain electrode spaced apart from the source electrode; and a metal wiring layer. A same layer of the metal wiring layer includes a gate wiring connected to the gate electrode, a source field plate connected to the source electrode, and a drain field plate connected to the drain electrode.
US11728410B2
A semiconductor device includes a substrate having a trench, a conductive pattern in the trench, a spacer structure on a side surface of the conductive pattern, and a buried contact including a first portion apart from the conductive pattern by the spacer structure and filling a contact recess, and a second portion on the first portion having a pillar shape with a width smaller than that of a top surface of the first portion. The spacer structure includes a first spacer extending along the second portion of the buried contact on the first portion of the buried contact and contacting the buried contact, a second spacer extending along the first spacer, and a third spacer extending along the side surface of the conductive pattern and the trench and apart from the first spacer by the second spacer, the first spacer includes silicon oxide, and the second spacer includes silicon nitride.
US11728408B2
A semiconductor device and a manufacturing method thereof, and an electronic device including the semiconductor device. The semiconductor device includes: a substrate; an active region including a first source/drain region, a channel region and a second source/drain region stacked sequentially on the substrate and adjacent to each other; a gate stack formed around an outer periphery of the channel region; and spacers formed around the outer periphery of the channel region, respectively between the gate stack and the first source/drain region and between the gate stack and the second source/drain region; wherein the spacers each have a thickness varying in a direction perpendicular to a direction from the first source/drain region pointing to the second source/drain region; wherein the spacers each have the thickness gradually decreasing from a surface exposed on an outer peripheral surface of the active region to an inside of the active region.
US11728406B2
A method for forming a semiconductor device and a semiconductor device formed by the method are disclosed. In an embodiment, the method includes depositing a dummy dielectric layer on a fin extending from a substrate; depositing a dummy gate seed layer on the dummy dielectric layer; reflowing the dummy gate seed layer; etching the dummy gate seed layer; and selectively depositing a dummy gate material over the dummy gate seed layer, the dummy gate material and the dummy gate seed layer constituting a dummy gate.
US11728403B2
A semiconductor device includes a stacked structure having channel formation region layers CH1 and CH2, gate electrode layers G1, G2, and G3 alternately arranged on a base, in which a lowermost layer of the stacked structure is formed with a 1st layer G1 of the gate electrode layers, an uppermost layer of the stacked structure is formed with an Nth (where N≥3) layer G3 of the gate electrode layers, the gate electrode layers each have a first end face, a second end face, a third end face opposing the first end face, and a fourth end face opposing the second end face, the first end face of odd-numbered layers G1, G3 of the gate electrode layers is connected to a first contact portion, and the third end face of an even-numbered layer G2 of the gate electrode layers is connected to a second contact portion.
US11728400B2
Semiconductor structures is provided. The semiconductor structure includes a semiconductor substrate, a plurality of fins protruding from the semiconductor substrate, an isolation layer formed on the fins and with a bandgap greater than a bandgap of the fins, and a first channel layer formed on the isolation layer and isolated from the isolation layer.
US11728387B2
A method of forming a semiconductor structure includes forming a first material over a base material by vapor phase epitaxy. The first material has a crystalline portion and an amorphous portion. The amorphous portion of the first material is removed by abrasive planarization. At least a second material is formed by vapor phase epitaxy over the crystalline portion of first material. The second material has a crystalline portion and an amorphous portion. The amorphous portion of the second material is removed by abrasive planarization. A semiconductor structure formed by such a method includes the substrate, the first material, the second material, and optionally, an oxide material between the first material and the second material. The substrate, the first material, and the second material define a continuous crystalline structure. Semiconductor structures, memory devices, and systems are also disclosed.
US11728383B2
A P-type field effect transistor (PFET) device and a method for fabricating a PFET device using fully depleted silicon on insulator (FDSOI) technology is disclosed. The method includes introducing germanium into the channel layer using ion implantation. This germanium implant increases the axial stress in the channel layer, improving device performance. This implant may be performed at low temperatures to minimize damage to the crystalline structure. Further, rather than using a long duration, high temperature anneal process, the germanium implanted in the channel layer may be annealed using a laser anneal or a rapid temperature anneal. The implanted regions are re-crystallized using the channel layer that is beneath the gate as the seed layer. In some embodiments, an additional oxide spacer is used to further separate the raised source and drain regions from the gate.
US11728382B2
Semiconductor devices and methods are provided. A semiconductor device according to the present disclosure includes a first gate-all-around (GAA) transistor having a first plurality of channel members, and a second GAA transistor having a second plurality of channel members. A pitch of the first plurality of channel members is substantially identical to a pitch of the second plurality of channel members. The first plurality of channel members has a first channel member thickness (MT1) and the second plurality of channel members has a second channel member thickness (MT2) greater than the first channel member thickness (MT1).
US11728373B2
A first and a second gate structure each extend in a first direction. A first and a second conductive contact extend in the first direction and are separated from the first and second gate structures in a second direction. A first isolation structure extends in the second direction and separates the first gate structure from the second gate structure. A second isolation structure extends in the second direction and separates the first conductive contact from the second conductive contact. The first gate structure is electrically coupled to a first electrical node. The second gate structure is electrically coupled to a second electrical node different from the first electrical node. The first conductive contact is electrically coupled to the second electrical node. The second conductive contact is electrically coupled to the first electrical node.
US11728371B2
An LED module includes light emission windows; LED cells corresponding to the light emission windows, the LED cells each including a lower and upper light emitting structure, the lower light emitting structure having an upper surface with first and second regions and having a first conductivity-type semiconductor layer, the upper light emitting structure being on the first region of the lower light emitting structure and having a second conductivity-type semiconductor layer, the LED cells including an active layer between the first and second conductivity-type semiconductor layers; a protective insulating film on a side surface of the lower light emitting structure and on the second region; a light blocking film on the protective insulating film, between the LED cells; a gap-fill insulating film on the protective insulating film between the LED cells and contacting a side surface of the upper light emitting structure; a first electrode; and a second electrode.
US11728365B2
A semiconductor device includes a semiconductor substrate, a radiation-sensing region, at least one isolation structure, and a doped passivation layer. The radiation-sensing region is present in the semiconductor substrate. The isolation structure is present in the semiconductor substrate and adjacent to the radiation-sensing region. The doped passivation layer at least partially surrounds the isolation structure in a substantially conformal manner.
US11728363B2
The present disclosure relates to a solid-state imaging device, an imaging device, and an electronic apparatus that are capable of suppressing generation of flare and also suppressing coloring caused by the flare with a simple configuration. A high refractive index layer is formed between a solid-state imaging element and a transparent protective substrate (glass substrate). When reflected light caused by diffracted light generated from an on-chip lens is reflected at an interface with the high refractive index layer, the reflected light is entirely reflected at a surface layer that is a transparent protective substrate and then the reflected light is sufficiently attenuated before being incident again. Consequently, flare and coloring caused by the flare are suppressed. The present disclosure is adaptable to an imaging device.
US11728361B2
An imaging device includes a photoelectric converter, a charge holding section that is provided on a side of the photoelectric converter opposite to a light entrance side of the photoelectric converter and holds a signal charge generated by the photoelectric converter, and a light shielding section that has a first light shielding surface extending toward the charge holding section from between the charge holding section and the photoelectric converter.
US11728360B2
An image sensor package may include a semiconductor wafer having a pixel array, a color filter array (CFA) formed over the pixel array, and one or more lenses formed over the CFA. A light block layer may couple over the semiconductor wafer around a perimeter of the lenses and an encapsulation layer may be coupled around the perimeter of the lenses and over the light block layer. The light block layer may form an opening providing access to the lenses. A mold compound layer may be coupled over the encapsulation layer and the light block layer. A temporary protection layer may be used to protect the one or more lenses from contamination during application of the mold compound and/or during processes occurring outside of a cleanroom environment.
US11728359B2
Disclosed is an image sensor having a plurality of groups of pixels, each group of pixels including: first to third image detection color filter sets and a phase difference detection color filter set, which are arranged in a matrix with rows and columns. The phase difference detection color filter set comprises first to fourth phase difference detection color filter pairs arranged in a matrix with rows and columns. The first to fourth phase difference detection color filter pairs comprise first to fourth left phase difference detection color filters positioned on the left of each of the first to fourth phase difference detection color filter pairs and first to fourth right phase difference detection color filters positioned on the right of each of the first to fourth phase difference detection color filter pairs, respectively.
US11728349B2
One embodiment of the present invention provides a highly reliably display device in which a high mobility is achieved in an oxide semiconductor. A first oxide component is formed over a base component. Crystal growth proceeds from a surface toward an inside of the first oxide component by a first heat treatment, so that a first oxide crystal component is formed in contact with at least part of the base component. A second oxide component is formed over the first oxide crystal component. Crystal growth is performed by a second heat treatment using the first oxide crystal component as a seed, so that a second oxide crystal component is formed. Thus, a stacked oxide material is formed. A transistor with a high mobility is formed using the stacked oxide material and a driver circuit is formed using the transistor.
US11728347B2
An integrated circuit device includes an embedded insulation layer, a semiconductor layer on the embedded insulation layer, the semiconductor layer having a main surface, and a plurality of fin-type active areas protruding from the main surface to extend in a first horizontal direction and in parallel with one another, a separation insulation layer separating the semiconductor layer into at least two element regions adjacent to each other in a second horizontal direction intersecting the first horizontal direction, source/drain regions on the plurality of fin-type active areas, a first conductive plug on and electrically connected to the source/drain regions, a buried rail electrically connected to the first conductive plug while penetrating through the separation insulation layer and the semiconductor layer, and a power delivery structure arranged in the embedded insulation layer, the power delivery structure being in contact with and electrically connected to the buried rail.
US11728335B2
Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, buried channel structures integrated with non-planar structures. In an example, an integrated circuit structure includes a first fin structure and a second fin structure above a substrate. A gate structure is on a portion of the substrate directly between the first fin structure and the second fin structure. A source region is in the first fin structure. A drain region is in the second fin structure.
US11728333B2
A semiconductor device includes a first-conductivity-type semiconductor layer that includes a first main surface on one side and a second main surface on the other side, an IGBT region that includes an FET structure and a second-conductivity-type collector region formed in a surface layer portion of the second main surface, the FET structure including a second-conductivity-type body region formed in a surface layer portion of the first main surface, a first-conductivity-type emitter region formed in a surface layer portion of the body region, and a gate electrode that faces both the body region and the emitter region across a gate insulating layer, a diode region that includes a second-conductivity-type first impurity region formed in the surface layer portion of the first main surface and a first-conductivity-type second impurity region formed in the surface layer portion of the second main surface, a boundary region that includes a second-conductivity-type well region formed in the surface layer portion of the first main surface in a region between the IGBT region and the diode region, and a first main surface electrode that is electrically connected to the emitter region, to the first impurity region, and to the well region on the first main surface.
US11728324B2
A semiconductor structure includes an encapsulated die including an electronic die and an insulating layer laterally covering the electronic die, and a photonic die coupled to the encapsulated die. The photonic die includes an optical device in proximity to an edge coupling facet of a portion of a sidewall of the photonic die, wherein a surface roughness of the edge coupling facet is less than a surface roughness of a sidewall of the insulating layer or a surface roughness of another portion of the sidewall of the photonic die.
US11728317B2
A power module package is provided. The power module package may include: a first substrate; a second substrate; a semiconductor chip disposed between the first substrate and the second substrate; and a mutual-connection layer that is formed between the semiconductor chip and the second substrate and provides conductive connection between the semiconductor chip and the second substrate.
US11728316B2
The present application provides a method for fabricating a semiconductor device. The method includes providing a carrier substrate, forming through semiconductor vias in the carrier substrate for thermally conducting heat, forming a bonding layer on the carrier substrate, providing a first die structure including through semiconductor vias, forming an intervening bonding layer on the first die structure, bonding the first die structure onto the bonding layer through the intervening bonding layer, and bonding a second die structure onto the first die structure. The carrier substrate, the through semiconductor vias, and the bonding layer together configure a carrier structure. The second die structure and the first die structure are electrically coupled by the through semiconductor vias.
US11728315B2
Semiconductor die assemblies including stacked semiconductor dies having parallel plate capacitors formed between adjacent pairs of semiconductor dies in the stack, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor die assembly includes a first semiconductor die and a second semiconductor die stacked over the first semiconductor die. The first semiconductor die includes an upper surface having a first capacitor plate formed thereon, and the second semiconductor die includes a lower surface facing the upper surface of the first semiconductor die and having a second capacitor plate formed thereon. A dielectric material is formed at least partially between the first and second capacitor plates. The first capacitor plate, second capacitor plate, and dielectric material together form a capacitor that stores charge locally within the stack, and that can be accessed by the first and/or second semiconductor dies.
US11728313B2
Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad may be disposed at a bonding surface of at least one of the microelectronic substrates, where the contact pad is positioned offset relative to a TSV in the substrate and electrically coupled to the TSV.
US11728312B2
A package includes a first semiconductor substrate; an integrated circuit die bonded to the first semiconductor substrate with a dielectric-to-dielectric bond; a molding compound over the first semiconductor substrate and around the integrated circuit die; and a redistribution structure over the first semiconductor substrate and the integrated circuit die, wherein the redistribution structure is electrically connected to the integrated circuit die. The integrated circuit die includes a second semiconductor substrate, and wherein the second semiconductor substrate comprises a first sidewall, a second sidewall, and a third sidewall opposite the first sidewall and the second sidewall, and the second sidewall is offset from the first sidewall.
US11728305B2
A semiconductor structure includes a bonded assembly of a first semiconductor die including first metal bonding pads and a second semiconductor die including second metal bonding pads, and a capacitor structure including a first electrode, a second electrode, and a node dielectric. The first electrode includes first bonded pairs of metal bonding pads. The second electrode includes second bonded pairs of metal bonding pads. The node dielectric includes portions dielectric material layers laterally surrounding the metal bonding pads.
US11728301B2
A semiconductor package structure includes a first die, a second die disposed on the first die, and a bonding pad structure. The first die includes a semiconductor substrate, an interconnect structure disposed on the first semiconductor substrate, a passivation layer disposed on the interconnect structure, and a test pad disposed on the passivation layer. The test pad includes a contact region that extends through the passivation layer and electrically contacts the interconnect structure, and a bonding recess that overlaps with the contact region in a vertical direction perpendicular to a plane of the first semiconductor substrate. The bonding pad structure electrically connects the first die and the second die and directly contacts at least a portion of the bonding recess.
US11728298B2
A semiconductor device includes a predetermined number of leads, a semiconductor element electrically connected to the leads and supported by one of the leads, and a sealing resin that covers the semiconductor element and a part of each lead. Each lead includes some portions exposed from the sealing resin. A surface plating layer is formed on at least one of the exposed portions of the respective leads.
US11728297B2
A semiconductor device includes a conductive component on a substrate, a passivation layer on the substrate and including an opening that exposes at least a portion of the conductive component, and a pad structure in the opening and located on the passivation layer, the pad structure being electrically connected to the conductive component. The pad structure includes a lower conductive layer conformally extending on an inner sidewall of the opening, the lower conductive layer including a conductive barrier layer, a first seed layer, an etch stop layer, and a second seed layer that are sequentially stacked, a first pad layer on the lower conductive layer and at least partially filling the opening, and a second pad layer on the first pad layer and being in contact with a peripheral portion of the lower conductive layer located on the top surface of the passivation layer.
US11728290B2
Embodiments may relate to a microelectronic package that includes a substrate signal path and a waveguide. The package may further include dies that are communicatively coupled with one another by the substrate signal path and the waveguide. The substrate signal path may carry a signal with a frequency that is different than the frequency of a signal that is to be carried by the waveguide. Other embodiments may be described or claimed.
US11728281B2
A semiconductor device has a substrate including a terminal and an insulating layer formed over the terminal. An electrical component is disposed over the substrate. An encapsulant is deposited over the electrical component and substrate. A portion of the insulating layer over the terminal is exposed from the encapsulant. A shielding layer is formed over the encapsulant and terminal. A portion of the shielding layer is removed to expose the portion of the insulating layer. The portion of the insulating layer is removed to expose the terminal. The portion of the shielding layer and the portion of the insulating layer can be removed by laser ablation.
US11728263B2
Some embodiments include an assembly having channel-material-structures, and having memory cells along the channel-material-structures. The memory cells include charge-storage-material. Linear-conductive-structures are vertically offset from the channel-material-structures and are electrically coupled with the channel-material-structures. Intervening regions are between the linear-conductive-structures. Conductive-shield-structures are within the intervening regions. The conductive-shield-structures are electrically coupled with a reference-voltage-source.
US11728258B2
A package substrate, comprising a package comprising a substrate, the substrate comprising a dielectric layer, a via extending to a top surface of the dielectric layer; and a bond pad stack having a central axis and extending laterally from the via over the first layer. The bond pad stack is structurally integral with the via, wherein the bond pad stack comprises a first layer comprising a first metal disposed on the top of the via and extends laterally from the top of the via over the top surface of the dielectric layer adjacent to the via. The first layer is bonded to the top of the via and the dielectric layer, and a second layer is disposed over the first layer. A third layer is disposed over the second layer. The second layer comprises a second metal and the third layer comprises a third metal. The second layer and the third layer are electrically coupled to the via.
US11728251B2
An object of the present disclosure is to suppress variation in currents flowing through semiconductor elements and thereby to achieve size reduction of the semiconductor elements. The semiconductor power module includes electrode terminals for connecting a first electrode to a first external electric component, a second electrode joined to upper surfaces of a plurality of semiconductor elements, and a second electrode extension portion for connecting the second electrode to a second external electric component. The sum of a current path length from the electrode terminal to the semiconductor element in the first electrode and a current path length from the semiconductor element to a second electrode terminal portion in the second electrode, is set to be the same among the plurality of semiconductor elements.
US11728250B2
A semiconductor package includes a first die pad, a first semiconductor die mounted on the first die pad, an encapsulant body of electrically insulating material that encapsulates first die pad and the first semiconductor die, a plurality of package leads that each protrude out of a first outer face of the encapsulant body, a connection lug that protrudes out of a second outer face of the encapsulant body, the second outer face being opposite from the first outer face. The first semiconductor die includes first and second voltage blocking terminals. The connection lug is electrically connected to one of the first and second voltage blocking terminals of the first semiconductor die. A first one of the package leads is electrically connected to an opposite one of the first and second voltage blocking terminals of the first semiconductor die that the first connection lug is electrically connected to.
US11728238B2
A semiconductor package includes a redistribution structure, at least one semiconductor device and a plurality of heat dissipation films. The at least one semiconductor device is mounted on the redistribution structure. The plurality of heat dissipation films are disposed on the at least one semiconductor device in a side by side manner and jointly cover an upper surface of the at least one semiconductor device. A manufacturing method of the semiconductor package is also provided.
US11728237B2
The semiconductor device includes a supporting member, a conductive member, and a semiconductor element. The supporting member has a supporting surface facing in a thickness direction. The conductive member has an obverse surface facing the same side as the supporting surface faces in the thickness direction, and a reverse surface opposite to the obverse surface. The conductive member is bonded to the supporting member such that the reverse surface faces the supporting surface. The semiconductor element is bonded to the obverse surface. The semiconductor device further includes a first metal layer and a second metal layer. The first metal layer covers at least a part of the supporting surface. The second metal layer covers the reverse surface. The first metal layer and the second layer are bonded to each other by solid phase diffusion.
US11728230B2
A semiconductor package includes: a lower package: an upper substrate on the lower package: and connection members connecting the lower package to the upper substrate, wherein the lower package includes: a lower substrate; and a lower semiconductor chip, wherein the upper substrate includes: an upper substrate body: upper connection pads combined with the connection members: and auxiliary members extending from the upper substrate body toward the lower substrate, wherein the connection members are arranged in a first horizontal direction to form a first connection member column, wherein the auxiliary members are arranged in the first horizontal direction to form a first auxiliary member column, wherein the first connection member column and the first auxiliary member column are located between a side surface of the lower semiconductor chip and a side surface of the lower substrate, and the first auxiliary member column is spaced apart from the first connection member column.
US11728229B2
A semiconductor structure that includes two circuit regions; two inner seal rings, each of the two inner seal rings surrounding one of the two circuit regions; an outer seal ring surrounding the two inner seal rings, wherein each of the inner seal rings and the outer seal ring has a substantially rectangular periphery with four interior corner seal ring structures; four first redundant regions between the two inner seal rings and the outer seal ring, each of the four first redundant regions being a substantially trapezoidal shape; and first dummy patterns substantially uniformly distributed in the four first redundant regions.
US11728224B2
A method of determining a parameter of a patterning process, the method including: obtaining a detected representation of radiation redirected by a structure having geometric symmetry at a nominal physical configuration, wherein the detected representation of the radiation was obtained by illuminating a substrate with a radiation beam such that a beam spot on the substrate was filled with the structure; and determining, by a hardware computer system, a value of the patterning process parameter based on optical characteristic values from an asymmetric optical characteristic distribution portion of the detected radiation representation with higher weight than another portion of the detected radiation representation, the asymmetric optical characteristic distribution arising from a different physical configuration of the structure than the nominal physical configuration.
US11728223B2
A semiconductor device and methods of forming the semiconductor device are described herein and are directed towards forming a source/drain contact plug for adjacent finFETs. The source/drain regions of the adjacent finFETs are embedded in an interlayer dielectric and are separated by an isolation region of a cut-metal gate (CMG) structure isolating gate electrodes of the adjacent finFETs The methods include recessing the isolation region, forming a contact plug opening through the interlayer dielectric to expose portions of a contact etch stop layer disposed over the source/drain regions through the contact plug opening, the contact etch stop layer being a different material from the material of the isolation region. Once exposed, the portions of the CESL are removed and a conductive material is formed in the contact plug opening and in contact with the source/drain regions of the adjacent finFETs and in contact with the isolation region.
US11728213B2
The disclosure discloses a copper plating filling process method, comprising the steps of: forming a trench or a through-hole in a dielectric layer; forming a copper seed layer on an inner surface of the hole; allowing a waiting time after forming the copper seed layer and before performing a copper plating process, wherein during the waiting time, a surface of the copper seed layer is oxidized to form a copper oxide layer; performing a reduction process on the copper oxide layer; and filling a copper layer into the hole in the copper plating process afterwards. The copper oxide layer on the surface of the copper seed layer is reduced to copper in the reduction process, and wherein a thickness of the copper seed layers on the inner surface of the hole is uniform. The hole can be a trench or a through-hole.
US11728210B2
According to one embodiment, an original plate for imprint lithography has a first surface side having a patterned portion thereon. The patterned portion includes a groove having a bottom surface recessed from a first surface to a first depth, and a columnar portion on the bottom surface and protruding from the bottom surface to extend beyond the first surface. The original plate may be used to form replica templates by imprint lithography processes. The replica templates can be used in semiconductor device manufacturing processes or the like.
US11728208B2
An embodiment is a structure including a first fin over a substrate, a second fin over the substrate, the second fin being adjacent the first fin, an isolation region surrounding the first fin and the second fin, a gate structure along sidewalls and over upper surfaces of the first fin and the second fin, the gate structure defining channel regions in the first fin and the second fin, a source/drain region on the first fin and the second fin adjacent the gate structure, and an air gap separating the source/drain region from a top surface of the substrate.
US11728207B2
A method for fabricating a strained semiconductor-on-insulator substrate comprises bonding a donor substrate to a receiving substrate with a dielectric layer at the interface. The donor substrate comprises a monocrystalline carrier substrate, an intermediate etch-stop layer, and a monocrystalline semiconductor layer. The monocrystalline semiconductor layer is transferred from the donor substrate to the receiving substrate. Trench isolations are formed to cut a portion from a layer stack including the transferred monocrystalline semiconductor layer, the dielectric layer, and the strained semiconductor material layer. The cutting operation results in relaxation of strain in the strained semiconductor material, and in application of strain to the transferred monocrystalline semiconductor layer. After transferring the monocrystalline semiconductor layer and before the cutting operation, a portion of the carrier substrate is selectively etched with respect to the intermediate layer, and the intermediate layer is selectively etched with respect to the monocrystalline semiconductor layer.
US11728206B2
A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and an adjacent second fin structure protruding from the semiconductor substrate and an isolation structure formed in the semiconductor substrate and in direct contact with the first fin structure and the second fin structure. The first fin structure and the second fin structure each include a first portion protruding above a top surface of the isolation structure, a second portion in direct contact with a bottom surface of the first portion, and a third portion extending from a bottom of the second portion. A top width of the third portion is different than a bottom width of the third portion and a bottom width of the second portion.
US11728205B2
There is provided a device for transferring a substrate under air pressure. The device comprises a base part, a transfer arm part configured to transfer a substrate, a telescopic shaft part which is provided between the base part and the transfer arm part, and divided into a plurality of division shaft parts having a tubular shape, an annular channel which is provided in a circumference of a surface of a division shaft parts, and an exhaust channel which is connected to the annular channel so as to exhaust the gas flowing into the annular channel.
US11728204B2
A vacuum chuck is provided, comprising: a vacuum buffer in fluid communication with a vacuum source, the vacuum buffer being an enclosed volume in the vacuum chuck; a top plate, defining surface features on a first side, and an internal network of distribution channels open to the first side via through holes; and a flow valve configured to control fluid communication between the network of distribution channels and the vacuum buffer. By opening the flow valve, negative pressure is applied from between a substrate disposed on the first side of the top plate through the through holes into the vacuum buffer, thereby flattening the substrate against at least part of the first side of the top plate.
US11728201B2
Among other things a method including releasing a discrete component from an interim handle and depositing a discrete component on a handle substrate, attaching the handle substrate to the discrete component, and removing the handle substrate from the discrete component.
US11728196B2
An apparatus for aligning dipoles is provided. The apparatus includes: an electric field forming unit including a stage and a probe unit, the probe unit being configured to form an electric field on the stage; an inkjet printing device including an inkjet head, the inkjet head being configured to spray ink including a solvent and dipoles dispersed in the solvent onto the stage; a light irradiation device configured to irradiate light onto the stage; and a temperature control device including a temperature control unit, the temperature control unit being configured to control a temperature of the solvent sprayed on the stage.
US11728194B2
A wafer handling apparatus includes at least one load port, an image capturing device and a processor. The load port is configured to receive a wafer carrier. The image capturing device is configured to capture an image of the wafer carrier received in the load port before one or more wafers are inserted into the wafer carrier. The processor is communicably connected to the image capturing device and is configured to determine whether the wafer carrier is in a condition that is unsafe for wafer placement based on the image captured by the image capturing device.
US11728185B2
The present disclosure relates to a method and apparatus for cleaning a substrate. The method includes rotating a substrate disposed on a substrate support and spraying a front side of the substrate using steam through a front side nozzle assembly. A back side of the substrate is sprayed using steam through a back side dispenser assembly. A heated chemical is dispensed over the front side of the substrate.
US11728180B2
A chip package structure is provided. The chip package structure includes a wiring substrate including a substrate, a first pad, and a second pad. The first pad and the second pad are respectively over a first surface and a second surface of the substrate, and the first pad is narrower than the second pad. The chip package structure includes a conductive adhesive layer over the first pad. The conductive adhesive layer is in direct contact with the first pad. The chip package structure includes a nickel layer over the conductive adhesive layer. The chip package structure includes a chip over the wiring substrate. The chip package structure includes a conductive bump between the nickel layer and the chip. The conductive bump includes gold.
US11728178B2
An electronic package and a method for fabrication the same are provided. The method includes: disposing an electronic component on a substrate; forming an encapsulant layer on the substrate to encapsulate the electronic component; and forming a shielding layer made of metal on the encapsulant layer. The shielding layer has an extending portion extending to a lateral side of the substrate along a corner of the encapsulant layer, without extending to a lower side of the substrate. Therefore, the present disclosure prevents the shielding layer from coming into contact with conductive pads disposed on the lower side of the substrate and thereby avoids a short circuit from occurrence.
US11728174B2
The present application discloses a method for fabricating a semiconductor device using a tilted etch process. The method includes forming an etching stop layer on a substrate, forming a target layer on the etching stop layer, forming a first hard mask layer on the target layer, forming second hard mask layers on the first hard mask layer, performing a first tilted etch process on the first hard mask layer to form first openings along the first hard mask layer and adjacent to first sides of the second hard mask layers, and performing a second tilted etch process on the first hard mask layer to form second openings along the first hard mask layer and adjacent to second sides of the second hard mask layers.
US11728172B2
An apparatus includes a first metrology tool configured to measure an initial thickness of a wafer. The apparatus includes a controller connected to the first metrology tool and configured to calculate a polishing time based on a material removal rate, a predetermined thickness and the initial thickness of the wafer. The apparatus includes a polishing tool connected to the controller and configured to polish the wafer for a first duration equal to the polishing time. The apparatus includes a second metrology tool connected to the controller and configured to measure a polished thickness. The controller is configured for receiving the initial thickness from the first metrology tool and the polished thickness from the second metrology tool, updating the material removal rate based on the predetermined thickness, the polishing time and the polished thickness, and calculating an etching time for etching the polished wafer using the polished thickness.
US11728166B2
Provided is a method of processing a substrate including an etching target film and a mask having an opening formed on the etching target film. The method includes a) providing the substrate on a stage in a chamber and b) forming a film having a thickness that differs along a film thickness direction of the mask, on a side wall of the opening.
US11728165B2
There is included (a) forming a first film containing at least oxygen and carbon and having a concentration of carbon, which is 20 at % or more, on a substrate by supplying a film-forming gas to the substrate at a first temperature; and (b) modifying the first film into a second film by supplying an oxygen- and hydrogen-containing gas to the substrate on which the first film is formed, at a second temperature that is equal to or higher than the first temperature.
US11728158B2
The present disclosure provides a semiconductor structure and a method preparing it. After planarization of the Cu layer, a Si substrate is dry etched, so that a first height difference is configured in between the top surfaces of the the Si substrate and an insulating layer. By means of a wet etch process, Cu residues near an edge of a Cu post may be effectively removed. A second height difference is configured in between the top surfaces of the Cu post and the insulating layer. The first height difference is arranged to be greater than the second height difference. Channeling of Cu trace residues through the insulating layer are thereby avoided, effectively mitigating electrical leakage. Further, the Si substrate may be covered by a passivation layer, to prevent a conductive channel from being formed on the Si substrate, thereby further avoiding negative impact on the electrical properties of the device.
US11728157B2
A method includes performing a first post Chemical Mechanical Polish (CMP) cleaning on a wafer using a first brush. The first brush rotates to clean the wafer. The method further includes performing a second post-CMP cleaning on the wafer using a second brush. The second brush rotates to clean the wafer. The first post-CMP cleaning and the second post-CMP cleaning are performed simultaneously.
US11728150B2
Methods and apparatuses for the identification and/or characterization of properties of a sample using mass spectrometry. The method involves using a measured spectrum of data from a sample taken with a mass spectrometer, deconvoluting the measured spectrum of data by applying parsimony weighting to minimize the number of charge states based on one or more of: the number of intense peaks in the mass spectrum; the number of harmonic relationships (e.g., masses in small integer ratios); and the number of off-by-one relationships (e.g., m/z bins with high probability for two adjacent charges). Thus, the underlying m/z spectrum may be inferred from the family of plausible deconvoluted spectra determined by applying parsimony and the inferred m/z spectrum may be used to identify and/or characterize the sample.
US11728147B2
The present invention centers upon a novel “molecular amplification spike,” which is an admixture of two components, namely, an aliquot of a quantity of a molecule, composition, compound or element of interest (an “analyte”) in its natural isotopic state and an aliquot of an isotopically enriched form of the same molecule, composition, compound or element. The molecular amplification spike contains 20% natural-abundance isotope, balance enriched isotope. The molecular amplification spike may optionally contain more than 20% natural-abundance isotope, with concomitantly reduced balance of enriched isotope. Such an admixed spike, when added to a sample prior to mass spectrometric analysis of that sample, creates new and significantly improved percentage of errors and quantification or confirmation of the absence of the molecule, composition, compound or element of interest in the sample.
US11728133B2
An apparatus may include an exciter, disposed within a resonance chamber, to generate an RF power signal. The apparatus may include a resonator coil, disposed within the resonance chamber, to receive the RF power signal, and generate an RF output signal; and a pickup loop assembly, to receive the RF output signal and output a pickup voltage signal. The pickup loop assembly may include a pickup loop, disposed within the resonance chamber; and a variable attenuator, disposed at least partially between the resonator coil and the pickup loop. The variable attenuator may include a configurable portion, movable from a first position, attenuating a first amount of the RF output signal, to a second position, attenuating a second amount of the RF output signal, different from the first amount.
US11728126B2
A method of evaluating a region of interest of a sample including: positioning the sample within in a vacuum chamber of an evaluation tool that includes a scanning electron microscope (SEM) column and a focused ion beam (FIB) column; acquiring a plurality of two-dimensional images of the region of interest by alternating a sequence of delayering the region of interest with a charged particle beam from the FIB column and imaging a surface of the region of interest with the SEM column; generating an initial three-dimensional data cube representing the region of interest by stacking the plurality of two-dimensional images on top of each other in an order in which they were acquired; identifying distortions within the initial three-dimensional data cube; and creating an updated three-dimensional data cube that includes corrections for the identified distortions.
US11728120B2
A planar filament 11f can include multiple materials to increase electron emission in desired directions and to suppress electron emission in undesired directions. The filament 11f can include a core-material CM between a top-material TM and a bottom-material BM. The top-material TM can have a lowest work function WFt; the bottom-material BM can have a highest work function WFb; and the core-material CM can have an intermediate work function WFc(WFtWb). This shape makes it easier to coat the edges 31e with the bottom-material BM, because the edges 31e tilt toward and partially face the sputter target. This shape also helps direct more electrons to a center of the target 14, and reduce electron emission in undesired directions.
US11728119B2
A photocathode 4 includes an optically transparent conductive layer provided between a translucent substrate and a photoelectric conversion layer. The optically transparent conductive layer is formed of a constituent material including carbon. A Raman spectrum of the constituent material has a peak of a band, a peak of a band, a peak of a band, and a peak of a band.
US11728116B2
An electrical arrangement for performing radio frequency isolation for microelectromechanical relay switches. A microelectromechanical relay switch comprises a beam configured to switch from a first position connected to an upper voltage source to a second position connected to a lower voltage source. The microelectromechanical relay switch further comprises at least one frequency isolation circuit or resistor disposed adjacent to the beam. The at least one frequency isolation circuit or resistor biases a direct current potential to allow for electrostatic actuation and further provides a path for transient electrical currents during switching.
US11728114B2
The invention relates to a low-voltage switching device comprising an electromagnetic drive having a coil (1), a fixedly positioned yoke (2), and an armature (3), which is movable relative to the yoke (2), and also comprising a contact system consisting of a fixedly positioned switch piece carrier (4) having a movable switch piece carrier (5) arranged opposite thereto, wherein the movable switch piece carrier (5) is acted upon by a contact load spring (7). The invention is characterized in that a first means for electromagnetic contact load support is positioned on the fixedly positioned switch piece carrier (4).
US11728104B1
A circuit breaker is configured to ensure electrical safety when working on its circuits. The circuit breaker comprises a housing with an exterior boundary. The housing includes an “integrated” or “pre-installed” Lock-Off feature extending away from the exterior boundary. The Lock-Off feature having a hole that is configured to receive a shackle or a shank of a padlock. The circuit breaker further comprises a built-in Lock-Off mechanism including a handle integrated with the housing using a pivot such that the handle is configured to pivot relative to the hole in the Lock-Off feature. The built-in Lock-Off mechanism in combination with the Lock-Off feature is configured to prevent the handle from being turned ON with the use of the padlock. The padlock prevents the handle from rotating on its pivot such that the padlock disables the circuit breaker from turning ON by impeding the handle from rotating to an ON-position.
US11728103B2
An electrical system includes an enclosure for housing an electrical device. The enclosure includes a door with an operating handle connected to a shaft when the door is closed, which can then be used to turn the electrical device on or off. The shaft rotation is further operable to simultaneously displace an interlock mechanism for engagement or disengagement to a busway structure.
US11728098B2
There is provided a method of producing a photovoltaic device comprising a photoactive region comprising a layer of perovskite material, wherein the layer of perovskite material is disposed on a surface that has a roughness average (Ra) or root mean square roughness (Rrms) of greater than or equal to 50 nm. The method comprises using vapour deposition to deposit a substantially continuous and conformal solid layer comprising one or more initial precursor compounds of the perovskite material, and subsequently treating the solid layer with one or more further precursor compounds to form a substantially continuous and conformal solid layer of the perovskite material on the rough surface. There is also provided a photovoltaic device comprising a photoactive region comprising a layer of perovskite material disposed using the method.
US11728093B2
A multilayer capacitor includes a capacitor body in which a first capacitor portion and a second capacitor portion are disposed to face each other with a connection region disposed therebetween, the connection portion having a predetermined thickness in which an internal electrode is not formed. The first capacitor portion comprises first and second internal electrodes that are alternately disposed with a dielectric layer interposed therebetween, and the second capacitor portion comprises third and fourth internal electrodes that are alternately disposed with a dielectric layer interposed therebetween. First and second external electrodes connected to the internal electrodes respectively comprise first and second internal layers containing copper (Cu), and first and second external layers containing silver (Ag) or nickel (Ni), and palladium (Pd).
US11728082B2
A magnetoresistive effect element includes: a first ferromagnetic layer; a second ferromagnetic layer; and a non-magnetic layer located between the first ferromagnetic layer and the second ferromagnetic layer, wherein a crystal structure of the non-magnetic layer is a spinel structure, wherein the non-magnetic layer contains Mg, Al, X, and O as elements constituting the spinel structure, and wherein the X is at least one or more elements selected from a group consisting of Ti, Pt, and W.
US11728079B2
An electric permanent magnet chuck, comprising a casing (1), the casing being provided thereon with at least one open inner cavity; reversible magnetic material (2) is provided at a lower portion of the inner cavity, and a coil (3) is arranged in the inner cavity along an outer wall of the reversible magnetic material; a magnetic pole (4) is superposed and fixed in the inner cavity, an annular groove being provided at a lower surface of the magnetic pole, and permanent magnetic material (5) that matches the annular groove being disposed in the annular groove. The electric permanent magnet chuck has the advantages of a simple structure, low processing difficulty, good sealing performance, small magnetic loss and so on.
US11728078B2
The disclosure provides improved magnetic glass particles for use in nucleic acid capture, enrichment, analysis, and/or purification. Various modifications to the disclosed compositions and methods of using the same, as well as devices and kits are described.
US11728053B2
Nuclear reactor systems and associated devices and methods are described herein. A representative nuclear reactor system includes a heat pipe network having an evaporator region, an adiabatic region, and a condenser region. The heat pipe network can define a plurality of flow paths having an increasing cross-sectional flow area in a direction from the evaporator region toward the condenser region. The system can further include nuclear fuel thermally coupled to at least a portion of the evaporator region. The heat pipe network is positioned to transfer heat received from the fuel at the evaporator region, to the condenser region. The system can further include one or more heat exchangers thermally coupled to the evaporator region for transporting the heat out of the system for use in one or more processes, such as generating electricity.
US11728049B2
A nuclear reactor is designed to couple the load path of the control elements with the reactor core, thus reducing the opportunity for differential movement between the control elements and the reactor core. A cartridge core barrel can be fabricated in a manufacturing facility to include the reactor core, control element supports, and control element drive system. The cartridge core barrel can be mounted to a reactor vessel head, and any movement, such as through seismic forces, transmits an equal direction and magnitude to the control elements and the reactor core, thus inhibiting the opportunity for differential movement.
US11728046B2
A fuel assembly includes full length fuel rods which contain a plutonium fissile (Puf) but do not contain a burnable poison, full length fuel rods which contain the fissile uranium and the burnable poison, and partial length fuel rods which contain Puf but do not contain the burnable poison in a channel box. The plutonium enrichment is decreased in an order of the full length fuel rods. The concentration of the burnable poison of the full length fuel rod is higher than the concentration of the full length fuel rod. In each side of a rectangular outermost periphery adjacent to the inner surface of the channel box in a horizontal cross-sectional view of the fuel assembly, two partial length fuel rods are adjacently disposed, and the full length fuel rod containing the burnable poison is disposed to be adjacent to each partial length fuel rod.
US11728037B2
A method and apparatus for vascular assessment are disclosed. The apparatus, in some embodiments, receives a plurality of 2-D angiographic images of a portion of a vasculature of a subject, and processes the images to produce a stenotic model over the vasculature. The stenotic model has measurements of the vasculature at one or more locations along vessels of the vasculature. The apparatus, in some embodiments, determines a flow characteristic of the stenotic model and calculates an index indicative of vascular function, based, at least in part, on the flow characteristic in the stenotic model.
US11728036B2
In an embodiment of this invention, in a learning phase, a state estimation device acquires activity state data and biometric data at that time from user terminals of a plurality of users, generates a regression formula representing the relationship between the biometric data and the activity state data using a regression analysis method on the basis of these pieces of measurement data, and calculates a difference between the coefficients of the regression formula of all users and each user to generate a coefficient correction regression formula representing a relationship between the difference of the coefficient and an average value of the biometric data. In an estimation phase, the state estimation device acquires biometric data of a new user, corrects a coefficient value of an activity state estimation regression formula to a coefficient value for the new user on the basis of the average value of the biometric data and the coefficient correction regression formula, and estimates the activity state of the new user using the regression formula having the corrected coefficient.
US11728035B1
A computerized medical diagnostic system uses a training dataset that is updated based on reports generated by a radiologist. AI and/or CAD is used to make an initial determination of no finding, finding, or diagnosis based on the training dataset. Normal results with a high confidence of no finding are not reviewed by the radiologist. Low confidence results, findings, and diagnosis are reviewed by the radiologist. The radiologist generates a report that associates terminology and weighting with marked 3D image volumes. The report is used to update the training dataset.
US11728033B2
Systems and methods are provided for determining an emotional state of a medical professional and dynamically generating clinical procedures that are adapted to the medical professional's emotional state, as well as an assessment of a medical device based on the determined emotional state. Observation data corresponding to a medical professional associated with a clinical procedure can be received and processed to determine an emotional state of the medical professional. The emotional state can be predicted using a first predictive model trained in a machine learning process. The determined emotional state can be provided to a second predictive model to provide one or more adapted clinical procedures. Device assessment data can also be used with the determined emotional state to determine an assessment of a medical device. The one or more adapted clinical procedures and the assessment of the medical device can be provided as an output.
US11728027B2
A system of medical devices, the system comprising: a medical device data management system; a plurality of medical devices communicatively connected to the medical device data management system; each medical device being operable to analyze one or more samples of biological material; and to communicate information about an operational state of the medical device to the medical device data management system; a plurality of portable electronic devices, each operable to be carried by an operator, each portable electronic device communicatively connectable to the medical device data management system and configured to receive, from the medical device data management system, information indicative of an operational state of respective medical devices and to display the received information in respect of one or more selected ones of the medical devices.
US11728022B2
A method includes obtaining prescribing drug information and published guidelines for each of a plurality of ADMs available for managing glucose levels, and receiving patient information associated with a patient. The method also includes ordering total demerit values from lowest to highest, selecting a predetermined number of recommended ADMs associated with the lowest total demerit values, and determining a recommended dosage for each recommended ADM. The method also includes transmitting a therapy regimen to a patient device associated with the patient. The therapy regimen includes the recommended ADMs and the recommended dosage for each recommended ADM.
US11728008B2
A technique for learning and steering evolutionary dynamics may include initializing a bioreactor including a population of evolving organisms; determining selection pressures; (a) applying the selection pressures to the population; (b) determining the population state and storing it in a population dataset; (c) detecting whether the population has reached a stable state; (d) if the population has reached the stable state: obtaining data representing the stable state, redetermining the selection pressures based on a selection pressure policy, and storing the data and the redetermined selection pressures in a stable state dataset; (e) determining whether one or more stopping criteria have been met; and repeating steps (a)-(e) until at least one of the stopping criteria is met.
US11727992B2
A semiconductor memory device includes first, second, third, and fourth planes, a first address bus connected to the first and third planes, a second address bus connected to the second and fourth planes, and a control circuit configured to execute a synchronous process on at least two planes in response to a first command set including a first address and a second address. The control circuit is configured to transfer the first address to the first and third planes through the first address bus, and the second address to the second and fourth planes through the second address bus, and during the synchronous process, select a first block in one of the first and third planes, based on the transferred first address and select a second block in one of the second and fourth planes, based on the transferred second address.
US11727973B2
A magnetic property measuring system includes coil structures configured to apply a magnetic field to a sample, a light source configured to irradiate incident light to the sample, and a detector configured to detect polarization of light reflected from the sample. The magnetic field is perpendicular to a surface of the sample. Each coil structure includes a pole piece and a coil surrounding an outer circumferential surface of the pole piece. A wavelength of the incident light is equal to or less than about 580 nm.
US11727967B2
Apparatuses and methods including dice latches in a semiconductor device are disclosed. Example dice latches have a circuit arrangement that include a reduced number of circuits, such as transistors, and provides a compact layout. Operation of example dice latches and other dice latches may be controlled by separately provided control signals for loading and latching of data, and in some examples, for a reset operation. Example layouts include circuit elements aligned along a direction with at least one other circuit element offset from the other aligned circuit elements.
US11727966B2
A memory system includes a memory controller with a plurality N of memory-controller blocks, each of which conveys independent transaction requests over external request ports. The request ports are coupled, via point-to-point connections, to from one to N memory devices, each of which includes N independently addressable memory blocks. All of the external request ports are connected to respective external request ports on the memory device or devices used in a given configuration. The number of request ports per memory device and the data width of each memory device changes with the number of memory devices such that the ratio of the request-access granularity to the data granularity remains constant irrespective of the number of memory devices.
US11727960B2
In a recording and reproducing apparatus and a recording and reproducing method for the recording and reproducing apparatus for recording and reproducing image information on a scene obtained through photographing, relative to a predetermined first recording medium and being capable of setting one or more chapters to each scene, a face recognizing process is executed for a photographed image based on the image information, an importance level of each chapter is set in accordance with a result of the face recognizing process for a very important person (VIP) set by a user, and each chapter having a relevant importance level among importance levels of respective chapters is selectively reproduced. A user can therefore find an object chapter and scene quickly and easily.
US11727937B2
An online system, for example, a multi-tenant system interacts with various conversation channels, for example, various telephony services and artificial intelligence provider systems that perform artificial intelligence based analysis of conversations. The analysis of the conversation determines additional information describing the conversation, for example, sentiment of an utterance of the conversation, entities mentioned in an utterance of the conversation, intent of an utterance of the conversation, and so on. The online system stores the information describing conversations using a normalized representation that conforms to a unified conversation schema. Various applications may use the result of the analysis obtained from the AI provider systems to take further action, for example, recommend a specific workflow to an agent that is a participant in the conversation.
US11727929B2
Voice command matching during testing of voice-assisted application prototypes for languages with non-phonetic alphabets is described. A visual page of an application prototype is displayed during a testing phase of the application prototype. A speech-to-text service converts a non-phonetic voice command spoken in a language with a non-phonetic alphabet, captured by at least one microphone during the testing phase of the application prototype, into a non-phonetic text string in the non-phonetic alphabet of the voice command. A phonetic language translator translates the non-phonetic text string of the voice command into a phonetic text string in a phonetic alphabet of the voice command. A comparison module compares the phonetic text string of the voice command to phonetic text strings in the phonetic alphabet of stored voice commands associated with the application prototype to identify a matching voice command. A performance module performs an action associated with the matching voice command.
US11727928B2
Aspects of the disclosure provide a responding method and device, an electronic device and a storage medium. The method is applied to a first electronic device including an audio acquisition component and an audio output component. The method can include acquiring a voice signal through the audio acquisition component, determining whether to respond to the voice signal, and responsive to determining to respond to the voice signal, outputting a first sound signal by the audio output component, the first sound signal being configured to notify at least one second electronic device that the first electronic device responds to the voice signal. In such a manner, an electronic device, responsive to determining to respond to a voice signal, outputs a sound signal to prevent other electronic device(s) from responding to the voice signal, so that competitions between electronic devices are reduced and a user experience is improved.
US11727922B2
A computerized system for deriving expression of intent from recorded speech includes: a text classification module comparing a transcription of recorded speech against a text classifier to generate a first set of representations of potential intents; a phonetics classification module comparing a phonetic transcription of the recorded speech against a phonetics classifier to generate a second set of representations; an audio classification module comparing an audio version of the recorded speech with an audio classifier to generate a third set of representations; and a discriminator module for receiving the first, second and third sets of the representations of potential intents and generating one derived expression of intent by processing the first, second and third sets together; where at least two of the text classification module, the phonetics classification module, and the audio classification module are asynchronous processes from one another.
US11727920B2
A RNN-T model includes a prediction network configured to, at each of a plurality of times steps subsequent to an initial time step, receive a sequence of non-blank symbols. For each non-blank symbol the prediction network is also configured to generate, using a shared embedding matrix, an embedding of the corresponding non-blank symbol, assign a respective position vector to the corresponding non-blank symbol, and weight the embedding proportional to a similarity between the embedding and the respective position vector. The prediction network is also configured to generate a single embedding vector at the corresponding time step. The RNN-T model also includes a joint network configured to, at each of the plurality of time steps subsequent to the initial time step, receive the single embedding vector generated as output from the prediction network at the corresponding time step and generate a probability distribution over possible speech recognition hypotheses.
US11727914B2
An example intent-recognition system comprises a processor and memory storing instructions. The instructions cause the processor to receive speech input comprising spoken words. The instructions cause the processor to generate text results based on the speech input and generate acoustic feature annotations based on the speech input. The instructions also cause the processor to apply an intent model to the text result and the acoustic feature annotations to recognize an intent based on the speech input. An example system for adapting an emotional text-to-speech model comprises a processor and memory. The memory stores instructions that cause the processor to receive training examples comprising speech input and receive labelling data comprising emotion information associated with the speech input. The instructions also cause the processor to extract audio signal vectors from the training examples and generate an emotion-adapted voice font model based on the audio signal vectors and the labelling data.
US11727901B2
An acoustic variable porting system includes an acoustic element and an acoustic variable porting element forming a port into the acoustic element. The acoustic variable porting element is adjustable between at least an open position, in which the port is generally open, and a closed position, in which the port is generally closed. The acoustic element may be at least one of: a sub-kick, a ported drum, and a speaker.
US11727899B2
A chin rest includes a top panel, side panel, and tailpiece strap with snap components, and together provide a surface on which a musician may place their chin while playing an instrument. The side panel includes an endpin hole designed to fit snugly over and around the endpin of an instrument to hold the chin rest to the surface of the instrument. A tailpiece strap extends from the top panel to form a loop around the tailpiece of an instrument, securing the chin rest to the instrument. A male snap connector is embedded in the end of the tailpiece strap and a female snap connector is embedded in the top panel, adjacent to the tailpiece strap. A raised, exterior border surrounds the exterior edge of the top and/or side panels, creating a negative space to provide a cradle for a musician's chin.
US11727893B2
An active matrix substrate includes a plurality of signal lines, each of which includes first and second line portions and an inner connection portion (connection portion) that connects the first and second line portions. The first and second line portions of one of two adjacent signal lines are made of first and second conductive layers, respectively, and the first and second line portions of the other of the two adjacent signal lines are made of second and first conductive layers, respectively. The position of the connection portion of each of the signal lines is determined in accordance with the layout position of that signal line in the line region.
US11727885B2
A scan driver includes a plurality of stages, each of the plurality of stages including: a first controller to control voltage levels of a first control node and a second control node in response to a first start signal and a second start signal, and to output a first carry signal; a second controller to control voltage levels of a third control node and a fourth control node in response to the first start signal and the second start signal, and to output a second carry signal; and an output circuit including: a pull-up transistor having a gate connected to the first control node; and a pull-down transistor having a gate connected to the third control node. The output circuit is to output a scan signal based on an on voltage output through the pull-up transistor and an off voltage output through the pull-down transistor.
US11727879B2
A display device includes: a display panel in which a non-display region and a display region surrounding the non-display region are defined, wherein the display panel includes: a base layer comprising a first region in which a hole is defined corresponding to the non-display region, a second region surrounding the first region, and a third region corresponding to the display region; and first signal line parts disposed on the second region and the third region, the first signal line parts arrayed spaced apart from each other in a first direction, and each of the first signal line parts includes: a first line; a second line spaced apart from the first line; and a first connection part configured to connect the first line and the second line.
US11727867B2
A pixel of an organic light emitting diode display device includes a capacitor, a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, an eighth transistor, a ninth transistor and an organic light emitting diode. The third transistor includes first and second sub-transistors which are coupled to each other in series between a drain of the first transistor and a gate node, and a fourth transistor includes third and fourth sub-transistors which are coupled to each other in series between a line of an initialization voltage and the gate node. The eighth transistor applies a reference voltage to a first node between the first and second sub-transistors in response to an emission signal, and a ninth transistor applies the reference voltage to a second node between the third and fourth sub-transistors in response to the emission signal.
US11727861B2
Provided are a pixel drive circuit, a drive circuit of a display panel, and a display apparatus. The pixel drive circuit includes a switch unit and a drive unit, the switch unit is connected to the drive unit, and the drive unit is configured to be connected to a plurality of sub-pixel units; the switch unit is configured to receive a scan signal and a data signal, be switched on under action of the scan signal, and send the data signal to the drive unit; and the drive unit is configured to send the data signal to the plurality of sub-pixel units connected thereto in a time division manner.
US11727860B2
The present disclosure provides a pixel circuit, a display panel, and a display device. The pixel circuit includes: a first switch circuit, a second switch circuit, a driving circuit, a first gate line, a first data line, a second gate line, and a second data line. The first switch circuit has a control terminal connected to the first gate line, a first terminal connected to the first data line, and a second terminal connected to a control terminal of the driving circuit; the second switch circuit has a control terminal connected to the second gate line, a first terminal connected to the second data line, and a second terminal connected to the control terminal of the driving circuit; and the first gate line and the second data line extend along a first direction, the second gate line and the first data line extend along a second direction.
US11727858B2
A 1D scanning micro-display architecture for high-resolution image visualization in compact AR and Head Mounted Displays (“HMDs”). A display driver is configured to drive a plurality of display pixels of a tri-linear microdisplay, wherein the tri-linear microdisplay defines one or more stripes. Each of the stripes are constructed of one or more rows of pixels, and is used in the 1D-scanning display system to create high-resolution images in an augmented reality (“AR”) or Head Mounted Display.
US11727852B2
Disclosed is a display device which includes a display panel that includes a plurality of pixels and includes a display area displaying an image, a panel controller that receives an external input signal from an external source and generates a control signal for dividing the display area into a first area and a second area which is disposed adjacent to the first area based on the external input signal, and an instrument module that stretches the first area and the second area of the display panel in response to the control signal. The number of the pixels per unit area in the first area is different from the number of the pixels per unit area in the second area.
US11727848B2
A display device includes a display panel including a plurality of pixels, and a panel driver configured to receive input data, and to drive the display panel based on the input data. The panel driver includes a partial still image detector configured to detect a still image data portion in the input data by determining whether at least a portion of the input data represents a still image, and a command decoder configured to extract command data from the input data by decoding the still image data portion in which the command data are encoded.
US11727843B2
A display driver includes image processing circuitry and drive circuitry. The image processing circuitry is configured to generate first voltage data for a first pixel in a first screen area of a display panel using a first gamma parameter. The image processing circuitry is further configured to generate second voltage data for a second pixel in a second screen area of the display panel using a second gamma parameter set. The image processing circuitry is further configured to determine an interpolated gamma parameter set for a third pixel in a connection area of the display panel through interpolation between the first gamma parameter set and the second gamma parameter set. The connection area is disposed between the first screen area and the second screen area. The image processing circuitry is further configured to generate third voltage data for the third pixel using the interpolated gamma parameter set.
US11727842B2
The present disclosure relates to a data-driving device and a system for driving a display device and, more specifically, a data-driving device and a system for reducing power consumption of a display device by reducing a static current of the data-driving device.
US11727839B2
A display device and a method of driving the same are provided. The method of driving the display includes a display area to display an image. The method includes performing a first first pixel shift driving by shifting an image by a first range in the display area without loss of image information due to enlargement or reduction of the image, checking whether a change of a block grayscale value is greater than or equal to a threshold in an interest area in the display area, and performing second pixel shift driving by shifting an image having the loss of image information.
US11727834B2
According to the present embodiments, it is possible to provide a rotary LED display device which reduces the size of the device and can be installed in various location so as to reduce the restrictions on installation space and location. The embodiments may provide a rotary LED display device capable of allowing a user to freely change the display contents immediately and satisfying the durability suitable for long-term operation.
US11727831B2
An advertising sign comprises a main housing to accommodate an upright passing therethrough and configured to affix to the upright at a desired height. The main housing presents forward and rearward facing, generally planar, primary advertising surfaces. Retaining assemblies extend along opposite sides of the main housing. Each retaining assembly is configured to releasably retain a secondary advertising insert that presents forward and rearward facing advertising surfaces. Forward and rearward facing upper support panels extend upwardly from the main housing and are configured to support forward and rearward facing advertising onserts thereon. Forward and rearward facing lower support panels extend downwardly from the main housing and are configured to support forward and rearward facing advertising onserts thereon.
US11727830B2
A placard frame comprises a first frame member and a second frame member spaced from the first frame member and extending therefrom at a margin, wherein the first and second frame members and the margin define an interior space adapted to receive a placard. A projection is disposed on one of the first frame member and the second frame member at a location one of at and adjacent to the margin wherein the projection extends into the interior space. Further, a slot is in communication with the interior space.
US11727815B2
Disclosed are methods, systems, and a non-transitory computer-readable medium for regenerating at least a portion of a flight plan of a vehicle. The method may include generating an adjustment to a speed, an altitude, and/or a heading for one or more locations along a flight path within at least one of a predetermined distance of the vehicle and a predetermined window of time, based on received speed data, altitude data, and flight path data, including a subset of points along each boom footprint included in the flight path data, and a permissible threshold boom value for each of the one or more locations. The method may also include regenerating a portion of a flight plan corresponding to the one or more locations, based on the generated adjustment to the speed, altitude, and/or heading for the one or more locations.
US11727811B2
A system and method for determining car to lane distance is provided. In one aspect, the system includes a camera configured to generate an image, a processor, and a computer-readable memory. The processor is configured to receive the image from the camera, generate a wheel segmentation map representative of one or more wheels detected in the image, and generate a lane segmentation map representative of one or more lanes detected in the image. For at least one of the wheels in the wheel segmentation map, the processor is also configured to determine a distance between the wheel and at least one nearby lane in the lane segmentation map. The processor is further configured to determine a distance between a vehicle in the image and the lane based on the distance between the wheel and the lane.
US11727810B2
A first device may receive, from a second device associated with an emergency motor vehicle (EMV), EMV-tracking information and a communication that the EMV is in emergency response mode and may determine, based on the EMV-tracking information, that the EMV is approaching an intersection. The first device may receive, from a third device associated with a user vehicle, user-tracking information. The first device may determine, based on the user-tracking information, that the user vehicle is approaching the intersection. The first device may determine, based on the EMV-tracking information and the user-tracking information, whether the EMV is predicted to collide with the user vehicle. The first device may provide, to the second device and based on the determination of whether the EMV is predicted to collide with the user vehicle, a first notification including information regarding safety of the EMV proceeding through the intersection.
US11727794B2
Systems and methods for characterizing a driving style of a human driver are presented. A system may include one or more sensors configured to collect information concerning driving characteristics associated with operation of a vehicle by a human; a memory containing computer-readable instructions for evaluating the information concerning driving characteristics collected by the one or more sensors for one or more patterns correlatable with a driving style of the human and for characterizing aspects of the driving style of the human based on the one or more patterns; and a processor configured to read the computer-readable instructions from the memory, evaluate the driving characteristics collected by the one or more sensors for one or more patterns correlatable with a driving style of the human, and characterize aspects of the driving style of the human based on the one or more patterns. Corresponding methods and non-transitory media are disclosed.
US11727790B2
A system providing various improved calibration techniques for haptic feedback is described. An acoustic field is defined by one or more control points in a space within which the acoustic field may exist. Each control point is assigned an amplitude value equating to a desired amplitude of the acoustic field at the control point. Because complete control of space is not possible, controlling the acoustic field at given points yields erroneous local maxima in the acoustic field levels at other related positions. In relation to mid-air haptic feedback, these can interfere in interactions with the space by creating secondary effects and ghost phenomena that can be felt outside the interaction area. The level and nature of the secondary maxima in the acoustic field is determined by how the space is controlled. By arranging the transducer elements in different ways, unwanted effects on the acoustic field can be limited and controlled.
US11727784B2
A mask wearing status alarming method, a mobile device, and a computer readable storage medium are provided. The method includes: performing a face detection on an image to determine face areas each including a target determined as a face; determining a mask wearing status of the target in each face area; confirming the mask wearing status of the target in each face area using a trained face confirmation model to remove the face areas comprising the target being mistakenly determined as the face and determining a face pose in each of the remaining face areas to remove the face areas with the face pose not meeting a preset condition, in response to determining the mask wearing status as a not-masked-well status or a unmasked status; and releasing an alert corresponding to the mask wearing status of the target in each of the remaining face areas.
US11727775B2
A tracking support system includes a position calculating section connected with a plurality of cameras arranged in a predetermined monitoring area to transmit video images imaged by the plurality of cameras and configured to calculate a position of the tracking target based on the video images received from the plurality of cameras; a tracker selecting section configured to select a tracker to be instructed to track the tracking target, based on position information of the terminal received from the terminal and the calculated position of the tracking target; and an information transmitting section configured to transmit information of a distance between the tracking target and the terminal during the tracking of the tracking target to the terminal carried by the selected tracker.
US11727772B2
Embodiments pertain to a storage system for securely storing a plurality of garment bags in a publicly accessible area, comprising: at least one frame structure, wherein the at least one frame structure comprises a plurality of item hanging hardware mechanisms for receiving items for storage, and a plurality of garment bags comprising receptacles that are non-removably coupled, in a suspending manner, from the frame structure, and fasteners for opening and closing the respective receptacles, wherein each one of the fasteners operably cooperates with a lock mechanism of the storage system for selectively securing the fastener in a closed position and for unsecuring the fastener for allowing the fastener to be set from the closed into an open position; an alarm system that is operably coupled with the plurality of receptacles and, when armed, provides an output responsive to detecting that the structural integrity of the receptacle is compromised; and an output module to indicate a user located in the publicly accessible area which one of the garment bags have an item stored therein and which not, to indicate to the user which of the plurality of item storage devices is available for storing items therein.
US11727750B2
A fraud detection system which detects fraud in a game of performing collection and redemption of chips in accordance with a win or lose result includes a camera which captures an image of chips contained in a chip tray of a dealer, an image analyzing apparatus which analyses the image captured by the camera to detect an amount of the chips contained in the chip tray, a card distribution device which determines a win or lose result of a game, and a control device which compares the win or lose result of the game and the amount of the chips contained in the chip tray before and after collection and redemption of the chips to detect fraud.