A modular ATM is disclosed herein and can include a safe with a first port, at least one currency cassette and dispenser both positioned in the safe, a currency conveyor, and a plurality of linking transport assemblies. The dispenser can move banknotes between the cassette and the first port. The currency conveyor can be positioned on the safe, have second and third ports, and move banknotes between the second and third ports. The currency conveyor can be positionable in a plurality of different orientations and offsets relative to the safe. The plurality of linking transport assemblies can each be individually engageable with the currency conveyor. Each of the linking transport assembly moves banknotes between the first port of the safe and the second port of the currency conveyor. Each linking transport assembly is individually positionable between the safe and the currency conveyor.
Systems and methods for using accelerations derived from a motion pattern for multi-factor authentication, the method including receiving, filtering, and determining an identifying pattern from acceleration data representative of the user and using the identifying pattern for secured access authentication.
A plurality of operator controls can, in an operation mode, operate a machine, and, in a validation mode, be disabled to operate the machine and selectable to provide inputs for a candidate key. A computing device can initialize the validation mode, including initializing the candidate key and, according to a number base, and a maximum storage length, of a stored key, an input multiplier; receive a plurality of inputs to the operator controls in the validation mode; determine respective numeric values of the inputs; add the candidate key to a product of the multiplier and the numeric value of a first input to update the candidate key; for each of one or more second inputs to the operator controls after the first input to the operator controls, determine whether the candidate key matches a stored key; and upon determining that the candidate key matches the stored key, output an authorization.
A method, a system, and a non-transitory computer readable medium for evaluating first movements of a first person in view of movements of a second person. The method may include determining the relationships between the first frames and the second frames by a sequence alignment algorithm, the determining of the relationships is based on the inter-frame similarity scores and the multiple state-related scores; and determining at least one evaluation score of the movements of the first person, based on the relationships and the multiple inter-frame similarity scores; wherein the at least one evaluation score is indicative of a similarity between the movements of the first person and the movements of the second person.
A system and method for verifying the identity of a user sending a facial image is disclosed. The system includes a mobile device interface for receiving a facial image. A facial feature extractor module receives the image and determines identifying features from the facial image. An image template database stores a template image associated with the user of the mobile device. A match processing module receives the facial image and verifies the facial image with the identity of the user by comparing the identifying features with the template image.
Provided is a method for determining a match between a candidate fingerprint and a reference fingerprint characterized by minutiae local features. The method includes extracting several minutiae from the candidate fingerprint, computing from said extracted minutiae a plurality of minutiae local features of the candidate fingerprint, computing a first global matching score between the candidate fingerprint and the reference fingerprint based on the first similarity scores of said matching local feature pairs; computing a second global matching score between the candidate fingerprint and the reference fingerprint based on said computed second similarity scores; and determining a match between the candidate fingerprint and the reference fingerprint comprising: comparing the first and second global matching scores and, comparing the first matching score to a matching threshold. Other embodiments disclosed.
Segmentation of an image into individual body parts is performed based on a trained model. The model is trained with a plurality of training images, each training image representing a corresponding training figure. The model is also trained with a corresponding plurality of segmentations of the training figures. Each segmentation is generated by positioning body parts between defined positions of joints of the represented figure. The body parts are represented by body part templates obtained from a template library, with the templates defining characteristics of body parts represented by the templates.
A light source (11) of a disguising mask detecting device (1) emits light at a person who is a subject. A camera (12) acquires images in multiple different wavelength ranges of reflected light of the light emitted at the person. A face detector (172) detects a face region of the person from the images acquired by the camera (12). A determiner (173) determines that the person is wearing a disguising mask when luminances of the face region in the images satisfy specific relations different from relations exhibited by skin.
Disclosed are an apparatus and a method for detecting whether an anomalous sentence having a context different from that of other sentences exists in a document. The apparatus for detecting a contextually-anomalous sentence in a document according to the present invention includes: a sentence encoder for encoding individual sentences constituting document data by means of a predetermined rule (function) to generate encoding vectors; a context embedder neural network for converting the generated encoding vector into embedding vectors corresponding thereto; and a context anomaly detector neural network for detecting whether an anomalous sentence exists in the converted document data.
Systems and methods for automated indexing and extraction of information in digital documents are disclosed. A method may comprise selecting a page number of a digital document to identify a page containing targeted information; inputting an image of the page into a visual machine learning network (visual ML), wherein the visual ML is trained to recognize text associated with the targeted information in an image; identifying by the visual ML, a section of the image that contains the targeted information; inputting the page number, the digital document, and coordinates of the section into an extraction module; and extracting the targeted information by the extraction module from the section.
A number plate information specifying device includes an image acquisition unit that acquires a number plate image, a feature point extraction unit that extracts a feature point from the number plate image, a degree of similarity calculation unit that references a learning data set in which a plurality of feature points are recorded in association with a plurality of pieces of number plate information and calculates degrees of similarity for the feature points recorded in the learning data set that correspond to the feature point extracted from the number plate image, a vote value calculation unit that, on the basis of the degrees of similarity, calculates vote values for the pieces of number plate information recorded in the learning data set, and a specifying unit that specifies the piece of number plate information that has the highest vote value as the number plate information displayed in the number plate image.
Near-to-eye displays support a range of applications from helping users with low vision through augmenting a real world view to displaying virtual environments. The images displayed may contain text to be read by the user. It would be beneficial to provide users with text enhancements to improve its readability and legibility, as measured through improved reading speed and/or comprehension. Such enhancements can provide benefits to both visually impaired and non-visually impaired users where legibility may be reduced by external factors as well as by visual dysfunction(s) of the user. Methodologies and system enhancements that augment text to be viewed by an individual, whatever the source of the image, are provided in order to aid the individual in poor viewing conditions and/or to overcome physiological or psychological visual defects affecting the individual or to simply improve the quality of the reading experience for the user.
There is provided a method for detecting a lane marking using a processor including acquiring a drive image captured by an image capturing device of a vehicle which is running, detecting an edge corresponding to a lane marking from the acquired drive image and generating an edge image based on the detected edge, detecting a linear component based on the detected edge and generating a linearly processed edge image based on the detected linear component, detecting a lane marking point corresponding to the lane marking using the generated edge image and the linearly processed edge image, and detecting the lane marking based on the detected lane marking point.
In some embodiments, a method can include executing a first model to extract a first region of interest (ROI) image and a second ROI image from an image that shows an item and an indication of information associated to the item. The first ROI image can include a portion of the image showing the item and the second ROI image can include a portion of the image showing the indication of information. The method can further include executing a second model to identify the item from the first ROI image and generate a representation of the item. The method can further include executing a third model to read the indication of information associated to the item from the second ROI image and generate a representation of information.
The present disclosure provides an image processing method. An image to be classified is input into a feature extraction model to generate N dimensional features. Dimension fusion is performed on M features of the N dimensional features to obtain M dimension fusion features. The image to be classified is processed based on M dimension fusion features and remaining features of the N dimensional features other than the M features.
Various implementations disclosed herein include devices, systems, and methods that determine a particular object instance in CGR environments. In some implementations, an object type of an object depicted in an image of a physical environment is identified. Then, a particular instance is determined based on the object type and the image. In some implementations, objects of the particular instance have a set of characteristics that differs from sets of characteristics associated with other instances of the object type. Then, the set of characteristics of the particular instance of the object depicted in the physical environment is obtained.
An intelligent recognition method of hyperspectral image of parasites in raw fish relates to optical detection technology, and includes step 1: obtaining a hyperspectral image of the raw fish in a wavelength range from 300 to 1100 nm; step 2: extracting a grayscale image of the hyperspectral image at a wavelength value of 437 nm, and obtaining a position range of fish meat in the grayscale image by performing a median filtering process and a binarization process on the grayscale image; step 3: extracting spectral signals of pixel points in the position range of the hyperspectral image, performing a first-order derivative process on the spectral signals, and import the spectral signals after the first-order derivative process into a preset first model, a second model, and a third model for analysis. The method can accurately distinguish the parasite body in the raw fish.
A method and system for temporal frequency analysis for identification of unmanned aircraft systems. The method includes obtaining a sequence of video image frames and providing a pixel from an output frame of the video; generating a fluctuating pixel value vector; examining the fluctuating pixel value vector over a period of time; obtaining the frequency information present in the pixel fluctuations; summing the frequency coefficients for the vectorized pixel values from the fluctuating pixel value vector; obtaining an image representing a two dimensional space based on the summed center frequency coefficients; generating a series of still frames equal to a summation of the center frequency coefficients for pixel variations; and combining the temporal information into spatial locations in a matrix to provide a single image containing the spatial and temporal information present in the sequence of video image frame.
A system including server(s) configured to: receive, from host device, visible-light images of real-world environment captured by visible-light camera(s); process visible-light images to generate three-dimensional (3D) environment model; receive, from client device, information indicative of pose of client device; utilise 3D environment model to generate reconstructed image(s) and reconstructed depth map(s); determine position of each pixel of reconstructed image(s); receive, from host device, current visible-light image(s); receive, from host device, information indicative of current pose of host device, or determine said current pose; determine, for pixel of reconstructed image(s), whether or not corresponding pixel exists in current visible-light image(s); replace initial pixel values of pixel in reconstructed image(s) with pixel values of corresponding pixel in current visible-light image(s), when corresponding pixel exists in current visible-light image(s); and send reconstructed image(s) to client device.
Disclosed is a three-dimensional (“3D”) scanning system that synchronizes the scanning of a scene with the viewing of the scan results relative to a live view of the scene. The system includes a first device that scans a first set of surfaces that are exposed to the first device from a first position. The system further includes a second device that receives the scan data as it is generated for each scanned surface of the first set of surfaces. The second device augments a visualization of a second set of surfaces, within a field-of-view of the second device from a second position, with the scan data that is generated for a subset of scanned surfaces from the first position corresponding to one or more surfaces of the second set of surfaces visualized from the second position.
According to various implementations, a method is performed at a first electronic device with a non-transitory memory and one or more processors. The method includes determining a reference location in a three-dimensional space based on a feature. The feature is generated by a second electronic device. The method includes obtaining, for the reference location, first reference coordinates in an augmented reality coordinate system of the first electronic device and second reference coordinates in an augmented reality coordinate system of the second electronic device. The method includes determining a coordinate transformation based on a function of the first reference coordinates and the second reference coordinates. The method includes synchronizing an augmented reality coordinate system of the first electronic device with an augmented reality coordinate system of the second electronic device using the coordinate transformation.
Various implementations of the present application set forth a method comprising receiving, by a remote device from a host device, geometry data representing a physical space that is remote to a location of the remote device, where the geometry data comprises a set of vertices, a set of faces comprising edges between pairs of vertices, and texture data, constructing, based on the geometry data, an adaptable three-dimensional (3D) representation of the physical space for display at the location of the remote device, receiving, by the remote device, an input representing an interaction with at least one portion of the adaptable 3D representation, and transmitting, to the host device, data corresponding to the interaction.
A graphics system and associated methods produce a continuous presentation and/or visualization from a point cloud with a distributed and disconnected set of data points that otherwise produce a discontinuous presentation and/or visualization of a scene. The graphics system receives the data points, and expands a polygonal mesh from the position of each particular data point such that each side of the polygonal mesh connects to a side of a polygonal mesh that is expanded from the position of each data point of a set of data points that neighbors the particular data point. The polygonal mesh of the particular data point spans a larger area or volume of the space than the particular data point. The graphics system produces the continuous visualization of the scene from rendering the polygonal mesh that is expanded from the position of each particular data point instead of rendering the data points.
Proposed is a three-dimensional skeleton generation method using calibration based on a joint acquired from a multiview camera, capable of extracting a partial skeleton of each viewpoint from a distributed RGB-D camera, calculating a camera parameter by using a joint of each partial skeleton as a feature point, and integrating each partial skeleton into a three-dimensional skeleton based on the parameter. The three-dimensional skeleton generation method includes: (a) acquiring a multiview color-depth video; (b) generating a three-dimensional skeleton of each viewpoint from a color-depth video of each viewpoint, and generating a joint of the skeleton of each viewpoint as a feature point; (c) performing extrinsic calibration for optimizing an extrinsic parameter by using the joint of the skeleton of each viewpoint; and (d) aligning and integrating the three-dimensional skeleton of each viewpoint by using the extrinsic parameter.
Disclosed herein are system, method, and computer program product embodiments for utilizing non-RAM memory to implement large digital display emulations. An embodiment operates by generating, by an emulator device, a pixel map of a digital display, wherein the pixel map comprises a plurality of pixels representative of a plurality of light emitting elements arranged on a viewable surface of the large digital display. A distance and orientation of a virtual viewer to the viewable surface of the large digital display is generated and the emulator device emulates the large digital display based on the pixel map and the distance and the orientation of the virtual viewer and renders the digital content based on the emulated large digital display.
Disclosed are systems and methods for single image-based body animation. An example method includes receiving an input image, the input image including a body image of a person, extracting the body image of the person from the input image, fitting a generic model to the body image, where the generic model is configured to receive a set of pose parameters corresponding to a pose of the person and generate a generic body shape adopting the pose, generating a three-dimensional (3D) model, where the 3D model is configured to receive a set of further pose parameters corresponding to the pose of the person and generate an output image of the person adopting the pose, the output image including a feature of the body image being omitted from the generic body shape, and providing a further set of further pose parameters to generate a frame of an output video.
Embodiments herein describe techniques for editing a needle point path displayed on a touch screen. For example, a stylus can be used to select a portion of the needle point path which can then be moved, rotated, shrunk/enlarged, deleted, replaced, copied, etc. The embodiments herein may convert the selected portion of the needle point path into a graphics region which can then be manipulated. Once edited, the path can then be added back to the needle point path.
The disclosure relates to a system and method for correcting PET image data. PET image data of a first part of a subject may be obtained. CT image data of a second part of the subject may be obtained. The first part may include the second part. PET voxel data of the first part may be obtained based on the PET image data of the first part. A relationship between the CT image data and PET voxel data of the second part may be determined. CT image data of a third part of the subject may be determined based on the relationship and PET voxel data of the third part. The first part may include the third part. An attenuation map may be determined based on the CT image data of the second part and the third part. The PET image data of the first part may be corrected based on the attenuation map.
The invention discloses a limited-angle CT reconstruction method based on Anisotropic Total Variation. According to the method, through an image reconstruction model using low dose and sparse-view-angle CT images, a fast iterative reconstruction algorithm is combined with an Anisotropic Total Variation method. The problems that in an existing limited-angle CT reconstruction method are effectively solved, such as partial boundary ambiguity, slow convergence speed and unable to accurately solve. In the process of solving the model, the slope filter is introduced in the Filtered Back-Projection to preprocess the iterative equation, and the Alternating Projection Proximal is used to solve the iterative equation, and the iteration is repeated until the termination condition is satisfied; the experimental comparison with the existing reconstruction methods shows that the invention can achieve better reconstruction effect.
Systems, apparatuses and methods may provide for technology that partitions a high dynamic range (HDR) image into a plurality of regions and determines, on a per region basis, a luminance level of the HDR image. Additionally, the technology may select, on the per image basis, a encoding amount for each region in the plurality of regions based on the luminance level.
A system comprises an encoder configured to compress attribute information for a point cloud and/or a decoder configured to decompress compressed attribute for the point cloud. To compress the attribute information, attribute values are predicted using one of a plurality of prediction strategies, wherein a selected prediction strategy is selected based at least in part on attribute variability of points in a neighborhood of points. A decoder follows a similar prediction process. Also, attribute correction values may be determined to correct predicted attribute values and may be used by a decoder to decompress a point cloud, wherein the decoder applies the same prediction strategy applied at the encoder.
The present invention relates to a method of generating an overhead view image of an area. More particularly, the present invention relates to a method of generating a contextual multi-image based overhead view image of an area using ground map data and field of view image data.
Various embodiments of the present technology can include methods, systems and non-transitory computer readable media and computer programs configured to receive a plurality of images of the geographical area, determine a ground map of the geographical area, divide the ground map into a plurality of sampling points of the geographical area; and determine a color for each of the plurality of sampling points, wherein the color of each of the sampling points is determined by determining a correlation between the sampling points of the geographical area and color of the sampling points captured in at least one of the plurality of images.
A color correspondence information generating system includes an object database that stores correspondences between recognition information and color characteristic information about first objects recognized by the recognition information; an object recognition section that recognizes the first objects in the first image from the first image and the recognition information, and outputs image regions of the first objects in the first image and first color characteristic information; and a color correspondence information generation section that generates the color correspondence information using the color information and the first color characteristic information of pixels in the image regions. The color characteristic information and the recognition information have a one-to-one correspondence relation with each other, or the color characteristic information is the recognition information itself.
Aspects of the present disclosure relate to systems, devices and methods for performing a surgical step or surgical procedure with visual guidance using an optical head mounted display. Aspects of the present disclosure relate to systems, devices and methods for displaying, placing, fitting, sizing, selecting, aligning, moving a virtual implant on a physical anatomic structure of a patient and, optionally, modifying or changing the displaying, placing, fitting, sizing, selecting, aligning, moving, for example based on kinematic information.
Implementations described herein relate to methods, systems, and computer-readable media to render a foreground video. In some implementations, a method includes receiving a plurality of video frames that include depth data and color data. The method further includes downsampling the frames of the video. The method further includes, for each frame, generating an initial segmentation mask that categorizes each pixel of the frame as foreground pixel or background pixel. The method further includes determining a trimap that classifies each pixel of the frame as known background, known foreground, or unknown. The method further includes, for each pixel that is classified as unknown, calculating and storing a weight in a weight map. The method further includes performing fine segmentation to obtain a binary mask for each frame. The method further includes upsampling the plurality of frames based on the binary mask for each frame to obtain a foreground video.
Examples are described for processing images to mask dynamic objects out of images to improve feature tracking between images. A device receives an image of an environment captured by an image sensor. The image depicts at least a static portion of the environment and a dynamic object in the environment. The device identifies a portion of the image that includes a depiction of the dynamic object. For example, the device can detect a bounding box around the dynamic object, or can detect which pixels in the image correspond to the dynamic object. The device generates a masked image at least by masking the portion of the image. The device identifies features in the masked image, and uses the features from the masked image for feature tracking from other images of the environment, masked or otherwise. The device can use this feature tracking for mapping, localization, and/or relocation.
Method of segmenting anatomical structures such as organs in 3D scans in an architecture that combines U-net, time-distributed convolutions and bidirectional convolutional LSTM.
Methods for characterizing fluids from a patient. A time series of images of a conduit are received, and a conduit image region in the images is identified. A flow type of the fluids passing through the conduit may be classified as one of air, laminar liquid, and turbulent liquid by evaluating an air-liquid boundary of the fluid. A volumetric flow rate of the fluids in the conduit is estimated. The volumetric flow rate may be based on the classified flow type. A concentration of a blood component of the fluids passing through the conduit may be estimated based on the images. A proportion of the fluid that is blood may also be determined, and a volume of blood that has passed through the conduit within a predetermined period of time may be estimated based on the estimated total volumetric flow rate and the determined proportion.
A method of verifying optical proximity effect correction includes generating a design pattern layout including a target pattern, generating a correction pattern layout from the design pattern layout by performing optical proximity effect correction, generating a contour image including an image pattern using the correction pattern layout, detecting a defect pattern from the image pattern of the contour image, and correcting the correction pattern layout using data of the defect pattern. Detecting the defect pattern includes acquiring position data of a center of gravity of the target pattern, acquiring position data of a center of gravity of the image pattern, and determining whether the image pattern is a defect pattern by comparing a defect pattern detection reference with a distance between the center of gravity of the target pattern and the center of gravity of the image pattern.
A method is provided for enhancing video images in a medical device. The method includes receiving a first image frame and a second image frame from an image sensor. First image sub-blocks are generated by dividing the first image frame. Second image sub-blocks are generated by dividing the second image frame based on the first image sub-blocks. Histogram data of the first image sub-blocks is generated. Histogram data of the second image sub-blocks is generated based on the histogram data of the first image sub-blocks. A histogram enhanced image frame is generated based on the histogram data of the second image sub-blocks. A video image stream is generated based on the histogram enhanced image frame.
Disclosed herein are systems and methods for detecting when geometry shaders output a constant amount of data and writing the data into an output stream buffer. In one aspect, an exemplary method comprises gathering information about a number of block executions associated with the received data, analyzing the gathered information to determine whether constant or variable amount of data is generated for at least one of: a stream output or a rasterization, and when the constant amount of data is generated for the stream output, writing the generated data directly into a stream output buffer, and when the constant amount of data is generated for the rasterization, writing the generated data into a rasterization buffer either directly or through a use of an intermediate index buffer.
A computer implemented service for identifying and classifying damage. The algorithm may be implemented on a device, such as a computer or mobile device, or on a remote server. The remote server may be a website or cloud-based platform. A user may access the service by sending a request to the remote server including an image, video, or live feed containing an item to be inspected. The service may identify and classify any damage found on the item. The output of the service may include the location of the damaged item, a determination of the presence of damage, a certainty level of this determination, and a heatmap indicating the areas of the image that are most likely to contain damage. The output of the service may be stored on a remote server or may be integrated into existing damage reporting systems.
A control circuit obtains a first set of rules that define a conveyability range for containers as a function of conveyability constraints pertaining to an intermediary distribution facility. The control circuit also accesses conveyability constraint information for the intermediary distribution facility and generates a conveyability range for that facility by evaluating the constraint information against the first set of rules. The control circuit obtains a second set of rules that define an objective function that uses the conveyability range as a constraint to determine an optimal container pack size for the given item. (By one approach these teachings will also accommodate using at least two additional constraints, such as a so-called days-of-supply (DOS) constraint and a so-called pack-and-a-half constraint.) The control circuit then generates an optimal container pack size for the given item by evaluating the objective function against the conveyability range (and other selected constraints).
Zones a defined within an enterprise. Video captured from the zones are monitored for threats (financial or physical). Any transaction data associated with transactions are monitored with the video along with sensor data captured from sensors within the zones. Threat policies are evaluated to identify actions and behaviors of individuals within the zones and threat scores are maintained. When a current threat score associated with a specific type of threat for a given individual or set of individuals exceeds a threshold, one or more automated remediation or threat avoidance actions are processed to mitigate and/or prevent the perceived threat.
Methods and systems for providing location fencing within a controlled environment are disclosed herein. A location fencing server determines a location of a first inmate based on a first beacon device, and determines a location of a second inmate based on a second beacon device. Further, the location fencing server determines a proximity status based on the location of the first inmate and the location of the second inmate. Additionally, the location fencing server determines that the first inmate and the second inmate are in violation of a proximity policy based on the proximity status. In some embodiments, the location fencing server sends a notification to an employee device based on the violation of a proximity policy.
A method and a server system for facilitating implementation of regulations by organizations is described. Regulations are sourced from data stores associated with a plurality of regulatory authorities to configure a corpus of regulations. A plurality of enriched regulations is generated from the corpus of regulations. A user is enabled to create a construct related to at least one of an organization and an industry associated with the user. The construct is indicative of corresponding functional constituents and relationships among the functional constituents. Search and discovery of one or more regulations applicable to the organization or the industry is facilitated. Subsequent to the discovery of the one or more regulations, a linking of clauses of a respective enriched regulation to at least one functional constituent of the construct is enabled for facilitating implementation of the one or more regulations applicable to the organization or the industry associated with the user.
Systems, methods, and apparatus embodiments for electric power grid and network registration and management of physical and financial settlement for participation of active grid elements in supply and/or curtailment of power, wherein Internet Protocol (IP)-based messages including IP packets are generated by transforming raw data content into settlement grade content. Settlement is provided for grid elements that participate in the electric power grid following initial registration of each grid element with the system, preferably through network-based communication between the grid elements and a coordinator, either in coordination with or outside of an IP-based communications network router. Messaging related to settlement is managed through a network by a coordinator using IP messaging for communication with the grid elements, with the energy management system (EMS), and with the utilities, market participants, and/or grid operators.
A transporter vehicle management system includes: a loading weight data acquisition unit that acquires loading weight data indicating a loading weight of a load on a transporter vehicle; a vehicle speed data acquisition unit that acquires vehicle speed data indicating a traveling speed of the transporter vehicle; a road surface data acquisition unit that acquires road surface data indicating a condition of a road surface on which the transporter vehicle travels; a current damage amount calculation unit that calculates a current damage amount of the transporter vehicle on the basis of the loading weight, the traveling speed, and the condition of the road surface; a target amount calculation unit that calculates a target loading weight or a target traveling speed in which the current damage amount is set to a predetermined value; and an output unit that outputs the target loading weight or the target traveling speed.
Systems and methods for automated servicing of a subsidized loan are disclosed. An example system may include a crowdsourcing services circuit to collect information related to a set of entities involved in a set of subsidized loan transactions and a condition classifying circuit including a model and an artificial intelligence services circuit to classify a set of parameters of the set of subsidized loans based on information from the crowdsourcing services circuit, where the model is trained using a training data set of outcomes related to subsidized loans. The example system may further include a smart contract circuit for automatically modifying a term or a condition of the subsidized loan based on the classified set of parameters from the condition classifying circuit.
Proposed is an operationally independent clash loss event triggering risk transfer system and a method for risk sharing for a variable number of risk exposure components through the provision of independent risk protection for the risk exposure components by means of a risk transfer structure implemented by circuitry, which captures risk transfers of the exposure to multiple retentions of the components that may occur when two or more of the associated risk exposure components suffer a loss from the occurrence of the same risk event. The system triggers clash loss events simultaneously impacting various layers an/or segments of the risk transfer structure. Furthermore, an event-driven switching device may be deployed for the complementary switching of two coupled, autonomously operated resource-pooling systems, where the operation of the systems remains stable under particularly large losses triggered by the same measurement of a risk event.
System and methods for pre-marshalling messages in an electronic trading environment are provided. Specifically, pre-marshalling messages allows for client and network devices to create messages in response to a defined first condition. Pre-marshalling messages allows a trading system to do more processing up front before the message is needed and when a second condition is satisfied. Thus, when the message is needed no further or very little processing must be performed to generate and send the message. The client and/or network device may allocate a separate, unused, or under-utilized processing thread to the task of creating pre-marshalled messages. Pre-marshalled messages may be stored in memory at the network device until it is determined that the second condition has been satisfied. Once a pre-marshalled message is sent, the unused pre-marshalled messages that were stored in memory may be deleted or may be overwritten with newly pre-marshalled messages.
The state of a trade order may be defined and/or maintained in response to user action at a trading device. A trading device may receive a user action on a graphical user interface (GUI). The user action may cause the submission of the trade order to the electronic exchange. The trading device may receive a user action on the GUI to define an active order state. The trading device may maintain the order state until receiving an identified user action on the GUI to change the order state to inactive, which may cause the trade order to be canceled or held at the electronic exchange. The user action causing the change in the order state may be an active use action, such as a selection, or a passive user action, such as a failure to perform a selection. Such user action may encourage user attention when managing trade orders.
Apparatus and methods for creation of securities based upon servicing records verified via a blockchain distributed ledger. The Blockchain is distributed to Participants in the Loan, such as the Borrowers, Regulators, Servicers, and Vendors. Participants may submit an aggregation criteria, such as for example a criteria used for selecting loans to be included in a securitization pool. The present disclosure further provides a method for homogenizing a variety of loan criteria and memorializing execution of a smart contract on the Blockchain.
A smart table display system includes a display surface and a processing circuit configured to retrieve provider data stored in a provider database, retrieve, by a user device, third party data stored in a third party database located remote from the provider system, generate a graphical user interface comprising a graphic that depicts a financial health of a user based on the provider data and the third party data where the graphic is built in real-time while the provider data and the third party data is received, and provide the graphical user interface on the display surface of the smart table display system, where retrieving at least one of the provider data or the third party data comprises retrieving at least one of the provider data or the third party data from a non-volatile memory of the user device via the communications device utilizing a screen-scraping method.
Systems and restaurant locations for use with a mobile ordering system, and methods thereof, to provide at least more time-efficient pick up of orders by customers than with traditional ordering and pick up windows.
The invention provides methods and apparatus for detecting when an online session is compromised. A plurality of device fingerprints may be collected from a user computer that is associated with a designated Session ID. A server may include pages that are delivered to a user for viewing in a browser at which time device fingerprints and Session ID information are collected. By collecting device fingerprints and session information at several locations among the pages delivered by the server throughout an online session, and not only one time or at log-in, a comparison between the fingerprints in association with a Session ID can identify the likelihood of session tampering and man-in-the middle attacks.
Disclosed herein are various embodiments for a vehicle listing generation and optimization system. An embodiment operates by receiving a request to generate a vehicle listing to sell a vehicle on a website. A plurality of vehicle listings similar to the vehicle associated with the request are determined, the plurality of vehicle listings including a plurality of features providing information about a respective vehicle featured in the vehicle listing and a sales time metric specifying a time it took to sell the respective vehicle featured in a respective vehicle listing. Clustering is performed on the set of vehicle listings based on the sales time metrics, and a first cluster is selected. It is identified which of the plurality of features are common amongst at least a subset of the vehicle listings of the selected cluster. A user interface of a sales template for the vehicle associated with the request is generated.
Provided is an agent robot control system comprising an acquisition unit which acquires a purchasing master list which shows a user's purchase merchandise candidates, and a control unit which generates a purchasing execution list for recommending, from the purchasing master list, purchases for select merchandise to be performed at real storefronts and for recommending purchases for other merchandise to be performed at online storefronts.
Disclosed are methods, systems, and non-transitory computer-readable medium for generating recommendations regarding products. A method may include determining a set of content features including one or more product attributes; determining a set of latent features; receiving a query user identifier and a query product identifier; determining a feature vector associated with the query user identifier and the query product identifier based on the set of content features and the set of latent features; determining one or more model coefficients for a linear model; and utilizing the linear model to determine a fit score for the query user identifier and the query product identifier.
A method for providing information in an information management system that manages taste information regarding a user including an order record at a first restaurant and that associates the taste information with identification information for identifying the user. The method includes obtaining, from a terminal apparatus, the identification information and a store identifier indicating a second restaurant in a chain different from a chain to which the first restaurant belongs, arranging, on a basis of the taste information associated with the identification information and menu information regarding the second restaurant indicated by the store identifier, menu items included in the menu information in order according to the taste information, and transmitting menu information regarding the menu items arranged in the order to the terminal apparatus to display the menu information regarding the menu items arranged in the order on a display screen of the terminal apparatus.
In some implementations, a device may receive release data identifying new releases associated with cloud providers. The device may receive customer data associated with customers of the cloud providers. The device may receive interest data identifying interests of the customers. The device may filter the release data and may process the filtered release data and taxonomy data identifying historical release data, with a model, to generate classification data identifying classifications of the release data. The device may process the filtered release data, the classification data, and the customer data, with a model, to identify a set of release data that is relevant for each customer, and to generate sets of release data for the customers. The device may identify additional data of the filtered release data that is relevant for each of the customers. The device may supplement the sets of release data with the additional data.
Ordering and delivery of food ingredients and food service items is opaque and inefficient. A computer system for recommending substitute food products to food service providers is disclosed. The system contains a database of information about food products that is continuously updated. The database is updated by food service providers and vendors submitting information about food products and the system tags the items entered and sorts them into the database. The system then provides recommendations to food service providers of substitute food products by comparing a food service provider's order history with a query entered with items in the database. A method for increasing efficiency in delivery of food products by streamlining the ordering and delivery process is also disclosed. The streamlined system includes options for price as a function of delivery route and a central container location for food delivery to multiple food service providers within one geographic location.
Systems, computer-implemented methods and/or computer program products that facilitate generating code for template specification in a quote to cash (Q2C) solution are provided. In one embodiment, a computer-implemented method comprises: generating, by a system operatively coupled to a processor, a data model by specifying from a universal template which fields and attributes to include in the data model; mapping, by the system, external data into the data model; and generating, by the system, a code for template specification based on the data model, one or more business rules and a first code template.
In an example embodiment, information about a buyer in an ecommerce system is obtained. An unpaid item risk assessment is calculated for the buyer, the unpaid item risk assessment calculating a risk that the buyer will not pay for an item on which the buyer bids. A bid limit is then established based on the unpaid item risk assessment. A bid from the buyer may then later be blocked based on the bid limit.
The present disclosure relates to a method of providing an un-contact commerce service. The method includes checking whether audio data or video data based on an input of a purchaser is able to be received from a display device; providing access information for obtaining audio data or video data of the purchaser to the display device according to a check result; receiving audio data or video data from a purchaser device through the access information; and transmitting the audio data or the video data to a seller device and providing an interface associated with a product purchase service to the display device.
A network system provides interventions to providers to reduce the likelihood that its users will experience safety incidents. The providers provide service to the users such as transportation. Providers who are safe and have positive interpersonal behavior may be perceived by users as high quality providers. However, other providers may be more prone to cause safety incidents. A machine learning model is trained using features derived from service received by users of the network system. Randomized experiments and trained models predict the effectiveness of various interventions on a provider based on characteristics of the provider and the feedback received for the provider. As interventions are sent to providers, the change in feedback can indicate whether the intervention was effective. By providing messages proactively, the network system may prevent future safety incidents from occurring.
A method for generating a singularity recommendation includes receiving structured and unstructured data for a user, where the structured and unstructured data for the user provide a first context for generating a singularity recommendation. The method, responsive to identifying a location for the user, determines ecosystem data based on the location for the user, where the ecosystem data provides a second context for generating the singularity recommendation. The method determines environmental data based on the location for the user, where the environmental data provides a second context for generating the singularity recommendation. The method generates the singularity recommendation based on the first context, the second context, and the third context directed to the user. The method displays the singularity recommendation in a user interface on a client device associated with the user.
A mediator system, which serves as a conduit between a customer and merchants, includes customer profile data. The mediator system analyzes the customer profile data, and assigns an indication to a customer represented by the customer profile data. The mediator system then provides the indication to the merchants, and then receives bids from the merchants. The bids are for establishing a connection between the merchants and the customer. The mediator system provides to a portion of the merchants, based on the bids, a connection to the customer.
Embodiments are directed to methods and systems for determining the identity of a user as a person or a robot. In some embodiments, the methods and systems engage a web browser to produce a token and calculate a computation cost associated with the token production. The methods and systems use the computation cost to prove that the web browser on a device not handicapped by the computational challenge of producing tokens, which would handicap a robot. In some embodiments, the methods and systems generate a cookie based on a confirmed user purchase, and record the user identity contained in the cookie at a block chain to identify the user as a verified purchaser. The methods and systems may later retrieve the cookie and search the block chain using the user identity contained in the cookie. By locating the user identity in the block chain, the methods and systems know that the user is a verified purchaser, indicating the user to be a person, as robots cannot make purchases.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for automated management of campaigns using scripted rules.
Multiple on-line coupons are automatically tested on items of interest to a customer, without requiring the customer to perform any action or to look for such coupons in various sources. Such testing can be automatically initiated and performed on items within the customer's shopping cart. Alternatively or additionally, testing can be automatically initiated and performed while the customer is browsing a page for an item on an e-commerce website, before the customer has even placed items in his or her shopping cart. The best coupon or coupons are then presented to the customer, or automatically applied to provide the customer with the appropriate discounts.
The present disclosure provides systems, methods, and metrics that filter out online visitor behavioral data that represents a potential lead with a high likelihood to convert to a vehicle sale from online visitor behavioral data that does not represent a potential lead with a low likelihood to convert to a vehicle sale, based on a mapping of sales back to observed website and vehicle configurator data. This enables more effective lead generation and the more efficient targeting of online incentive offers and sales “nudges,” for example. Further, the present disclosure enables web analytics data to be combined with sales data for sales forecasting in general.
Methods, apparatus, and systems are disclosed to collect impressions associated with over-the-top media devices. An example apparatus includes memory; and at least one processor to execute instructions to access a first request, the first request from a user-controlled client device, the first request including an over-the-top device identifier that identifies an over-the-top device that presents media, in response to determining a user of the user-controlled client device is a panelist of a first server, store the over-the-top device identifier with demographics corresponding to the panelist, access a second request, the second request from the over-the-top device, the second request including the over-the-top device identifier and a media identifier, and log an impression associated with the media identifier and the demographics, the impression corresponding to the panelist of the first server.
A system and method for managing latency of messages in an exchange system in response to removal of liquidity are disclosed. In one implementation, the system may include an exchange system, and a set of instructions to cause a processor of the exchange system to gather information on quote patterns. The monitored quote patterns are assessed against quote parameters maintained in system memory, and a latency adjustment is automatically made to delay messages from particular market participants removing liquidity in the exchange system. Market participants may be identified as aggressive market participants, and their subsequent liquidity removing orders delayed, based on predetermined quote pattern parameters.
A method, an electronic device, and computer readable medium for payment authentication are provided. The method includes receiving a device user authentication. The method also includes receiving a payment request. The method additionally includes determining whether one or more payment conditions corresponding to the device user authentication are satisfied upon receipt of the payment request. The method further includes authorizing a payment application to process the payment request when the one or more payment conditions is satisfied.
A system for validating communications sessions among clients utilizes a ledger administration server to validate requests for communications sessions using smart contracts and recorded on a distributed ledger, with at least one session validation server capable of validating requested communications sessions communicating with said ledger administration server via messages, said communications sessions being validated and initiated in near real-time.
Measures, including methods, apparatus and computer software are provided for processing electronic tokens. An authorization request is received in relation to processing of an electronic token. An identifier for a user terminal associated with the electronic token, and an account, are determined on the basis of the authorization request. In some arrangements, a location query for the user terminal is performed on the basis of the determined identifier, whereby to determine a location of the user terminal on the basis of a proximity of the user terminal to one or more base stations in a cellular telecommunications network. In some arrangements, a challenge message is sent to the user terminal, to establish a confidence that the transacting user terminal is the designated user terminal. Processing of the electronic token in relation to the account is selectively authorized on the basis of the result of the location query or challenge response.
A merchant payment system designed for a high-traffic merchant. In an embodiment, the merchant payment system comprises a casing, a mobile computing device, a charging regulator, a payment receiver, and a docking station configured to charge the mobile computing device and payment receiver. The outer casing is configured to house the mobile computing device, a charging regulator, and payment receiver. Additionally, the docking station is configured to charge various mobile computing devices (e.g., a tablet or a mobile phone) housed within the casing. Moreover, the docking station is configured to supply a predetermined voltage and current to the charging regulator which in-turn supplies a first predetermined voltage and current to the payment receiver and a second predetermined voltage and current to the mobile computing device.
According to one embodiment, a stocking support system includes a processor configured to acquire a reference display value and a lower limit display value for an item. The processor then acquires a sales number for the item from a sales data processing device and calculates a restocking number for the item when a displayed number of the item falls below the lower limit display value. The processor then instructs a printing device to output the calculated restocking number for the item along with information for identifying the item in a work unit for an item restocking process.
A point-of-sale system for concurrently processing multiple point of sale transactions, each point of sale transaction including an item input portion and a payment portion of the transaction, each portion performed in series. The point-of-sale system comprises a customer facing terminal and a merchant facing terminal. The system can comprise a plurality of customer facing terminals and can be portable. The customer facing terminal is configured to receive an input of payment information for a first point of sale transaction during a payment portion of the first point of sale transaction. The merchant facing terminal is configured to receive an input of an item selection for a second point of sale transaction during an item input portion of the second point of sale transaction and during the payment portion of the first point of sale transaction.
A method for distributing content. The method distributes a single media storage structure to a device (e.g., a computer, portable player, etc.). The media storage structure includes first and second pieces of encrypted content. Based on whether the device is allowed to access the first piece of content, the second piece of content, or both, the method provides the device with a set of keys for decrypting the pieces of the content that the device is able to access. The provided set of keys might include one or more keys for decrypting only one of the two encrypted pieces of content. Alternatively, it might include one or more keys for decrypting both encrypted pieces of content. For instance, the selected set of keys might include a first key for decrypting the first encrypted piece and a second key for decrypting the second encrypted piece.
A system to allocate resources via information technology infrastructure is described. A server includes processors to provide to a plurality of devices, an electronic benefits account transaction application programming interface (“API”) configured to receive transaction requests from a plurality of heterogeneous electronic funding sources. The server can receive a request to initiate a single transaction to fund an electronics benefit account. The server can transmit data in an alert format indicating a denial of the single request responsive to a comparison of a value to one or more threshold limits.
The present disclosure involves systems, software, and computer implemented methods for automatically generating acquisition IDs and using them to track and record how products are identified, offered, and sold, as well as how customers respond to particular variations of product offers. The acquisition ID can be associated with any product sale, transaction completion, or account creation initiated using or otherwise identifying or associated with the acquisition ID, where the connection to the acquisition ID can be maintained and retained with ongoing records associated with the interaction and created account, transaction, and/or product purchase. Using the stored information and the acquisition IDs, an organization can precisely determine what products were sold using which marketing tactic, campaign, or channel through which the transaction occurred and/or was initiated, among others.
Systems, methods, and other embodiments associated with self-tuning optimization of a replenishment policy of an item are described. In one embodiment, the method includes determining an initial replenishment policy of the item. A performance of the initial replenishment policy is determined based upon past performance of the initial replenishment policy. The initial replenishment policy is revised to get a service level of the item for future sales periods closer to a target service level of the item. Information is forwarded in real-time about the revised replenishment policy to an order fulfillment facility.
A management system for managing the utilization of item receptacles in a distribution network. Items can be transferred to recipients at a limited number of item receptacles in unit delivery facilities of the distribution network. Item retrieval behavior is tracked to determine a recipient score for known recipients. Based on the recipient scores, subsequent items to be transferred can be placed in a receptacle or a storage area based on the associated recipient score. Placement in receptacles can be prioritized to recipients with low scores indicating that the item will likely be retrieved quickly, while items addressed to recipients with high scores may not be placed into a receptacle if receptacles are scarce.
A network system provides delivery of items using unmanned aerial vehicles (UAV) or drones. The network system uses an infrastructure of nodes that include landing pads to dock drones, as well as interfaces to provide and receive items from docked drones. Nodes may be stationary (e.g., fixed at a building rooftop or public transit station) or mobile (e.g., mounted to a vehicle). The network system may determine a route for delivery of an item, where a drone transports the item for at least a portion of the route. For example, the route may include multiple waypoints associated with nodes between which drones travel. For other portions of the route, the network system may request a provider to transport the item using a ground-based vehicle.
Various embodiments of the present invention are directed to a mapping management computer system. According to various embodiments, the mapping management computer system may be configured for updating geographical maps by assessing map data and operational data including vehicle telematics data to identify portions of a vehicle path that do not correspond to known travel paths. In various embodiments, the system is configured to define these identified portions as new known travel paths corresponding to a public road, private road, parking lot lane, or the like, and update the map data to reflect the new known travel paths.
A method may include applying, to a content associated with a first supplier, a machine learning model to determine one or more objectives of an enterprise affected by an incident associated with the content. A change in a first risk associated with the first supplier may be detected based on the objectives affected by the incident. In response to detecting the change in the first risk of the first supplier, a cost associated with replacing the first supplier with the second supplier may be determined by applying the machine learning model to analyze a first electronic document associated with the first supplier. If the cost of replacing the first supplier with the second supplier and/or a second risk of the second supplier satisfy one or more thresholds, a second electronic document associated with the second supplier may be generated to address the second risk of the second supplier.
A system and method for evaluating socio-economic and/or environmental impact automatically identifies and transmits to a user computing device a socio-economic and/or environmental impact web page of an organization. A computer database coupled to a server contains data for various socio-economic and/or environmental impact web pages, defining formatting elements configured to display impact data. The computer database receives a data feed of the impact data from the organization and/or from one or more of the organization's vendors, and automatically updates the organization's socio-economic and/or environmental impact web page. The system automatically generates in the socio-economic and/or environmental impact web page, a socio-economic and/or environmental impact quotient depiction representing socio-economic and/or environmental impact of resource allocations of the associated organization. The system uses hybrid input-output, econometric and environmental models to calculate a total economic impact ratio of the SGA (Selling, General & Administrative) costs of the organization on local communities.
Systems and methods are described for improved color rendering. In some embodiments, video is captured of a real-world scene, and a region of screen content is detected in the captured video. A processor selectively applies a screen-content color transformation on the region of screen content to generate processed video, and the processed video is displayed substantially in real time, for example on a video-see-through head-mounted display. The screen-content color processing may be different for different types of external displays. The screen-content color processing may also be determined based at least in part on illumination conditions. In some embodiments, the color of displayed virtual objects is adjusted based on visual parameters of the screen content.
Systems and methods are provided for intelligently monitoring environments, classifying objects within such environments, detecting events within such environments, receiving and propagating input concerning image information from multiple users in a collaborative environment, identifying and responding to situational abnormalities or situations of interest based on such detections and/or user inputs.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying user behavior as anomalous. One of the methods includes obtaining user behavior data representing behavior of a user in a subject system. An initial model is generated from training data, the initial model having first characteristic features of the training data. A resampling model is generated from the training data and from multiple instances of the first representation for a test time period. A difference between the initial model and the resampling model is computed. The user behavior in the test time period is classified as anomalous based on the difference between the initial model and the resampling model.
The present disclosure is for systems and methods for connecting offline machine learning training systems with online near-real time machine learning scoring systems. It is not trivial to connect an offline training environment with an online scoring environment. For example, offline training environments are usually static and contain large amounts of historical data that is needed for the initial training of models. Once trained, the model algorithms are then migrated into an online scoring environment for transactional or event based scoring. This migration effectively breaks the connection between the data in the offline environment and the model now running in the online environment. When new or shifting data occurs in the online environment, the static model running in the online environment goes unaltered to the changing inputs. The present disclosure solves the issues that are caused by the break in the offline and online environments.
Methods and apparatus are disclosed, including an example of a method of determining a distance between a first point and a second point. The method includes manipulating quantum states of at least first and second qubits of a quantum computing device based on a test vector representing the first point and a training vector representing the second point, performing quantum interference between the test vector and the training vector, performing a measurement on one or more of the qubits to determine the distance, and determining the distance from the measurement.
A (GUI) for designing an industrial automation system includes a design window and a first accessory window. The GUI presents a library visualization representative of a plurality of objects within the first accessory window, each object is represented by an icon and corresponds to a respective industrial automation device. The GUI receives inputs indicative of a selection of one or more objects of the plurality of objects from the library, presents the one or more objects in the design window, determines that the one or more inputs do not comply with a set of industrial automation system rules comprising one or more relationships between a plurality of industrial automation devices, and displays a warning message that the one or more inputs do not comply with the set of industrial automation system rules.
A computer-implemented method, a computing system, and a computer program product for generating new items compatible with given items may use data associated with a plurality of images and random noise data associated with a random noise image to train an adversarial network including a series of generator networks and a series of discriminator networks corresponding to the series of generator networks by modifying, using a loss function of the adversarial network that depends on a compatibility of the images, one or more parameters of the series of generator networks. The series of generator networks may generate a generated image associated with a generated item different than the given items.
A model training method and apparatus is disclosed, where the model training method acquires a recognition result of a teacher model and a recognition result of a student model for an input sequence and trains the student model such that the recognition result of the teacher model and the recognition result of the student model are not distinguished from each other.
A computing device, comprising: a computing module, comprising one or more computing units; and a control module, comprising a computing control unit, and used for controlling shutdown of the computing unit of the computing module according to a determining condition. Also provided is a computing method. The computing device and method have the advantages of low power consumption and high flexibility, and can be combined with the upgrading mode of software, thereby further increasing the computing speed, reducing the computing amount, and reducing the computing power consumption of an accelerator.
Aspects of the present disclosure relate to annotating or tagging customer data. In some embodiments, the annotating can include summarizing touchpoints into k-hot encoding feature vectors, mapping the feature vectors onto an embedding layer, predicting a hierarchical data sequence using the embedding layer and the feature vectors, extracting the feature vectors that are most influential in predicting the embedding layer, and outputting the touchpoints associated with the most influential feature vectors.
An optical switch fabric comprises two or more optical switch elements. The optical switch elements are configured in a topology. A switch control has a plurality of bias control signals. The switch control can address one or more of the optical switch elements and can apply one of the bias control signals to bias of the addressed optical switch element to establish a switch setting. The topology and switch settings determine how each of one of the inputs is connected to each of one of the outputs of the optical switch fabric. The switch settings are determined by a machine learning process which includes a model creation. The model can be made to adapt dynamically during optical switch fabric operation.
An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes an accumulation circuit. The accumulation circuit includes a ferroelectric BEOL capacitor to store a value to be accumulated with other values stored by other ferroelectric BEOL capacitors.
Systems and methods for operating a security tag. The methods comprise: receiving a first wireless signal using a receive circuit of the security tag; inducing a voltage in the receive circuit of the security tag while the first wireless signal is being received; performing operations by a controller to selectively close a switch while the voltage is being induced in the circuit; causing a release of a mechanical component of the security tag by allowing energy to flow from the receive circuit to the mechanical component when the switch is closed; and performing operations by the controller to prevent damage to the mechanical component as a result of the security tag being a certain distance from an external device.
An augmented reality system for procedural guidance identifies a fiducial marker object in a frame of a first field of view generated by a camera, determines a pose of the fiducial marker object, applies the fiducial marker pose to generate a first transformation between a first coordinate system of the fiducial marker object and a second coordinate system of the camera, and applies a pose of a headset to determine a second transformation between the first coordinate system and a third coordinate system of the headset.
An information processing apparatus, which communicates with an image forming apparatus and a reader, including: a display; and a controller configured to: obtain read image data output from the reader; determine an error of the read image data based on the read image data and reference data; cancel image forming operation of the image forming apparatus in a case where the error is determined in succession a predetermined number of times; cancel reading operation of the reader in the case where the error is determined in succession the predetermined number of times; notify, on the display, the cancellation of the image forming operation and the reading operation in the case where the error is determined in succession the predetermined number of times; and receive a user's instruction information about the predetermined number of times.
A method and system for operating an indicia reader are disclosed herein. An example method includes detecting a first object in the scanning region; capturing one or more images of the first object to create first image data; determining that a successful decode of an indicia has not occurred; retrieving the first image data of the first object; generating, using the first image data, an embedding of the first image data; detecting a second object in the scanning region; retrieving one or more support samples from an image database; comparing the embedding of the image data to each support sample of the one or more support samples; based on the comparison that the embedding of the image data does not match any support sample, performing an operation.
Copies of a distributed ledger with multiple blocks are stored on multiple computing devices. A first computing device coming into proximity with a particular object triggers generation of a new block to the distributed ledger, the new block identifying a characteristic of the object and including a hash of a previous block of the distributed ledger. The new block is optionally verified before it is appended onto the distributed ledger and transmitted out to each of the multiple computing devices so that each copy of the distributed ledger includes the new block.
Techniques are described related to prior context retrieval with an automated assistant. In various implementations, instance(s) of free-form natural language input received from a user during a human-to-computer dialog session between the user and an automated assistant may be used to generate a first dialog context. The first dialog context may include intent(s) and slot value(s) associated with the intent(s). Similar operations may be performed with additional inputs to generate a second dialog context that is semantically distinct from the first dialog context. When a command is received from the user to transition the automated assistant back to the first dialog context, natural language output may be generated that conveys at least one or more of the intents of the first dialog context and one or more of the slot values of the first dialog context. This natural language output may be presented to the user.
A computing device outputs for display at a presence-sensitive display, a graphical keyboard comprising a plurality of keys, receives an indication of at least one gesture to select a group of keys of the plurality of keys, and determines at least one characteristic associated with the at least one gesture to select the group of keys of the plurality of keys. The computing device modifies a spatial model based at least in part on the at least one characteristic and determines a candidate word based at least in part on data provided by the spatial model and a language model, wherein the spatial model provides data based at least in part on the indication of the at least one gesture and wherein the language model provides data based at least in part on a lexicon. The computing device outputs for display at the presence-sensitive display, the candidate word.
Systems and methods for generating best next communication policies, for a time step of an exchange of electronic documents, fit over historical exchanges, optimizing to maximize a probability of achieving a quantified objective leveraging weighted sampling. In a preferred embodiment an electronic document is segmented whereby each constituent segment is deconstructed as a composition of custom expression varieties, pre-defined to enable fulfilment of an objective within a theme of correspondence, associating each expression with a semantic vector. A set of expression extraction models is trained independently and then a second set with knowledge of parallel label predictions, iterating to convergence. The expression compositions and associated semantic vectors are combined into a single vector for each segment. The segment vectors are appended onto profile vectors for the exchange parties, yielding a time series of profile-content vectors. This series is passed to a neural model, to generate next best correspondence suggestion templates.
In implementations of systems for role classification, a computing device implements a role system to receive data describing a corpus of text that is associated with a user ID. Feature values of features are generated by a first machine learning model by processing the corpus of text, the features representing questions with respect to the corpus of text and the feature values representing answers to the questions included in the corpus of text. A classification of a role is generated by a second machine learning model by processing the feature values, the classification of the role indicating a relationship of the user ID with respect to a product or service. The role system outputs an indication of the classification of the role for display in a user interface of a display device.
A computer-implemented method and apparatus for highlighting text in an image disposed in a markup language document are disclosed. Location data identifying a location, size and orientation of a text element in the image may be obtained, where the text element is oriented in a direction that is non-orthogonal to vertical and horizontal axes of the image. A context for a canvas element in the document may be obtained and rotated to align the context to the orientation of the text element using the location data. The context may also be translated to the location of the text element using the location data, and a text highlighting element that at least partially overlays the text element may be generated.
A computer-implemented method of generating and processing electronic forms may include: generating and storing a plurality of prompts; receiving a first form request from a first user device; generating a first form including a first set of prompt instances; causing the first form to be displayed on the first user device; receiving a first set of user inputs, each of the first set of user inputs being associated with one or more of the first set of prompt instances; and storing the first set of prompt instances and the first set of user inputs while maintaining the plurality of prompts.
A method of manufacturing a transmission gate includes overlying a first active area with a first metal zero segment, the first active area including first and second PMOS transistors, overlying a second active area with a second metal zero segment, the second active area including first and second NMOS transistors, and configuring the first and second PMOS transistors and the first and second NMOS transistors as a transmission gate by forming three conductive paths. At least one of the conductive paths includes a first conductive segment perpendicular to the first and second metal zero segments, and the first and second metal zero segments have a first offset distance corresponding to three times a metal zero pitch.
A Lightweight Bridge (LWB) is disclosed. The LWB may be a circuit. An endpoint of the LWB that may expose a plurality of Physical Functions (PFs) to a host. A root port of the LWB may connect to a device and determine the PFs and Virtual Functions (VFs) exposed by the device. An Application Layer-Endpoint (APP-EP) and an Application Layer-Root Port (APP-RP) may translate between the PFs exposed by the endpoint and the PFs/VFs exposed by the device. The APP-EP and the APP-RP may implement a mapping between the PFs exposed by the endpoint and the PFs/VFs exposed by the device.
The present approach automatically generates an optimized building floor plate layout given a set of building design parameters including a specified unit mix. Some or all of this process can then be repeated when building design parameters are changed thereby facilitating automated and iterative building design as differing design parameters and resulting optimized building floor plate layouts are considered.
A tuning method for a clutch temperature estimation model may include, generating n tuning genes, calculating a tuning value corresponding to a tuning variable by using information of each of the n tuning genes, calculating a temperature estimation accuracy by applying the calculated tuning value to the clutch temperature estimation model, extracting n tuning genes of highest calculated accuracies, and regenerating m tuning genes through recombination of the extracted n tuning genes.
A method for agricultural land parcel valuation includes: accessing data for parcels within a prescribed region, the data comprising management practices, historical weather conditions, locations and topography, remote sense images, soil types, and crop types; assessing and ranking the management practices for each of the parcels; generating simulation inputs for the each of the parcels, where the simulation inputs comprise highest ranked management practices, the historical weather conditions, the locations and topography, the soil types, and the crop types; simulating crop growth for the each of the parcels over a prescribed number of previous years, where the simulating employs the simulation inputs provided by the generating; and employing selected outputs from the simulating to calculate agricultural metrics and a valuation corresponding to the each of the parcels, where the agricultural metrics and the valuation for the each of the parcels are expressed relative to all of the parcels within the prescribed region.
A conveyance model for predicting an output in response to an input, wherein: the input comprises one or more of a wireline input, a toolstring input, a well input, and/or a conveyance input; and the output comprises one or more of a surface weight versus depth output, a cable head tension versus depth output, and a jarring effect output.
A system and method for construction estimation using aerial images is provided. The system receives at least one aerial image of a building. An estimation engine processes the aerial image at a plurality of angles to automatically identify a plurality (e.g., perimeter and interior) lines in the image corresponding to a plurality of features of a roof the building. The estimation engine allows users to generate two-dimensional and three-dimensional models of the roof by automatically delineating various roof features, and generates a report including information about the roof of the building.
Design tools and methods of use for designing, ordering, and providing manufacturing and installation instructions for waveguide system networks include a system design tool including a location selection module to determine a selected location, a satellite imagery component to provide an image based on the selected location, an overlay module to overlay a design on the image, and a customization module to customize the design. The system design tool includes one or more design modules to at least one of automatically output and build via user input one or more design options based on the image, and a design customization module to select the design from the one or more design options. The system design tool includes a positioning module to set a pair of connectivity points such that a cable length may be automatically calculated based on a calculated distance between the pair of connectivity points.
Methods, systems, and computer program products for building an encrypted document store are provided herein. A computer-implemented method includes building an encrypted ordered key-value store; encrypting one or more sensitive keys to be stored in the ordered key-value store using an order preserving encryption scheme; storing a state of the order preserving encryption scheme in the ordered key-value store; and encrypting one or more values corresponding to the one or more sensitive keys using a semantically secure encryption scheme.
Multiple work requests from different applications are queued to be processed subsequently without interruption by a crypto device. A prediction table is generated for each application to be processed by the crypto device. An initial credit value is determined for each incoming work request. The work request is an entry in an ordered queue in the order of time using respective time stamps. The next work request to be processed is selected from the entries in the queue by using the first entry in the queue for which the credit values for the corresponding application is greater than or equal to the predicted execution time for the corresponding request type in the prediction table. The selected next work request is processed.
Methods, systems, and apparatus, including computer programs encoded on computer storage media provide for the intelligent detection of sensitive information within a communication platform. The system displays a communication interface including a first input section for receiving an input message associated with a sending user account, and a display section for displaying message information received by the sending user account from other user accounts. The system determines or retrieves a sensitive messaging profile for the sending user account, then receives an input message associated with the sending user account. The system detects that the input message comprises sensitive information, and transmits a sensitive message to one or more receiving user accounts within a sensitive container component, with the sensitive message including at least a subset of the input message.
A computer-implemented method for k-anonymizing a dataset to provide privacy guarantees for all columns in the dataset can include obtaining, by a computing system including one or more computing devices, a dataset comprising data indicative of a plurality of entities and at least one data item respective to at least one of the plurality of entities. The computer-implemented method can include clustering, by the computing system, the plurality of entities into at least one entity cluster. The computer-implemented method can include determining, by the computing system, a majority condition for the at least one entity cluster, the majority condition indicating that the at least one data item is respective to at least a majority of the plurality of entities. The computer-implemented method can include assigning, by the computing system, the at least one data item to the plurality of entities in an anonymized dataset based at least in part on the majority condition.
Systems and methods for privacy-preserving summarization of digital activity are disclosed. According to one embodiment in an information processing apparatus comprising at least one computer processor and at least one display, a privacy-preserving digital activity computer program performing the following: (1) capturing a blurred or pixelated screenshot of the at least one display; (2) identifying a plurality of computer application visible in the blurred or pixelated screenshot; (3) identifying a foreground or actively-used application out of the plurality computer applications in the blurred or pixelated screenshot; and (4) logging the visible computer applications and the foreground or actively-used application.
An improved computing tool performs an improved computing tool function to identify sensitive data risks in cloud-based deployments. A knowledge graph is built based on data schema information for a cloud-based computing environment, a set of parsed infrastructure logs, and a set of captured application queries. A set of sensitive flows in the knowledge graph are identified representing paths from a sensitive data element to an endpoint in the knowledge graph. The set of sensitive flows are scored based on a scoring algorithm and an alert is issued to an administrator in response to a score of a sensitive flow within the set of sensitive flows exceeding a threshold.
A privacy-related consent extension and data processing system may be configured to automatically extend one or more privacy-related consents for a user of a first computing device to a second computing device. In various embodiments, the system is configured to provide a computer-readable indicium(indicia) on a previously unknown computing device upon initiation of a transaction between a user and an entity collecting and processing privacy data. In response to a user using a known computing device to scan the computer-readable indicium, in various embodiments, the system may provide the ability to share user consent data provided by the first known device to the second unknown device, allowing the user to provide consent without manually re-entering privacy and consent preferences.
In association with a communication platform, one or more users can create, share, edit, and/or comment on a document. Some examples of this disclosure are related to providing a list of suggested documents that a user can reference (e.g., add a link to) in a virtual space (e.g., in a message or post to one or more other users). For example, a user can be interacting with a virtual space (e.g., composing a direct message, a channel post, a thread, a workspace, a document, and the like) and invoke a list of suggested documents that can be referenced in the virtual space. In examples of the present disclosure, the list of suggested documents can include documents that are identified (e.g., based on one or more conditions being met) to be relevant to, or otherwise associated with, the virtual space.
Systems, methods, and machine-readable instructions stored on machine-readable media are disclosed for analyzing an image for vulnerabilities. A repository is provided to a development stage of a development pipeline. An image associated with the repository is built. A list of dependencies and versions of the dependencies used in the building of the image is identified. The image is analyzed for vulnerabilities based on the identified list of dependences and the versions of the dependencies used in the building of the image. A report is provided based on the analysis.
Computer-implemented methods and systems are provided for the detection of software presence remotely through the web browser by detecting the presence of webinjects in a web browser that visits a detection webpage. The methods can include delivering a detection webpage to a web browser, in which the detection webpage has detection code configured to detect a presence of the webinject in the detection webpage; and inspecting, by the detection code, rendering of content of the detection webpage in the browser to detect webinject content in the detection webpage by the webinject, the webinject content including one or more Hypertext Markup Language (HTML) components. The method can further include, if webinject content is detected, generating a fingerprint for each of the one or more HTML components; transmitting the one or more fingerprints to an external server; and classifying, by the external server, the webinject based on the one or more fingerprints.
Detecting malware by linking Background Intelligent Transfer Service (BITS) and Scheduled Task Service (STS) activities to a source program. Using send Advanced Local Procedure Call (ALPC) messages and receive ALPC messages, source programs that initiate the creation of temporary files and perform defined operations may be identified. If the source programs responsible for the temporary files and defined operations are determined to be malware programs, a security action may be performed on the source programs.
A method for multi-factor authentication on a device with a capacitive area sensor is provided in which a device with an electrically conductive structure on a non-conductive substrate represents a first authentication factor and information for the execution of an input sequence on the device represents a second authentication factor. Authentication can be performed by means of a comparison with reference data, in accordance with the likelihood with which a signal detected by the area sensor was generated by a combination of the first and second authentication factors. A device, a system and a kit for executing the method for multi-factor authentication on a capacitive area sensor. are provided.
An authentication apparatus transmits code and challenge to a target, receives a response, and authenticates the target based on the response. The target receives the code and the challenge, generates a password for comparison by executing n times of repetitive computation by a recurrence relation or a recursive function using the code as an initial input, executes password authentication using a pre-stored password and the password for comparison. If the password authentication has succeeded, the target reads out an authentication seed corresponding to the number n that is the number of times of execution of the repetitive computation with which the password for comparison that matches a password has been obtained, and generates the response using the read-out authentication seed and the challenge received from the authentication apparatus, and transmits the response.
A mobile device is disclosed. The present mobile device comprises: a display for displaying an authentication information input screen for receiving user authentication information when the mobile device is connected to a server providing a service requiring input of the user authentication information; a first communication unit for transmitting, to the server, the user authentication information inputted through the authentication information input screen and first simple authentication information generated in the mobile device; a second communication unit for communicating with an electronic device to receive unique information of the electronic device; and a processor for generating second simple authentication information by using unique information of the mobile device and the unique information of the electronic device, transmitting the second simple authentication information to the server which matches the first simple authentication information to the user authentication information which are matched with each other, and controlling the display to display an authentication result screen provided from the server according to whether or not the first and the second simple authentication information are matched.
The invention relates to a method for image integration (100), said method comprising the steps of acquiring at least two overlapping images (110) having different properties, and forming at least one integrated image (170) based on the overlapping images (110), wherein the step of forming at least one integrated image (170) comprises generating at least one score map (130) for each acquired overlapping image (110) relating to locally salient features of said overlapping image (110), forming an integration map (150) based on the at least one score map (130) of the at least two overlapping images (110), and integrating the at least two overlapping images (110) based on the integration map (150) to form an integrated image (170).
Disclosed are apparatus and methods for automatically training a sensor node to detect anomalies in an environment. At the sensor node, an indication is received to initiate training by the sensor node to detect anomalies in the environment based on sensor data generated by a sensor that resides on such sensor node and is operable to detect sensor signals from the environment. After training is initiated, the sensor node automatically trains a model that resides on the sensor to detect anomalies in the environment, and such training is based on the sensor data. After the model is trained, the model to detect anomalies in the environment is executed by the sensor node.
An apparatus for training an image classification model according to an embodiment disclosed includes a first trainer that trains a model body and a first head through supervised learning based on a labeled data set subjected to type 1 labeling, a second trainer that trains the model body, the first head, and a second head through multi-task learning based on the labeled data set and an unlabeled data set, and a third trainer that trains a plurality of third heads through supervised learning based on the labeled data set subjected to type 2 labeling while freezing the model body.
Techniques are described for generating mono-modality training image data from multi-modality image data and using the mono-modality training image data to train and develop mono-modality image inferencing models. A method embodiment comprises generating, by a system comprising a processor, a synthetic 2D image from a 3D image of a first capture modality, wherein the synthetic 2D image corresponds to a 2D version of the 3D image in a second capture modality, and wherein the 3D image and the synthetic 2D image depict a same anatomical region of a same patient. The method further comprises transferring, by the system, ground truth data for the 3D image to the synthetic 2D image. In some embodiments, the method further comprises employing the synthetic 2D image to facilitate transfer of the ground truth data to a native 2D image captured of the same anatomical region of the same patient using the second capture modality.
A platform identifies that a first venue attendee is similar to a second venue attendee based on at least one shared trait. The platform identifies an indicator of positivity about a particular point of interest corresponding to the second venue attendee. The platform selects the particular point of interest as a recommended point of interest for the first venue attendee based on the similarity between the first venue attendee and the second venue attendee and the indicator of positivity about the particular point of interest corresponding to the second venue attendee.
The present disclosure provides systems and methods for retaining bookmarks of a first document when a second document is saved using the first name of the first document. Upon receiving a request to save the second document using the first name, it is determined whether another document is saved using that particular name. If such a document exists, properties of bookmarks associated with the first document are compared to properties of the second document using a set of rules. If the set of rules are satisfied, indicating that the bookmarks are usable, then the second document is stored using the first name while retaining the bookmarks of the first document.
A controller, for use in a storage device of a data processing system, includes a host interface, a memory interface and one or more processors. The host interface is configured to communicate over a computer network with one or more remote hosts of a data processing system. The memory interface is configured to communicate locally with a non-volatile memory of the storage device. The one or more processors are configured to manage local storage or retrieval of media objects at the non-volatile memory, and to perform additional tasks that are not associated with management of storage or retrieval of the objects.
A system to provide image processing services responsive to requests including image data includes a system layer that forwards a request to an image application processing interface. Image processing provides an image comparison, barcode recognition, and optical character recognition. The image processing compares the image data to products in a database in order to identify a matching product. The system layer receives the matching information and forwards to a user.
Aspects of the current disclosure include systems and methods for identifying an entity in a query image by comparing the query image with digital images in a database. In one or more embodiments, a query feature may be extracted from the query image and a set of candidate features may be extracted from a set of images in the database. In one or more embodiments, the distances between the query feature and the candidate features are calculated. A feature, which includes a set of shortest distances among the calculated distances and a distribution of the set of shortest distances, may be generated. In one or more embodiments, the feature is input to a trained model to determine whether the entity in the query image is the same entity associated with one of the set of shortest distances.
Disclosed are implementations that enable the linking or connection of objects and different scenes in which those objects are represented. For example, a corpus of scenes (e.g., digital images) that include a representation of one or more objects may be processed using the disclosed implementations to segment from those scenes the individual objects represented in those scenes. The disclosed implementations may further determine clusters of visually similar object segments and form object clusters for those object segments. The scenes that include those object segments are also linked to the object cluster. With scenes linked to different object clusters, a user may select one or more query objects or a query scene and be presented with other scenes that include visually similar objects, even though the overall scenes may be visually different.
The invention relates to a method and a system for improving performance of text summarization and has an object of improving performance of a technique for generating a summary from a given paragraph. According to the invention to achieve the object, a method for improving performance of text summarization includes: an a step of generating an embedding vector by vectorizing a natural language-based context; a b step of generating a graph by using the embedding vector; a c step of assigning a weight depending on whether or not a keyword corresponding to at least one node included in the graph is present in the context; and a d step of selecting a path having a highest likelihood in the graph and generating a summary based on the path.
A system and method are presented that improves search results based on skills associated with individuals. The system monitors an individual's contributions to a third-party forum and associates the contributions with skills. The system also monitors learnings received by the individual. Assignments are made to associate the individual with the skills and to assign points. Users request a search based on search skill parameters, and the system uses forum-based data and non-forum data to identify and sort individuals. Skill and point assignments are made temporarily, and assignments are deleted upon the expiration of a time-to-live clock. Save events can permanently save data. Local forum data is also stored and can be used to restore deleted assignments. Points are used to improve avatars used when interacting with searching users.
Systems and methods for electronic data indexing support user-side scripting through an application program interface (API). In some aspects, a user-script generates target data using third party software programs. The user-script sends parameters through the API to an indexing engine. The parameters identify the target data to the indexing engine for processing, analyzing, and performing operations.
An information search and display system searches for information in an organization and displaying it on a screen. The system includes a storage part storing correlation information showing correlation among information units including personnel and files in an organization and feature information showing features of the information units; a selecting part selecting information units with relevance to a search term based on the feature information if the search term is input; a correlation acquiring part acquiring a degree of correlation among the selected information units based on the correlation information; a generating part generating display data for displaying icons corresponding to the selected information units and connecting lines connecting these icons; and an output part outputting the generated display data. The generating part generates display data so that a display mode of a connecting line changes according to the degree of correlation.
Embodiments are disclosed for a method. The method includes receiving a plurality of local deltas for a query execution against a corresponding plurality of data sources hosted by a corresponding plurality of distributed nodes of a dynamic distributed network. The method also includes generating a combined delta by combining the local deltas. Additionally, the method includes generating a determined delta result by performing additional processing on the combined delta. Further, the method includes providing the determined delta for one of the distributed nodes.
Techniques regarding providing artificial intelligence problem descriptions are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can include, at least: a query component that generates key performance indicators from a query, determines a subset of key performance indicators that individually have a performance below a threshold, and maps the subset of key performance indicators to operational metrics; a learning component that generates, using artificial intelligence, problem descriptions from one or more of the subset of key performance indicators or the operational metrics and transmits the problem descriptions to a database.
A modular and distributed architecture for data stream processing and analysis is described to incorporate data stream analytics capabilities, called Data Stream Analytics Service (DSAS) in the IoT/M2M service layer. Each service layer node hosting DSAS can be split into two independent modules, Stream Forwarder and Stream Analytics Engine. Stream Forwarder is a light weight processing modules that can be responsible for data preprocessing and routing. Stream Analytics Engine is responsible for performing actual analytics on the data stream. Separating the two functionalities enables the service layer nodes to efficiently distribute stream analytics tasks across multiple nodes.
A method performed by a data system includes automatically learning relationship(s) among datasets based on one or more of a user query or an observation of a data flow through the data system. The method further includes generating an optimized data structure based on the learned relationships among the datasets. The data system then modifies a query plan to obtain query results that satisfy a query by reading the optimized data structure in lieu of reading the datasets.
Systems and methods are provided for improved integration between database systems. Data from multiple disparate computing systems is transmitted via bi-directional communication interfaces. The data is stored in its original form from respective data sources and transformed in stream and/or batch processes into one or more predefined formats. Individual transformations are stored and/or recorded. The transformed and/or integrated data is provided to one or more computing devices via the communication interfaces.
A technique for managing a metadata transaction log consolidates multiple mapping pointer changes that affect a single metadata block in a single transaction entry. The technique creates a data structure that identifies the mapping pointers in the metadata block that are changing, and stores the data structure in the transaction entry along with records that describe the individual mapping pointer changes.
Systems and methods are disclosed for efficiently storing information identifying journey instances within unstructured event data of a data intake and processing system. Each journey instance is illustratively associated with a series of events within the unstructured event data occurring over a journey duration. Because the unstructured event data may be constantly updated, any given inspection of the event data may yield both complete and incomplete instances. Storage of instance data over time can require updating of prior incomplete journey instances with complete versions of such instance detected at a later point in time. However, a data store of the unstructured event data may be unsuited for such updating, as the store may maintain version information for deleted data to reduce possibility of data loss. To address this issue, a separate structured data store, such as a columnar time series data store, is provided to efficiently store instance information.
Systems and methods are described for using a recurring event based scheduler to continuously monitor data to detect anomalies within the data. In some aspects, an anomaly detection schedule may be determined for monitoring time series data to detect anomalies based on a data ingestion interval. A plurality of anomaly detection events may be sequentially generated and stored in an event queue at times specified by the anomaly detection schedule. The anomaly detection events may then be processed sequentially from the event queue to trigger execution of a plurality of anomaly detection workflow tasks at the times specified by the anomaly detection schedule. In some cases, execution of individual anomaly detection workflow tasks causes individual portions of time series data to be obtained from a customer data source and processed by an anomaly detection model to detect anomalies in the time series data.
A non-transitory machine-readable storage medium stores instructions that upon execution cause a processor to, in response to initiation of a data indexing for a search concept, retrieve content of a first data source via a data connector, the retrieved content including a reference to a second data source. The instructions further cause the processor to, in response to a determination that the retrieved content of the first data source is relevant to the search concept: index the retrieved content of the first data source; retrieve content of the second data source based on the reference; and determine whether the retrieved content of the second data source is relevant to the search concept.
Embodiments of the present specification disclose methods, apparatuses, and devices for transferring data assets based on a blockchain. One method includes: obtaining usage demand information of a data requestor for using original data, wherein the usage demand information indicates a demand of the data requestor for performing computations based on the original data; sending a usage authorization request for the original data to a data owner of the original data based on a decentralized identifier (DID) corresponding to the original data; receiving confirmation information of the usage authorization request from the data owner; processing the original data based on the usage demand information to obtain a processing result; transmitting the processing result to the data requestor; and generating a verifiable claim (VC) for recording usage information of the original data.
A versioned file storage system (VFS) and method for operating and using the same is disclosed. In an aspect, a mechanism is provided wherein a first VFS interface unit coupling the VFS to a local data storage system is replaced with a second VFS interface unit in a coordinated procedure for taking the first unit offline, making a reliable snapshot of its data and cache structure in the VFS, and loading the same data and cache structure into the second VFS interface brought online. The first and second VFS interfaces transfer the necessary data to achieve the switch through respective side-loading daemons running in each interface. Clients in the local data storage system experience minimal interruption of services in the VFS.
A data storage system for use with a multi-threaded processing system receives concurrent requests to store data to a common data store, and efficiently and securely swaps an active data store for a new data store while avoiding conflicts arising from multiple threads attempting to swap a same data store and minimizing reliance on operations that re-attempt actions upon failure of an attempted action, thereby improving performance of the data storage system and also the multi-threaded processing system.
A client device operates by: extracting a set of deletion candidate data from application data stored in memory, wherein the deletion candidate data corresponds to a plurality of photographs; generating feature detection data for each of the plurality of photographs by performing a computer vision function on the each of the plurality of photographs; generating a subset of the set of deletion candidate data for deletion by selecting ones of the set of deletion candidate data that compare favorably to deletion criteria data, wherein the deletion criteria data indicates at least one unfavorable feature and wherein the subset of the set of deletion candidate data is generated by selecting ones of the plurality of photographs with feature detection data that indicates the at least one unfavorable feature is included in the ones of the plurality of photographs; and facilitating deletion of at least a portion of the subset of the set of deletion candidate data from the memory.
A system, apparatus, and method for processing queries wherein the query includes a request to access or delete data and accessing metadata associated with the set of data, the metadata defining data characteristics of the set of data and identifying at least sets of data that need or not need to be accessed or deleted based on the metadata without accessing the actual data in the set of data; also methods to optimize processing of some operations based on the collected metadata on data.
Network appliances can record log entries in log objects. An object store can receive the log objects and can use the log objects to create index objects and flow log objects. Each flow log object and index object can be associated with a time period wherein the flow log object includes flow log entries received during that time period. The index object includes shard tables that can be stored in different nonvolatile memories and can thereby be concurrently searched. Shard entries in the shard tables indicate flow entry indicators. The flow entry indicators indicate log entries in the flow log object. An internally indexed searchable object can include the flow log object and the index object. Numerous indexed fields in the flow log entries and can be indexed with each indexed field searchable via the shard entries.
CMOS output stages, electrostatic discharge (ESD) protection circuits and input bus-keeper functions are provided that block dc and ac leakage paths within inactive powered-down integrated circuits used in redundant high-reliability system configurations employing cold-sparing to provide backup circuitry. These circuits and methods avoid both undesirable power consumption in a cold-spared backup unit and loading of connected active units when powered down, without compromising performance or functionality of the backup unit when in its active powered state. Inputs and outputs using an analog majority voting principle to implement in-circuit redundancy for on-chip fault tolerance are also provided, incorporating the low-leakage principles of the invention for low power dissipation when powered down. Such on-chip redundancy can harden an IC against various faults, such as single-event effects in high-radiation environments, while maintaining the other advantages in a cold-sparing system.
The present disclosure relates to a modular management gateway apparatus for providing keyboard, video and mouse communications with a target device in communication with the apparatus. The apparatus may have a housing with a field programmable gate array (FPGA) housed within the housing. An uplink port is included to enable communication between a user operated device and the apparatus via a network. A memory is used for containing a software module for carrying out at least one operating feature of the apparatus. A video compression hardware and software subsystem is used for providing 4K video transfer between the apparatus and the target device. A USB-C enables video signals and serial data to be communicated between the apparatus and the target device.
According to one general aspect, a device may include a host interface circuit configured to communicate with a host device via a data protocol that employs data messages. The device may include a storage element configured to store data in response to a data message. The host interface circuit may be configured to detect when a tunneling command is embedded within the data message; extract a tunneled message address information from the data message; retrieve, via the tunneled message address information, a tunneled message stored in a memory of the host device; and route the tunneled message to an on-board processor and/or data processing logic. The on-board processor and/or data processing logic may be configured to execute one or more instructions in response to the tunneled message.
An accelerator, an operation method of the accelerator, and an accelerator system including the accelerator are disclosed. The operation method includes receiving one or more workloads assigned by a host controller, determining reuse data of the workloads based on hardware resource information and/or a memory access cost of the accelerator when a plurality of processing units included in the accelerator performs the workloads, and providing a result of performing the workloads.
A network interface device has a data source, a data sink and an interconnect configured to receive data from the data source and to output data to the data sink. The interconnect has a memory having memory cells. Each memory cell has a width which matches a bus segment width. The memory is configured to receive a first write output with a width corresponding to the bus segment width. The write output comprises first data to be written to a first memory cell of the memory, the first data being from the data source.
Disclosed in some examples are methods, systems, and machine readable mediums that dynamically adjust the size of an L2P cache in a memory device in response to observed operational conditions. The L2P cache may borrow memory space from a donor memory location, such as a read or write buffer. For example, if the system notices a high amount of read requests, the system may increase the size of the L2P cache at the expense of the write buffer (which may be decreased). Likewise, if the system notices a high amount of write requests, the system may increase the size of the L2P cache at the expense of the read buffer (which may be decreased).
The present disclosure generally relates to data storage devices, such as solid state drives (SSDs), and efficient data storage device operations related to power loss incidents. A controller of the data storage device is configured to periodically pre-encode data that is stored in random access memory (RAM), detect a power loss event, and program the data and parity data to non-volatile memory (NVM) in response to detecting the power loss event. Upon reaching a threshold size, the data in RAM may be pre-encoded and the pre-encoded data can be programmed to the RAM or the NVM. The parity data may be stored in one or more locations of the NVM. Upon detecting a power loss event, any data remaining in RAM that is not pre-encoded is encoded. The data and any parity data not yet programmed to the NVM are programmed to the NVM.
Systems, apparatuses, and methods related to media management, including “garbage collection,” in memory or storage systems or sub-systems, such as solid state drives, are described. For example, a battery state associated with the memory system or sub-system may be used as an indicator or basis for managing a garbage collection operation on a data block. A controller or the system or sub-system may determine that a battery state or condition satisfies a criterion. Based on determining that the criterion is satisfied the, the garbage collection operation may be postponed until the battery state changes to satisfy a different battery condition.
A system, method and apparatus to optimize repair in a memory module based on hardware errors identified by microprocessors and a configurable error handling policy. For example, the error handling policy can have a configuration file identifying an amount of repair resources available in the memory module as manufactured. Repair status data can be stored in the memory module to determine repair resources currently available for repair. Further, the error handling policy can be configured with a list of high risk memory addresses prioritized for repair. The list can be used to schedule proactive repair in response to memory errors that would otherwise not be repaired during a typical restarting of the computer system having the memory module.
Provided is an electronic control unit capable of performing fault diagnosis of a watchdog timer circuit without delaying start of typical processing of a computer. A microcomputer termination processing unit 200 stops outputting a pulse to a watchdog timer circuit 101 in response to execution of termination processing of a microcomputer 100. When a reset signal is not output from the watchdog timer circuit 101 even when a predetermined time has elapsed since the stop of the output of the pulse, a watchdog timer circuit fault diagnosis unit 201 writes abnormality information indicating that an abnormality has occurred in the watchdog timer circuit 101 into the nonvolatile memory 102.
A hardware-assisted paravirtualized hardware watchdog is described that is used to detect and recover from computer malfunctions. A computing device determines that a hardware-implemented watchdog of the computing device does not comply with predetermined watchdog criteria, where the hardware-implemented watchdog is configured to send a reset signal when a first predetermined amount of time elapses without receipt of a first refresh signal. If the hardware-implemented watchdog does not comply with the predetermined watchdog criteria, a runtime watchdog service is initialized using a second predetermined amount of time. The runtime watchdog service is directed to periodically send the refresh signal to the hardware-implemented watchdog before an expiration of the first predetermined amount of time that causes the hardware-implemented watchdog to expire. The hardware-implemented watchdog is directed to send the reset signal when the second predetermined amount of time elapses without receipt of a second refresh signal.
Embodiments of this application relate to the field of communications technologies, and disclose an application programming interface (API) topology hiding method, a device, and a system. A common API framework core function (CCF) receives, from a topology hiding request entity, a request message that includes information about an API and that is used to request to hide an API exposing function (AEF) that provides the API. Based on the request message, a topology hiding entry point used by an API invoker to invoke the API is determined. An identifier of the API and an identifier of the AEF that provides the API are sent to the topology hiding entry point so that the topology hiding entry point hides the AEF that provides the API.
An example system may be configured to instantiate a first application container based on a plurality of application image layers; and instantiate a second application container based, at least in part, on the plurality of application image layers; wherein a private page cache stores storage information for the plurality of application image layers and is used to provide shared access to the plurality of application image layers by the first application container and the second application container.
Generic Concurrency Restriction (GCR) may divide a set of threads waiting to acquire a lock into two sets: an active set currently able to contend for the lock, and a passive set waiting for an opportunity to join the active set and contend for the lock. The number of threads in the active set may be limited to a predefined maximum or even a single thread. Generic Concurrency Restriction may be implemented as a wrapper around an existing lock implementation. Generic Concurrency Restriction may, in some embodiments, be unfair (e.g., to some threads) over the short term, but may improve the overall throughput of the underlying multithreaded application via passivation of a portion of the waiting threads.
The present disclosure relates to systems, methods, and computer readable media for predicting expansion failures and implementing defragmentation instructions based on the predicted expansion failures and other signals. For example, systems disclosed herein may apply a failure prediction model to determine an expansion failure prediction associated with an estimated likelihood that deployment failures will occur on a node cluster. The systems disclosed herein may further generate defragmentation instructions indicating a severity level that a defragmentation engine may execute on a cluster level to prevent expansion failures while minimizing negative customer impacts. By uniquely generating defragmentation instructions for each node cluster, a cloud computing system can minimize expansion failures, increase resource capacity, reduce costs, and provide access to reliable services to customers.
An approach for an adaptive, performance-oriented, and compression-assisted encryption scheme implemented on a host computer to adaptively improve utilization of CPU resources is provided. The method comprises queueing a new data packet and determining a size of the new data packet. Based on historical data, a plurality of already encrypted data packets is determined. Based on information stored for the plurality of already encrypted data packets, an average ratio of compression for the plurality of already encrypted data packets is determined. Based on the average ratio of compression, a throughput of compression value and a throughput of encryption value, a prediction whether compressing the new data packet will reduce a CPU load is derived. If it is determined that compressing the new data packet will improve utilization of the CPU resources, then a compressed new data packet is generated by compressing the new data packet.
The present disclosure is directed to a system and method for viewing jobs managed by heterogeneous job schedulers on heterogeneous computing systems. Organizations often rely on workflow schedulers or job schedulers to execute and manage their workflow pipelines. However, different departments within a large organization may rely on different job scheduling applications for managing their workflows. Without the capability to monitor and manage all or a subset of jobs running on heterogeneous job scheduling applications across the organization at the same time, organizations lack the insight they need to make their workflow pipeline more efficient. The disclosed system and method allows users to monitor jobs or computer applications, including details regarding job execution and service level agreements, running on heterogeneous job schedulers across the organization.
Artificial intelligence (AI) based computer systems and methods are disclosed for autonomously creating customer service help guides via a graphic user interface (GUI). Computing instructions operating on processor(s) are configured to automatically crawl digital product categorie(s) and create action script(s) derived therefrom. The action script(s) comprise user directive(s) for completing user task(s) on a computing device and software application configured to render a GUI. A natural language understanding (NLU) model associates the action script(s) with text of the user task(s). The action script(s) are tested against completion criteria to output success result(s). An AI model is trained on the action script(s), the text of the user tasks, and the completion criteria. A client device of user may request assistance with a given task, and may render, in response, graphic-and-text display(s) associated with a relevant action script (as determined by the AI model) on a GUI of the client device.
Systems and methods relating to enhancing capabilities of robotic process automation systems. A system and method includes recognizing and analyzing the components of a user interface on which at least one task is to be executed. The task can be executed regardless of changes to the user interface as the components of the task are based on the presence and function of areas of the user interface and not on the location of the components necessary to execute the task.
The present disclosure provides techniques for management of user interface elements based on historical configuration data. Use of historical configuration data to render user interface elements improves usability of graphical user interfaces by maintaining a consistent user experience. The states of user interface objects in a hosting environment are retained as historical configuration data and linked to a hosting environment profile. When the same or similar hosting environment is detected, the user interface elements are rendered based on the historical configuration data. For example, the last positions of windows in a particular monitor topology are stored as historical configuration data linked to that monitor topology. The windows are returned to their previous positions when a computing device is next configured with the same or similar monitor topology.
A secondary processor device ownership system includes a chassis that houses a plurality of devices, a secondary processing system, and a central processing system that includes an integrated switch device that is coupled to each of the plurality of devices and the secondary processing system. The central processing system is configured to provide a device ownership subsystem that configures the central processing system to own a first subset of the plurality of devices, configures the secondary processing system to own a second subset of the plurality of devices, and hides the second subset of the plurality of devices from at least one application provided by the central processing system.
To obtain a highly reliable electronic control device capable of reliably causing a microcomputer to perform normal termination and normal re-activation by controlling a power supply voltage. According to the present invention, an electronic control device 25 includes a microcomputer 18, a power supply control unit 20 that controls a power supply voltage of the microcomputer, and a capacitor 19 provided between the power supply control unit and the microcomputer. The power supply control unit 20 includes a power supply unit 24 that supplies a first power supply voltage V1 to the microcomputer by turning ON an activation signal for activating the microcomputer, and stops the supply of the power supply voltage by turning the activation signal OFF, a reset control unit 14 that generates a Low reset signal by turning the activation signal OFF, and a discharge control unit 12 that discharges electric charges of the capacitor when acquiring the Low reset signal.
Examples of the present disclosure provide apparatuses and methods related to generating and executing a control flow. An example apparatus can include a first device configured to generate control flow instructions, and a second device including an array of memory cells, an execution unit to execute the control flow instructions, and a controller configured to control an execution of the control flow instructions on data stored in the array.
A system and method for notifying a process about a creation or removal event of a named data element (NDE) in a coordination namespace distributed memory system. A controller runs methods to: generate a tuple corresponding to data generated by a requesting process, the tuple having a tuple name and data value; and generate a notification indicator in a pending notification list to indicate to one or more processes a notification of the creation or removal event associated with the corresponding tuple. Upon detecting the event performed on the tuple by a second process, the method further searches for NDEs in the distributed memory system having the same tuple name, and in response to determining an existence of an associated pending notification record in a pending notification list of records, notify each corresponding process of the one or more processes indicated in the list of the creation or removal event.
A graphics processing unit and methods for comping and executing instructions with opportunistic inter-path reconvergence are provided. A graphics processing unit may access computer executable instructions mapped to code blocks of a control flow for a warp. The code blocks may include an immediate dominator block and an intermediate post dominator block. The graphics processing unit may store a first thread mask associated with the first code block. The first thread mask may include a plurality of bits indicative of the active or non-active status for the threads of the warp, respectively. The graphics processing unit may a second thread mask corresponding to an intermediate code block between the immediate dominator block and intermediate post dominator block. The graphics processing unit may execute, with threads indicated as active by the first thread mask, instructions of the intermediate code block with a first operand or a second operand depending on the second thread mask.
Systems, methods, and apparatuses for an application programming interface (API) definition automation system that is structured to programmatically generate API documentation in human-readable format. A control database is structured to retrievably store control documents. A content database is structured to retrievably store control document templates. A configuration file manager circuit is structured to generate an API configuration file in a data serialization language. An editor circuit structured to receive the API configuration file and a first control document that is human-readable. The editor circuit is also structured to generate a user interface that includes an API call executable structured to generate an API call field and a table editor executable structured to generate a parameter table. The editor circuit is also structured to apply a modification to the first control document. A content management system is structured to receive the first control document and generate an output document.
Methods, systems, and computer program products for translating clusters of a monolith application to microservices are provided herein. A computer-implemented method includes obtaining a plurality of candidate microservices for refactoring a monolith application, each candidate microservice including one or more of a plurality of software classes of the monolith application; analyzing the monolith application to identify one or more software functions in the plurality of software classes to expose as one or more application programming interfaces; automatically isolating non-overlapping software functions of the monolith application between the plurality of candidate microservices; converting source code corresponding to the identified one or more software functions into a standardized application programming interface format based at least in part on the isolating; and using the converted source code to generate a plurality of deployable microservices corresponding to the plurality of candidate microservices.
Integrating super-app extension discovery and configuration within source code management platform comments. Based on a triggering event associated with a context within a code repository, a super-app identifies a set of extensions available for execution against the context, and triggers execution of at least a subset of the set of extensions against the context. The super-app generates a super-app output that includes an output of having triggered the subset of extensions against the context, a listing of one or more of the set of extensions as being a library of available extensions to the super-app, and an indication of a comment-based syntax for configuring an extension to the super-app. The super-app posts that output as a comment on a comment feed. Based on user input received via a comment using the comment-based syntax, the super-app generates a modified super-app configuration associated with the code repository.
Technologies are provided for assigning developers to source code issues using machine learning. A machine learning model can be generated based on multiple versions of source code objects (such as source code files, classes, modules, packages, etc.), such as those that are managed by a version control system. The versions of the source code objects can reflect changes that are made to the source code objects over time. Associations between developers and source code object versions can be analyzed and used to train the machine learning model. Patterns of similar changes to various source code objects can be detected and can also be used to train the machine learning model. When an issue is detected in a version of a source code object, the model can be used to identify a developer to assign to the issue. Feedback data regarding the developer assignment can be used to re-train the model.
A system and method for conducting a parameter update event including one or more processors for transmitting first parameter settings to a program used by multiple users, such as a mobile device application at a plurality of mobile devices, receiving performance information indicating performance of the program after the first parameter setting, the performance information for each user being separately identifiable, and for each individual user of the plurality of users, determining a parameter setting update based at least in part on the performance information of the individual user and transmitting the parameter setting update to the program.
In various embodiments, a process for constrained decoding and ranking of language models for code generation includes receiving a natural language input specifying a desired computer task. The process includes using a machine learning trained converter to convert the natural language input to an output in a computer language, including by, based on a specified grammar for the computer language, limiting eligible options for a token to include in the output in the computer language. The process includes providing the output in the computer language for computer execution.
This application describes hybrid hardware accelerators, systems, and apparatus for performing various computations in neural network applications using the same set of hardware resources. An example accelerator may include weight selectors, activation input interfaces, and a plurality of Multiplier-Accumulation (MAC) circuits organized as a plurality of MAC lanes Each of the plurality of MAC lanes may be configured to: receive a control signal indicating whether to perform convolution or vector operations; receive one or more weights according to the control signal; receive one or more activations according to the control signal; and generate output data based on the one or more weights and the one or more input activations according to the control signal and feed the output data into an output buffer. Each of the plurality of MAC lanes includes a plurality of multiplier circuits and a plurality of adder-subtractor circuits.
An integrated circuit with specialized processing blocks is provided. A specialized processing block may be optimized for machine learning algorithms and may include a multiplier data path that feeds an adder data path. The multiplier data path may be decomposed into multiple partial product generators, multiple compressors, and multiple carry-propagate adders of a first precision. Results from the carry-propagate adders may be added using a floating-point adder of the first precision. Results from the floating-point adder may be optionally cast to a second precision that is higher or more accurate than the first precision. The adder data path may include an adder of the second precision that combines the results from the floating-point adder with zero, with a general-purpose input, or with other dot product terms. Operated in this way, the specialized processing block provides a technical improvement of greatly increasing the functional density for implementing machine learning algorithms.
Systems and methods disclosed herein include (i) receiving a voice command via at least one microphone of a networked microphone device, wherein the networked microphone device is configured to receive voice commands for a media playback system, and wherein the media playback system comprises the networked microphone device and a first playback device configured to play back content, (ii) determining that the networked microphone device is not configured to play back the content, (iii) in response to determining that the networked microphone is not configured to play back the content, determining that the first playback device is available to play back the content, (iv) causing the first playback device to play back the content, (v) determining that the first playback device is no longer available to play back the content, and (vi) selecting a second playback device to play back the content.
An information processing apparatus capable of communicating with an image output apparatus stores print setting information corresponding to a print job for which print is commanded, as history information in a storage unit thereof, and displays, in a case where print using the history information is commanded, information regarding an image output apparatus that is available for use by the information processing apparatus does not correspond to part of setting values included in the history information, and a print result of print processing to be executed by the image output apparatus using the history information satisfies a predetermined condition, a print setting screen in which the information regarding the image output apparatus is reflected in an item corresponding to the part of the setting values and setting values of the history information are reflected in other items.
An image forming device is provided with an image forming engine, a communication interface configured to communicate with terminal devices, and a controller. The controller is configured to perform obtaining, from an external device, a communication destination list in which statuses of the image forming device and one or more of the terminal devices are stored, and for each of the one or more of the terminal devices, executing a process corresponding to an instruction from the terminal device or restricting a process corresponding to the instruction from the terminal device depending on whether the terminal device is included in the communication destination list obtained in the obtaining.
A server includes memory, a registration request receiver, a first determiner, and a first memory controller. The memory stores device identification information and service identification information in association with each other. The registration request receiver receives from an external device, a registration request including first service identification information and specific device identification information. The first service identification information identifies a first service to be provided to a user of a specific communication device. The specific device identification information identifies the specific communication device. In response to the registration request received from the external device, the first determiner determines whether to provide the first service to the user of the specific communication device. In response to a determination to provide the first service, the first memory stores the first service identification information in the memory in association with the specific device identification information.
An image forming device includes a printer, a display, and a controller. The printer forms a desired image indicated by image data on a sheet. The display displays the desired image. The controller receives a first designation, by a user, of a designation region of the desired image displayed on the display. The controller receives a second designation, by the user, of a superimposition position at which an abnormality region containing an abnormality is superimposed on the desired image. The controller transmits user designation information indicating the designation region and the superimposition position to an external device.
A memory system includes a memory device configured to monitor a first oscillator count value for a write data strobe signal for sampling a data signal at a first temperature and a second oscillator count value for the write data strobe signal for sampling the data signal at a second temperature, and a memory controller configured to determine a weight based on the first oscillator count value and the second oscillator count value, wherein the memory device is configured to sample the data signal by adjusting a delay on a transfer path of the write data strobe signal according to a change in temperature of the memory device based on the weight.
A system includes logic stored in the memory and executable by the processor to cause the processor to obtain the set of primary data objects and the set of residual data objects, each residual data object of the set of residual data objects being associated with, and representative of rounding that led to, a respective primary data object of the set of primary data objects, to evaluate, for each residual data object of the set of residual data objects, whether removal of the residual data object breaches a data integrity rule, to cause the processor to, for each residual data object of the set of residual data objects for which the removal breaches the data integrity rule, implement an optimization to attempt to identify at least one adjustment to the set of primary data objects, the set of residual data objects, or both the set of primary data objects and the set of residual data objects, that allows the removal to proceed without breaching the data integrity rule, to remove, from the set of residual data objects, each residual data object of the set of residual data objects for which the removal does not breach the data integrity rule, and each residual data object of the set of residual data objects for which the at least one adjustment is identified, and to store the at least one adjustment in a memory.
Methods, systems, and devices for internal commands for access operations are described. A memory sub-system can receive a request to perform an access operation. A first core of the memory sub-system can generate an internal command for performing the access operation. The internal command can include information for storing in a reference queue of the memory sub-system and an identification of a command entry of the reference queue. The first core can issue the internal command to perform the access operation and a second core of the memory sub-system can store the information in the command entry of the reference queue.
The present disclosure generally relates to efficient execution of compare commands. Reads from the memory device for the compare commands are scheduled. Available chunks of data is received from the memory device, and the corresponding data is received from the host device. The data is compared. If the data does not match, the remaining reads are cancelled, and a compare completion is placed in the completion queue indicating a failed compare command. If all of the data matches, then a compare completion is placed in the completion queue indicating a successful compare command. Read transfers from the host device are scheduled based on availability of read data from the memory device side. By doing so, less buffers are needed to hold the data internally until both chunks of data are available. In so doing, synchronization between read data availability and retrieving data from the host device is synchronized.
Storage devices are often configured to receive and process commands from a host-computing device. These commands can vary in size and priority with larger sizes of command data being processed by storage devices more frequently. As these sizes increase, more situations occur when newly received high priority commands are received and ready for processing, but must wait for the current data associated with a normal priority command to be fetched and/or processed. Traditionally, the high priority command must wait, no matter how long, until the currently underway normal priority command is fetched and/or completed. However, methods and system described herein allow for the interruption of normal priority data fetching prior to completion. In this way, lower latencies may be achieved as high priority commands are not required to wait for processing. The previously fetched data may be dumped and re-fetched again or may be stored until normal operations can resume.
Provided herein may be a storage device having improved write performance. The storage device may include a memory device and a memory controller. The memory controller may generate check-in information indicating start of a program operation in response to a write request received from the host, control the memory device to perform a program operation of storing data received from the host in a target area of the memory device, generate check-out information indicating whether the program operation has succeeded, and provide a write result response including the check-out information to the host in response to a write return request received from the host.
Methods and systems for processing input/output (“I/O”) requests are disclosed. One method includes identifying, a the target, a granular size to split a write request into a plurality of write requests, based on utilization of a processor of the target configured to process input/output (I/O) requests, the granular size indicating a number of the plurality of write requests; generating, by the target, a plurality of read requests to a storage server, each read request corresponding one of the plurality of write requests; issuing, by the target, the plurality of write requests to a storage device controller, in response to receiving data for the plurality of read requests from the storage server; and transmitting, by the target, a completion notification indicating completion of the write request to the storage server, in response to the storage device controller writing data for each of the plurality of write requests.
A memory expander includes a memory device that stores a plurality of task data. A controller controls the memory device. The controller receives metadata and a management request from an external central processing unit (CPU) through a compute express link (CXL) interface and operates in a management mode in response to the management request. In the management mode, the controller receives a read request and a first address from an accelerator through the CXL interface and transmits one of the plurality of task data to the accelerator based on the metadata in response to the read request.
An apparatus which includes a first solid state drive (SSD) located on an SSD card having a fixed capacity and a first form factor. The apparatus can further include an adapter located on the SSD card to accommodate a second SSD. The second SSD has a second form factor that is different than the first form factor and is removeable from the SSD card. The apparatus can further include a controller located on the SSD card and configured to access the first SSD and the second SSD.
Embodiments of the present disclosure provide a protective apparatus for an indirect access memory controller. The apparatus can include: a bus monitoring unit configured to monitor a bus address and detect an operation type of a bus accessing the indirect access memory controller, update a corresponding window register if the operation type is a window register operation, initiate permission authentication if the operation type is a register controlling operation, and perform list entry configuration if the operation type is a permission list configuration operation; a window register unit configured to store operation addresses of different access types; a permission list unit configured to partition a memory space into several virtual memory protection areas, and independently set a access permission attribute for each memory area; and an unauthorized operation processing unit configured to process a subsequent operation performed when a permission violating access occurs. Embodiments of the present disclosure can implement security protection for this type of memory by merely adding the protective apparatus between a bus and an indirect access memory controller, and a security function can be added to an original memory control module without modifying the indirect access memory controller.
In a method of operating a memory controller, a decoding status flag is received from a memory module including a plurality of data chips and at least one parity chip. Each of the plurality of data chips and the at least one parity chip may include an on-die error correction code (ECC) engine. The decoding status flag is generated by the on-die ECC engines. A first number and a second number may be obtained based on the decoding status flag. The first number represents a number of first chips including an uncorrectable error that is uncorrectable by the on-die ECC engine. The second number represents a number of second chips including a correctable error that is correctable by the on-die ECC engine. At least one of a plurality of decoding schemes is selected based on at least one of the first number and the second number. A system ECC engine may perform ECC decoding on at least one of the first chips and the second chips based on the selected decoding scheme.
Disclosed herein is a device equipped with flash memory, which includes memory in which at least one program is recorded and a processor for executing the program. The memory includes flash memory including a data area and a backup area, and the program divides data into two or more segments depending on whether the data can be stored in a single page and stores the same in the data area. The first segment is stored in a page along with a segment number, indicating the sequential position of the divided data, a segment offset, indicating the number of pages between the pages in which the current segment and the next segment are stored, the size of a data file name, the size of the data, and the file name. At least one additional segment may be stored in another page along with the segment number and segment offset thereof.
A method may include receiving, at a storage device, a command for a data transfer between the storage device and a host, determining a specified data rate for the data transfer, and performing the data transfer between the storage device and the host based on the command, wherein the storage device may control the data transfer based on the specified data rate. The data transfer may include a peak portion and an idle portion. The method may further include controlling, at the storage device, a peak portion and an idle portion of the data transfer based on the specified data rate. The method may further include controlling, at the storage device, the data transfer based on a peak burst size. The specified data rate may be received from the host and/or determined by the storage device by monitoring one or more parameters of a data transfer.
A method of displaying a function of a button of an ultrasound apparatus on the button includes displaying information about one or more functions provided by the ultrasound apparatus, selecting one from among the one or more functions which have been displayed, determining a button in which the selected function is to be set based on an external input signal for matching the selected function to the button in which the selected function is to be set; and displaying information about the selected function on the determined button.
A display apparatus includes a memory and circuitry. The memory that stores one or more display components. The circuitry receives an input of hand drafted input data. The circuitry displays at least one display component of the one or more display components, the at least one display component corresponding to a shape of the hand drafted input data whose input is received.
Systems and methods for presenting a sequence of medical images are provided herein. A use provides an input which indicates that additional frames are to be displayed. Frames from the sequence are displayed in succession, without skipping the display of any frames, based on a frame rate determined by an input provided by a user.
A method for dynamically changing a graphical user interface element occurs in response to detecting that a temporal user interface element displayed on a user interface of user device. The method includes receiving, at the user device, a contextual signal characterizing a state of a user. The method further includes determining, by the user device, that the contextual signal characterizing the state of the user is indicative of the user intending to interact with a temporal user interface element. The methods also include, in response to determining that the contextual signal characterizing the state of the user is indicative of the user intending to interact with a temporal user interface element, modifying a respective state of the temporal user interface element displayed on the user interface of the user device.
Technologies are disclosed for providing visual feedback during touch-based operations on user interface (“UI”) elements. Through implementations of the disclosed technologies, visual feedback can be provided to users during certain touch-based operations on UI elements presented by touch-enabled computing devices. The visual feedback can provide confirmation to users that certain touch-based operations on UI elements were performed successfully. The visual feedback provided by the disclosed technologies can make it easier for users to select a UI element, to understand that actions taken to select a UI element were successful, and to successfully perform operations on UI elements once they have been selected. These benefits can reduce the number of times users need to attempt certain touch-based operations on UI elements. This, in turn, can reduce the utilization of computing resources, such as memory and processor cycles, by touch-enabled computing devices implementing the disclosed technologies.
A design engine implements a probabilistic approach to generating designs that exposes automatically-generated design knowledge to the user during operation. The design engine interactively generates successive populations of designs based on a problem definition associated with a design problem and/or a previously-generated population of designs. During the above design process, the design engine generates a design knowledge graphical user interface (GUI) that graphically exposes various types of design knowledge to the user. In particular, the design engine generates a design variable dependency GUI that visualizes various dependencies between designs variables. The design engine also generates a design evolution GUI that animates the evolution of designs across the successive design populations. Additionally, the design engine generates a design exploration GUI that facilitates the user exploring various statistical properties of automatically-generated designs.
Embodiments include methods and systems for generating a user interface on a mobile device. The method includes instantiating a client application on the mobile device and causing display of a first graphical user interface within the client application. A set of registered users is identified, the set of users having a hierarchical relationship to a first user account associated with the first user. The graphical user interface displays a set of avatar icons, which corresponds to the set of registered users. In response to a selection of a particular avatar icon of the set of avatar icons, the system accesses particular issue state data associated with a particular user account of the particular avatar icon and causing display of a second graphical user interface comprising a first overlay card that includes the particular avatar and at least a portion of the particular issue state data.
An electronic device with one or more processors and memory, and in communication with a display and an audio system presents, under control of the electronic device, via the audio system, a first audio output, the first audio output having a volume and an audio property other than volume (e.g., a reverberation time, a low-pass filter cutoff, or a stereo balance). While the audio system presents a first audio output, the device receives an input that corresponds to a request to present a second audio output, and in response, the device concurrently presents, via the audio system, an adjusted version of the first audio output in which the audio property other than volume of the first audio output has been adjusted and the second audio output.
A simplified menu screen for a handheld mobile wireless device, with a display/touch screen, displays a simplified menu in lieu of an original menu screen on the display screen when the device is first activated. The simplified menu displays only up to five menu selection choices and thereby simplifies the original menu screen and minimizes the complexity of the original menu screen and a desired menu item selection there from. A part of the simplified menu screen is used for live feed of data relevant to a user minimizing the number of steps required to access display of data.
According to various embodiments of the disclosure, an electronic device may comprise: a housing including: a first surface, a second surface facing in a direction opposite to the first surface, and a side surface at least partially surrounding a space between the first surface and the second surface; a printed circuit board disposed between the first surface and the second surface; a first sensing element including a plurality of conductive vias arranged in parallel to the side surface in at least a portion of an edge of the printed circuit board; and a grip sensor electrically connected with the first sensing element. The grip sensor may be configured to detect a change in capacitance due to an approach or contact state of an external object to the housing, in at least a portion of the side surface of the housing using the first sensing element.
A computing device includes signal generation circuitry and also includes a location on the computing device that is operative to couple a signal generated by the signal generation circuitry into a user. For example, the computing device includes signal generation circuitry that generates a signal that includes information corresponding to a user and/or an application that is operative within the computing device. The signal generation circuitry couples the signal into the user from a location on the computing device based on a bodily portion of the user being in contact with or within sufficient proximity to the location on the computing device that facilitates coupling of the signal into the user. Also, the signal may be coupled via the user to another computing device that includes a touchscreen display that is operative to detect and receive the signal.
A full-area touch device including a supporting unit, a touch control unit and a plurality of limiting units. The supporting unit includes a base plate. The touch control unit is movable relative to the supporting unit between an unpressed original position and a pressed position. The limiting units are for limiting height position and travel distance of the touch control unit. Each of the limiting units includes a blocking portion disposed on the base plate, and a limiting portion disposed on a corresponding one of two support resilient sheet sets of the supporting unit. The limiting portions of the limiting units extend in a first axial direction or a second axial direction to be limited by the blocking portions of the limiting units.
The present application relates to a technical field of intelligent control device, particularly to a mouse control method, which includes: receiving a connection signal for establishing a bluetooth connection with a mobile phone in real time; receiving an operation signal associated with the mobile phone, and the operation signal includes a page turning operation signal, a pausing playing operation signal, a starting playing operation signal; sending a corresponding operation instructions to the mobile phone based on the operation signal. The present application is convenient for the user to use the mobile phone and the computer together.
An electromagnetic tracking system includes a handheld controller including a first phased array element characterized by a first phase and a second phased array element characterized by a second phase different than the first phase. The first phased array element and the second phased array element are configured to generate a steerable electromagnetic beam characterized by an electromagnetic field pattern. The electromagnetic tracking system also includes a head mounted augmented reality display including an electromagnetic sensor configured to sense the electromagnetic field pattern.
In some implementations, an apparatus may include a housing enclosing a circuitry may include a processor and a memory, the housing forming a handgrip. In addition, the apparatus may include a plurality of light sensors arranged in a particular configuration, each of the plurality of light sensors coupled to an exterior the housing via a sensor arm. Also, the apparatus may include one or more controls mounted on the exterior of the housing and electrically coupled to the circuitry. The apparatus can include one or more antenna mounted on an exterior of the housing; and a transmitter connected to the circuitry and electrically connected to the one or more antenna to send data from the apparatus via a wireless protocol. The apparatus can include an electronic device for mounting an electronic device to the housing, the electronic device configured to execute an application for an immersive content generation system.
A display apparatus for a vehicle according to one embodiment of the present invention includes a display module, a floating panel positioned on a surface of the display module, a pair of suspension brackets which are connected to a rear side of the floating panel with a gap therebetween, and a liquid crystal display (LCD) bracket of which both ends are connected to and surrounded by the pair of suspension brackets.
A haptic interface unit may include an application in the operating system of a device in communication with a driver layer. A plurality of sensors and actuators may be in communication with the driver layer. The driver layer analyzes information from the sensors to generate an output signal based on an interaction model stored in the driver layer. The application updates the interaction model in the driver layer.
Systems and methods are disclosed defining haptic patterns that include both haptic events and audio events, and optionally include video or animation. The haptic patterns can be called from an application or included as an attachment to a message and played on an electronic device that receives the message. A haptics application programming interface has a haptic experience mapping functionality that generates a same, or similar, haptic experience on different manufacturers or models of electronic devices having different haptic hardware. Haptic patterns can include synchronized haptic and audio events. Haptic event attributes include start time, sharpness, and intensity. Sharpness and/or intensity can be controlled via a parameter envelope for a single event, or for multiple events in a haptic pattern. Sharpness indicates a quality of the tactile sensation of a haptic event, from smooth or rounded, to sharp or precise.
A device is provided for delivering somatosensation. A garment is wearable on a body part, and includes an array of electrodes in electrical contact with skin of the body part when the garment is worn on the body part. An electronics module is configured to use the array of electrodes of the garment to apply a somatosensation pattern providing guidance in performing a motor action, or providing a pain sensation to the wearer.
A method for three dimensional visualization and manipulation of downhole data. A measured signal is received a downhole environment and a three dimensional virtualization of the measured signal is generated. A stereographic viewer displays the three dimensional virtualization of the measured signal. The three dimensional virtualization can be manipulated in response to an input from a user, thereby creating a manipulated three dimensional virtualization. The stereographic viewer can display the manipulated three dimensional virtualization.
Program actions may be initiated after detection of a predefined gesture by a user with a real-world object. Users may interact with their physical environment in an augmented reality by detecting interactions with real objects using a combination of location and motion detection, material identification using wearable sensors, or both. Based on detected sensor data from user interaction with a real-world object, a predefined gesture may be identified and a program action associated with that target interaction for the real-world object may be executed. In some cases, the user experience may be enhanced by providing haptic feedback in response to tactile gestures and resulting events.
Accordingly, embodiments herein disclose a method for providing real-time virtual feedback using an electronic device. The method includes receiving, by the electronic device, motion data of each segment in a multi-segment body part of a first user. Further, the method includes determining, by the electronic device, a posture information of each of the segment in the multi-segment body part based on the motion data of each of the segment in the multi-segment body part of the first user. Further, the method includes determining, by the electronic device, a degree of similarity between the posture information of each of the segment in the multi-segment body part of the first user and a posture information of each segment in a multi-segment body part of a second user. Further, the method includes providing, by the electronic device, a virtual feedback to the first user based on the degree of similarity.
A portable communication device includes a housing including a first housing portion and a second housing portion; a flexible display accommodated in the first housing portion and the second housing portion; a first hinge plate coupled to the first housing portion; a second hinge plate coupled to the second housing portion; and a first hinge structure disposed between the first hinge plate and the second hinge plate, the first hinge structure including a first plate coupling portion coupled with the first hinge plate, the first plate coupling portion including a first protruding portion and a second protruding portion spaced apart from each other to form a space therebetween; and a second plate coupling portion coupled with the second hinge plate, the second plate coupling portion configured to be, at least partially, engaged in the space between the first protruding portion and the second protruding portion if the housing is unfolded, and to be disengaged from the space if the housing is folded.
A hinge is adapted to an electronic device having two screens. A base body of the hinge is mounted to a host base of the electronic device. The base body includes an operating portion and a linkage portion connected to each other. A first screen of the two screens is connected to the operating portion; a second screen of the two screens is connected to the linkage portion. The first screen rotates according to an operating part of the operating portion, and a driver assembly of the hinge simultaneously drives the operating portion and the linkage portion to rotate, so that the first screen and the second screen rotate simultaneously. By the simple hinge linkage structure design, the two screens rotate in opposite directions when being open, and may provide parallel slopes for viewing when being open to a preset open angle, thereby enhancing the convenience and smoothness of operation.
A display device includes a display panel; a first digitizer layer disposed on the display panel; a second digitizer layer disposed on the display panel and separated from the first digitizer layer; a first plate member disposed on the first digitizer layer; and a second plate member disposed on the second digitizer layer, wherein each of the first plate member and the second plate member includes a plurality of plate portions and one or more hinge portions configured to rotatably connect the plurality of plate portions to each other.
An example docking station includes a network interface controller. The network interface controller is to communicatively couple the docking station to a network. The docking station also includes a controller to manage the docking station. The docking station includes a hub communicatively coupled to the network interface controller and the controller. The hub is to communicatively couple to a computing device. The controller is to instruct the hub to use the computing device as a master based on the computing device being communicatively coupled to the hub and to instruct the hub to use the controller as the master based on the computing device not being communicatively coupled to the hub.
A head-mountable device can include a head securement element that provides limited flexibility while also providing adequate stiffness to reduce the effects of sagging components under their own weight. Such stiffness can help the forces be distributed evenly across the face. For example, rather than allowing excessive forces to weigh on the cheeks and/or nose of the user, certain types of stiffness about the head-mountable device can help distribute forces along the forehead of the user and/or other regions.
The present disclosure provides systems and methods for optimizing loading of solar inverters. A system may include a first solar module group, a second solar module group, a first inverter, a second inverter, and a switching system. The switching system can be configured to connect the first and second solar module groups in (i) a first position in which the first solar module group outputs energy to the first inverter and the second solar module group outputs energy to the second inverter, and, when a combined output of the first solar module group and the second solar module group is below a threshold percentage of a maximum output of the first inverter or the second inverter, (ii) a second position in which the first solar module group and the second solar module group output energy to the first inverter.
Disclosed herein are embodiments for providing altitude reporting. Some embodiments may include receiving a query from a first vehicle regarding altitude data of the first vehicle, providing the altitude data to the first vehicle, and receiving, by the computing device, a computed altitude from the first vehicle. Some embodiments include calculating an altitude uncertainty parameter for the first vehicle, determining a true altitude from the altitude data and the altitude uncertainty parameter, and determining whether the true altitude is within a predetermined threshold of a second altitude of a second vehicle. Some embodiments may be configured for, in response to determining that the true altitude is within the predetermined threshold, notifying at least one of the following: the first vehicle or the second vehicle.
A control method for a cleaning system, comprising the following steps: first control step—controlling a transfer robot to move a cleaning robot to a cleaning area; cleaning control step—controlling the cleaning robot to perform a cleaning operation on a upper surface of the cleaning area; second control step—controlling a transfer robot to move the cleaning robot away from the cleaning area.
According to one embodiment of the present disclosure, an industrial facility is provided comprising a tag layout and at least one ingress/egress zone. The tag layout comprises at least one double row of tags. The ingress/egress zone is located outside of an area of the vehicle travel plane occupied by the aisle path and is bounded in its entirety by the double row of tags, by two or more double rows of tags, by a combination of one or more double rows of tags and one more selected facility boundaries, or by combinations thereof. The double row of tags is arranged in an n×m matrix that is configured for successive detection of the inner and outer rows of tags that is dependent on the point-of-origin of a sensor transit path across the double row of tags. Additional embodiments are disclosed and claimed.
Provided are various systems and processes for improving last-mile delivery of real-time, on-demand orders for perishable goods. In one aspect, an automated vehicle (AV) comprises a body including a storage compartment for storing perishable goods. The storage compartment is accessible by a user upon authentication of the user. The AV further comprises a sensor module for receiving data for navigating the AV. The sensor module is positioned above the body on a support structure at a predetermined height above the ground, such as three to five feet. The data includes one or more of the following: audio data, video data, radio waves, and backscattered light waves. The AV further comprises an onboard computer system configured to process the data to navigate the AV along motor vehicle routes and pedestrian routes. The AV may be configured to interface with an automated locker system to retrieve or deposit the perishable goods.
A robotic device, including a tangible, non-transitory, machine readable medium storing instructions that when executed by a processor effectuates operations including: capturing, with the camera, one or more images of an environment of the robotic device; capturing, with the plurality of sensors, sensor data of the environment; generating or updating, with the processor, a map of the environment; identifying, with the processor, one or more rooms in the map; receiving, with the processor, one or more multidimensional arrays including at least one parameter that is used to identify a feature included in the one or more images; determining, with the processor, a position and orientation of the robotic device relative to the feature; and transmitting, with the processor, a signal to the processor of the controller to adjust a heading of the robotic device.
A light detection and ranging (LIDAR) device scans through a scanning zone while emitting light pulses and receives reflected signals corresponding to the light pulses. The LIDAR device scans the emitted light pulses through the scanning zone by reflecting the light pulses from an array of oscillating mirrors. The mirrors are operated by a set of electromagnets arranged to apply torque on the mirrors, and an orientation feedback system senses the orientations of the mirrors. Driving parameters for each mirror are determined based on information from the orientation feedback system. The driving parameters can be used to drive the mirrors in phase at an operating frequency despite variations in moments of inertia and resonant frequencies among the mirrors.
An example implementation includes (i) receiving sensor data that indicates topographical features of an environment in which a robotic device is operating, (ii) processing the sensor data into a topographical map that includes a two-dimensional matrix of discrete cells, the discrete cells indicating sample heights of respective portions of the environment, (iii) determining, for a first foot of the robotic device, a first step path extending from a first lift-off location to a first touch-down location, (iv) identifying, within the topographical map, a first scan patch of cells that encompass the first step path, (v) determining a first high point among the first scan patch of cells; and (vi) during the first step, directing the robotic device to lift the first foot to a first swing height that is higher than the determined first high point.
Aircraft guidance with transmitting beacons is disclosed. An example apparatus includes a transceiver of an aircraft to receive signals from deployed beacons, a signal analyzer to analyze the signals to determine distances of the respective beacons relative to the aircraft, and a position calculator to calculate a positional zone of the aircraft based on the distances.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for controlling spraying of chemicals by an unmanned aerial vehicle (UAV). An unmanned aerial vehicle system includes one or more processors configured to perform operations of autonomously performing a flight path by the UAV and dispersing a chemical by the UAV along portions of the flight path. The UAV may include a chemical spray system having one or more spray booms with multiple nozzles for dispersing a chemical. The chemical spray system may include one or more tanks attached to the body of the UAV and a pump fluidly connected to the tanks to disperse chemical via the spray booms.
Systems of an autonomous vehicle and the operations thereof are provided. Autonomous vehicles may rely on data inputs, processes, and output commands. Errors due to translation errors, failed or faulty equipment, connections, and other components may cause a dynamic vehicle path to approach a dynamic safe zone or vice versa. If so, a warning message may be sent and processed by the motion control system, when the vehicle is responding to commands correctly, or actuator control, when the vehicle is not responding to commands correctly. Should a safe zone be redrawn to exclude the vehicle's path, a failure message is sent to the appropriate system for mitigation.
Example embodiments relate to gradually adjusting a vehicle sensor perspective using remote assistance. A computing device may receive a request for assistance from a vehicle operating in an environment. The request indicates that the vehicle is stopped at a location with a sensor perspective of the environment that is at least partially occluded. Responsive to receiving the request for assistance, the computing device may display a graphical user interface (GUI) that represents a current state of the vehicle and includes a selectable option configured to enable the vehicle to gradually move forward a predefined distance. The computing device may detect a selection of the selectable option and transmit instructions that enable the vehicle to gradually move forward the predefined distance. The vehicle can then gradually move forward the predefined distance while also monitoring for one or more changes in the environment responsive to receiving the instructions.
An information collection system for industrial machines includes processing circuitry that communicates with one or more industrial machines that execute one or more predetermined processes with respect to an object, identify, based on predetermined information received from the one or more industrial machines, the one or more predetermined processes executed with respect to the object, and assigns process identification information related to the one or more predetermined processes to collected information related to the object collected from the one or more industrial machines.
A system to receive data representing agronomic responses based on randomized replicated treatments conducted in test plots of agronomic environments, aggregate the data representing the agronomic responses into subsets of the data representing the agronomic responses, each subset of the data representing the agronomic responses associated with one of a number of performance zones, receive characteristics associated with a portion of a field and determine that the portion of the field represents a particular performance zone of the number of performance zones based on the characteristics associated with the portion of the field, recommend a particularized treatment level for a crop located in the portion of the field based on the particular performance zone, and communicate the particularized treatment level to a machine, the particularized treatment level to be applied to the portion of the field by the machine to optimize an agronomic response based on the particular performance zone.
This specification describes systems, methods, devices, and other techniques for planning workspaces for automated fabrication processes. A computing system facilitates planning by receiving a set of parameters for planning a layout of a workspace for an automated fabrication process, and generating a plurality of candidate workspace layouts, including selecting, for each candidate workspace layout, (i) one or more robots for performing tasks in the automated fabrication process and (ii) corresponding locations for the one or more robots within the workspace. The system determines an optimal workspace layout based on the plurality of candidate workspace layouts, generates a workspace layout specification for the optimal workspace layout, and provides the workspace layout specification to one or more second computing systems.
A drive controller controls an electric drive of an electric machine receiving electric energy via a converter. The drive controller has a normal operating mode and a special operating mode. In the special operating mode, the drive controller determines control signals for the converter and rotates the rotor shaft first at a starting rotational speed. The rotor shaft then coasts without an applied external force, with the drive controller determining from raw signals continuously received from a position sensor raw positions of the rotor shaft, and determining therefrom correction variables for use in the normal operating mode. In the normal operating mode, the drive controller determines from continuously received raw signals in combination with the correction variables determined in the special operating mode an actual position of the rotor shaft and controls the converter with control signals based on the actual position or rotational speed of the electrical machine.
Disclosed herein are techniques for efficiently providing controller data as part of a maintenance or update process. Techniques include receiving, from a first remote computing device, a message associated with at least one controller; extracting, based on the received message, an image of software associated with the at least one controller; accessing, based on the extracted image, a delta file; and transmitting the accessed delta file to a second remote computing device.
In an embodiment, a rapid response system includes a manager coupled to one or more sensors and one or more controls. The one or more sensors includes a camera-sensor based detector of airborne pathogenic biological particles. Settings of the one or more controls influence a rate of a growth or lifecycle of biological pathogens. The manager rapidly responds to sensor detection of airborne pathogenic biological particles by influencing the rate of growth or lifecycles of biological pathogens via modification of control settings.
A method and apparatus for controlling power production. In one embodiment, the method comprises determining a predicted weather event; determining a predicted power production impact for a distributed generator (DG) array based on the predicted weather event; and controlling power production from one or more components of the DG array to compensate for the predicted power production impact.
An image forming apparatus includes a casing, a toner cartridge, and a process cartridge. The toner cartridge detachably attached to the casing stores toner therein. The process cartridge detachably attached to the casing includes a developing unit and a drum unit. The developing unit includes a developer roller and a toner conveyer tube. The toner conveyer tube has a first opening, through which the toner from the toner cartridge is acceptable into the toner conveyer tube while the toner cartridge and the process cartridge are attached to the casing. The drum unit includes a photosensitive drum supporting the toner conveyer tube by contacting a circumferential surface of the toner conveyer tube. The developing unit is pivotable with respect to the drum unit with the toner conveyer tube and the drum unit being slidable on each other.
A sheet conveying device includes an abutment that abuts on a sheet conveyance path through which a sheet is conveyed. A holder supports the abutment and pivots to move the abutment between an abutting position where the abutment abuts on the sheet conveyance path and a retracted position where the abutment retracts from the sheet conveyance path. A biasing member applies a biasing force to the abutment. The biasing force moves the abutment from the retracted position toward the abutting position. A restrictor restricts motion of the abutment against the biasing force at the abutting position. An adjuster adjusts the biasing force applied to the abutment situated at the abutting position.
In an image forming apparatus capable of turning over a sheet to form images on both sides of the sheet, when duplex printing is executed successively on three or more sheets, a controller causes a first sheet conveyed from an image forming unit and a second sheet conveyed from the image forming unit to be guided into a first path by positioning a guide member in a first position, and then conveyed into a third path by a first roller, and causes a third and subsequent sheets conveyed from the image forming unit to be guided into a second path by positioning the guide member in a second position, and then conveyed into the third path by a second roller.
An image forming apparatus includes an image forming unit configured to form an image on an image carrier, a transfer unit configured to transfer the image from the image carrier to a sheet, a reader configured to read a pattern image on the sheet while conveying the sheet, a sensor configured to measure a measuring image on the image carrier, and a controller configured to control the image forming unit to form the pattern image and the measuring image while forming images on a plurality of sheets, control the reader to read the pattern image, control the sensor to measure the measuring image, and generate an image forming condition based on a result of reading the pattern image by the reader and a result of measuring the measuring image by the sensor.
An image forming apparatus may include a photosensitive member, a developing device including a developing roller, pressing members configured to engage with the developing device and springs configured to urge the pressing members. In some examples, each of the pressing members may be configured to contact and move the developing device between various positions based on the urging of the springs. Additionally or alternatively, various ends of a contact surface of the developing roller configured to contact developer may be disposed relative to an axis line of the developing roller and pressing surfaces of the pressing members.
A substrate processing system includes: a measuring unit provided detachably with respect to a placement portion of a placement stage; a measuring jig for measuring a processing liquid; a liquid processing unit including a supplier which supplies the processing liquid to the measuring jig; a transfer mechanism for transferring the measuring jig between the measuring unit and the liquid processing unit; and a controller. The controller executes: a process of transferring the measuring jig in the measuring unit from the measuring unit to the liquid processing unit; a process of ejecting the processing liquid from the supplier to the measuring jig; a third process of transferring the measuring jig from the liquid processing unit to the measuring unit; and a fourth process of calculating an ejection amount of the processing liquid based on a measurement value in the measuring unit.
Provided are an integrated super-resolution laser direct-writing device and a direct-writing method. The integrated super-resolution laser direct-writing device includes a first continuous laser, a first optical fiber coupler, a mono-mode optical fiber, a second continuous laser, a second optical fiber coupler, a first annular photonic crystal fiber, a bifurcated optical fiber, a lens group, a first dichroic mirror, an LED light source, a lens, a second dichroic mirror, an auto-focusing module, a third dichroic mirror, a third optical fiber coupler, a square-law graded index fiber, a nanometer displacement table, a second lens, a CMOS camera and a control system. According to the present invention, an original large direct-writing device based on a free optical path can achieve optical fibers of key devices and integration of systems and can be better applied to the field of laser direct-writing.
A photomask assembly may be formed such that stress relief trenches are formed in a pellicle frame of the photomask assembly. The stress relief trenches may reduce or prevent damage to a pellicle that may otherwise result from deformation of the pellicle. The stress relief trenches may be formed in areas of the pellicle frame to allow the pellicle frame to deform with the pellicle, thereby reducing the amount damage to the pellicle caused by the pellicle frame.
A reflective mask includes a substrate, a reflective multilayer disposed on the substrate, a capping layer disposed on the reflective multilayer, and an absorber layer disposed on the capping layer. The absorber layer includes one or more alternating pairs of a first Cr based layer and a second Cr based layer different from the first Cr based layer.
A method for inspecting a reticle including a reflective layer on a reticle substrate is provided. The method may include loading the reticle on a stage, cooling the reticle substrate to a temperature lower than a room temperature, irradiating a laser beam to the reflective layer on the reticle substrate, receiving the laser beam using a photodetector to obtain an image of the reflective layer, and detect a particle defect on the reflective layer or a void defect in the reflective layer based on the image of the reflective layer.
Devices disclosed herein feature a Wide camera with a Wide field of view (FOVw), a folded Tele camera with a Tele field of view (FOVT) smaller than the FOVw and including an optical path folding element (OPFE). The device may be configured to rotate the OPFE to thereby shift FOVT relative to FOVw in response to recognition of an object or subject of interest detected in FOVw or FOVT. The device can have high resolution in this overlapping FOV either by fusing the Wide and Tele images or by capturing and saving the Tele image.
A liquid crystal display device with a high aperture ratio is provided. A liquid crystal display device with low power consumption is provided.
The display device includes a display portion and a driver circuit portion. The display portion includes a liquid crystal element, a first transistor, a scan line, and a signal line. The driver circuit portion includes a second transistor. The liquid crystal element includes a pixel electrode, a liquid crystal layer, and a common electrode. Each of the scan line and the signal line is electrically connected to the first transistor. The scan line and the signal line each include a metal layer. The structure of the first transistor is different from that of the second transistor. The first transistor is electrically connected to the pixel electrode. The first transistor includes a first region connected to the pixel electrode. The pixel electrode, the common electrode, and the first region have a function of transmitting visible light. Visible light passes through the first region and the liquid crystal element and is emitted to the outside of the display device.
Provided is a head-up display including a liquid-crystal panel including a display screen, a Fresnel lens which is on an opposite side of the liquid-crystal panel from the display screen, a light-diffusion member between the liquid-crystal panel and the Fresnel lens, a backlight emitting light toward the Fresnel lens, a heat sink accommodating the light-diffusion member, the backlight and the Fresnel lens, and a mirror that forms a virtual image corresponding to an image displayed on the display screen of the liquid-crystal panel, in a target space, where a surface of the Fresnel lens facing the backlight is uneven.
By increasing an interval between electrodes which drives liquid crystals, a gradient of an electric field applied between the electrodes can be controlled and an optimal electric field can be applied between the electrodes. The invention includes a first electrode formed over a substrate, an insulating film formed over the substrate and the first electrode, a thin film transistor including a semiconductor film in which a source, a channel region, and a drain are formed over the insulating film, a second electrode located over the semiconductor film and the first electrode and including first opening patterns, and liquid crystals provided over the second electrode.
A wavelength-tunable etalon includes a pair of substrates, each comprising a reflection layer, an electrode, and an alignment layer on opposing surfaces of the pair of substrates; a first seal line configured to seal liquid crystal between the pair of substrates; and a second seal line configured to divide a space in which the liquid crystal is sealed into a main liquid crystal accommodating space configured to pass laser and a sub-liquid crystal accommodating space provided external of the main liquid crystal accommodating space. The first seal line comprises a sub inlet configured to fluidly communicate the main liquid crystal accommodating space with the sub-liquid crystal accommodating space.
According to some aspects, a liquid crystal display panel comprising an electrode is provided. The electrode comprises a plurality of convex branch electrode portions arranged in a plane, the convex branch electrode portions being convex when viewed from a first direction perpendicular to the plane and extending from a central region of the electrode to a periphery of the electrode, and a plurality of concave branch electrode portions, the concave branch electrode portions being concave when viewed from the first direction, extending from the central region to the periphery and adjacent to convex branch electrode portions. According to some aspects, a method of applying a pretilt to molecules in a liquid crystal layer of a liquid crystal display panel by applying a voltage to the liquid crystal layer via first and second electrodes is provided.
According to one embodiment, a liquid crystal element includes a first transparent substrate, a second transparent substrate, and a first liquid crystal layer cured. The first liquid crystal layer contains first cholesteric liquid crystal and has a reflective surface which reflects first circularly polarized light having a first wavelength. A first helical axis of the first cholesteric liquid crystal is tilted in a uniform direction over an entire area of the first liquid crystal layer. Each of a first outer surface of the first transparent substrate and a second outer surface of the second transparent substrate forms an interface which totally reflects the first circularly polarized light reflected in the first liquid crystal layer.
A display panel, a display module, and a display device are provided. The display panel includes a base substrate, a plurality of pixel units, and a liquid crystal layer. A pixel electrode of each pixel unit includes a trunk electrode, and first branch electrodes and second branch electrodes disposed on both sides of the trunk electrode, respectively. Each pixel unit is divided into a first sub-region and a second sub-region by the trunk electrode. The liquid crystal layer includes a first liquid crystal region and a second liquid crystal region corresponding to the first sub-region and the second sub-region.
A display device includes: a plurality of first electrodes arranged in a display region for displaying an image; a second electrode opposed to the first electrodes; a plurality of switching elements that are arranged in the display region and coupled to the first electrodes or the second electrode; a gate line for supplying a scanning signal for scanning the switching elements; a data line for supplying a signal to the switching elements that are coupled to the switching elements; and conductive wire that is opposed to the second electrode via an insulating layer and is coupled to the switching elements.
An optical element including a plate-shaped substrate with a light-entrance surface and a light-exit surface, a multiplicity of imaging elements formed on the light-exit surface and a multiplicity of diaphragms formed on the light-entrance surface. Each diaphragm includes a transparent geometric region in an opaque region. The optical element can be switched between two operating modes B1 and B2 such that some of the imaging elements change their focal length between values f1 and f2 and/or, some of the diaphragms change their aperture width and/or their position. Exactly one diaphragm is associated with each imaging element in mode B1 so that light passing through the diaphragm is imaged or collimated by the associated imaging element. Consequently, light arriving in the optical element through the diaphragms and then through the light-entrance surface has, after passing through the associated imaging elements in the two operating modes B1 and B2, different propagation angles.
A spacer device for spectacles maintains the pair of arms of the frame spaced apart from each other with respect to the front of the frame when they are folded in a closing manner. The device includes a spacer member having a thickness defined between a pair of opposing surfaces, the member extending in a main direction, between a pair of opposing faces, which contact with the front mount of the frame and the arm of the pair of arms which is folded last onto the mount, respectively. A channel extends transversely to the main direction and is provided in a position between the faces, the channel delimited by a pair of walls which face each other in a mutually spaced apart relationship and are connected at an end thereof to a base surface of the channel.
A goggle may include a goggle frame and a lens assembly that may be removably coupled by magnetic materials and a latch mechanism. The latch mechanism may couple the goggle frame to the lens assembly by mechanically engaging latch components. The latch mechanism may couple the goggle frame to the lens assembly by magnetically coupling latch components. Latch components may be included with the lens assembly and the goggle frame. The goggle frame may include an elastomer face gasket. The goggle frame may include outriggers fixedly coupled to the face gasket. The lens assembly may include an elastomer lens frame.
Systems and methods for regulating the speed of movement of virtual objects presented by a wearable system are described. The wearable system may present three-dimensional (3D) virtual content that moves, e.g., laterally across the user's field of view and/or in perceived depth from the user. The speed of the movement may follow the profile of an S-curve, with a gradual increase to a maximum speed, and a subsequent gradual decrease in speed until an end point of the movement is reached. The decrease in speed may be more gradual than the increase in speed. This speed curve may be utilized in the movement of virtual objections for eye-tracking calibration. The wearable system may track the position of a virtual object (an eye-tracking target) which moves with a speed following the S-curve. This speed curve allows for rapid movement of the eye-tracking target, while providing a comfortable viewing experience and high accuracy in determining the initial and final positions of the eye as it tracks the target.
Systems and methods are disclosed that include a video processing system associated with a vehicle. The video processing system receives video data from at least one camera mounted to the vehicle, the video data representing an external scene, receives motion data, a virtual gaze direction of viewing of the external scene and a direction of facing of a head of a user. The video data is transformed based at least on a disparity between the virtual gaze direction and the direction of facing and based on the motion data. The transformed video data is displayed on a display device of the user.
An augmented reality (AR) device includes a frame and multiple front facing cameras connected with the frame. A first electrochromic material is connected with the frame, removably connected to a power source, and disposed over the multiple front facing cameras. AR display circuitry is connected to the frame and the power source. A mode state of the AR device is modified based on a detected do-not-record permission.
Head-mountable devices can include adjustment mechanisms to achieve optimal alignment of optical components during and/or after assembly thereof within the head-mountable device. The alignment mechanisms can be integrated into the head-mountable device itself. A light projecting display element can be adjustable based on movement of ramp members within the head-mountable device (e.g., within an arm) to adjust an orientation of the light projecting display element relative to the waveguide onto which it projects light. Alignment can be verified based on the optical output of the display element. The adjustment mechanisms can adjust the display element during initial assembly and/or be operated by actuators that actively adjust the alignment as needed over time.
A head mounted display displays an image in a user's view field and includes a projection unit projecting image light from an image display unit; and a first and second light guide plates that duplicate the image light from the projection unit. The first and second light guide plates each include a set of parallel main surfaces confining the image light by internal reflection. The first light guide plate includes an incident surface reflecting the image light inward, and two or more emission reflective surfaces emitting the image light to the second light guide plate. The incident and emission reflective surfaces are parallel to each other at an angle different from the main surface, and the second light guide plate includes an input unit coupling the image light from the first light guide plate inward, and an output unit emitting the image light to the user's pupil.
The disclosure describes artificial reality (AR) systems and techniques that enable a change in focus of virtual image content without substantially changing magnification of real-world content. For example, an AR system includes a virtual image content output device, a first tunable lens on a real-world side of the virtual image content output device, a second tunable lens on an eye side of the virtual image content output device, and at least one compensating lens. The at least one compensating lens is configured to substantially eliminate magnification changes of real-world light between a real-world end of the optical system and an eye-side end of the optical system as a focal power of at least one of the first tunable lens or the second tunable lens changes.
Optical systems and methods for operation thereof are disclosed. A delimited zone is defined as a function of distance from the optical system based on a VAC limit, the delimited zone having at least one distance threshold. A virtual distance of a virtual depth plane from the optical system at which a virtual object is to be displayed is determined. It is determined whether the virtual distance is outside the delimited zone by comparing the virtual distance to the at least one distance threshold. A collimated pixel beam associated with the virtual object is generated by a projector of the optical system. The collimated pixel beam is modified to generate a modified pixel beam if the virtual distance is outside the delimited zone. Modifying the collimated pixel beam includes converging the collimated pixel beam and/or reducing a diameter of the collimated pixel beam.
A micro-electro-mechanical system (MEMS) device may include a mirror structure suspended from a first hinge and a second hinge that are arranged to enable the mirror structure to be tilted about a tilt axis. The mirror structure may include a first actuator and a second actuator located on opposite sides of the tilt axis. The MEMS device may include a fixed electrode coupled to first actuator to cause the mirror structure to tilt about the tilt axis in a first direction based on a fixed voltage applied to the fixed electrode. The MEMS device includes a driving electrode coupled to the second actuator to cause the mirror structure to tilt about the tilt axis in a second direction opposite from the first direction based on a driving voltage applied to the driving electrode.
Single fold optical systems that include a power prism and a lens stack including two or more refractive lens elements. The single fold optical system may provide a long mechanical back focus without increasing the Z-height of the optical system. Providing power on the prism may reduce the optical total length and reduce the X-length of the optical system. The single folded optical systems may provide reduced Z-axis height and reduced X-axis length when compared to conventional double folded optical systems with similar optical characteristics. In addition, the optical systems may include an anamorphic lens that is oriented to correct for astigmatism caused by surface errors of the reflective surface of the prism.
This disclosure discloses an optical imaging lens assembly, sequentially arranged from an object side to an image side along an optical axis, comprising: the first lens element with positive refractive power, the second lens element with negative refractive power having a convex object-side surface and a concave image-side surface, the third lens element with positive refractive power, the fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, the fifth lens element with refractive power having a concave image-side surface, and both object-side surface and image-side surface being aspheric, wherein a stop and an image sensor disposed on an image plane are also provided. By such arrangements, the image pickup optical system satisfies conditions related to shorten the total length and to reduce the sensitivity for use in compact cameras and mobile phones with camera functionalities.
An optical imaging system for pickup, sequentially arranged from an object side to an image side, comprising: the first lens element with positive refractive power having a convex object-side surface, the second lens element with refractive power, the third lens element with refractive power, the fourth lens element with refractive power, the fifth lens element with refractive power; the sixth lens element made of plastic, the sixth lens with refractive power having a concave image-side surface with both being aspheric, and the image-side surface having at least one inflection point.
An optical imaging system includes a first lens having positive refractive power, a second lens having negative refractive power, a third lens having negative refractive power, a fourth lens having a refractive power, a fifth lens having negative refractive power, and a sixth lens having a refractive power and a convex image-side surface. The first lens to the sixth lens are sequentially disposed from the object side to an imaging plane. An expression 0.7
An embodiment comprises: a housing supporting a first coil; a bobbin supporting a magnet, the bobbin being moved inside the housing in a first direction, which is parallel with an optical axis, by an electromagnetic interaction between the magnet and the first coil; an elastic member coupled to the bobbin and to the housing; a first circuit board electrically connected to the elastic member; a second circuit board arranged below the housing; a second coil arranged on the second circuit board; and a support member electrically connecting the first circuit board and the second circuit board or electrically connecting the elastic member and the second circuit board.
An embodiment comprises: a housing a bobbin disposed inside the housing, and having a lens disposed thereon; a first coil disposed at the outer circumferential surface of the bobbin; a first magnet disposed at a size part of the housing in correspondence to the first coil; a first position sensor disposed in the bobbin, and including first and second input terminals and first and second output terminals; a circuit board including first and second terminals electrically connected to the first and second output terminals of the first position sensor; and a capacitor connected in parallel to the first and second terminals of the circuit board so as to remove noise from the output of the first position sensor.
An imaging lens assembly includes a plastic barrel and a lens set, and the lens set is disposed in the plastic barrel. The plastic barrel includes an object-side outer surface, a first inner surface and a second inner surface. The lens set has an optical axis, and includes, in order from an object side to an image side thereof, at least one plastic lens element and a spacer. A light-absorbing coating is disposed on the plastic lens element. The spacer includes an object-side connecting surface and a relative surface. When the object-side connecting surface is connected with a neighboring object-side optical element, the relative surface is out of touch with the neighboring object-side optical element. There is an overlap between the second inner surface and the relative surface along a direction parallel to the optical axis.
Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a subunit having a first interior surface and a first exterior surface. The first interior surface defines a central bore along a longitudinal axis of the optical fiber cable. At least one optical fiber is disposed within the central bore of the subunit, and a plurality of strengthening yarns is disposed around the subunit. A cable sheath disposed around the plurality of strengthening yarns. The cable sheath has a second interior surface and a second exterior surface. The second exterior surface defines an outermost surface of the optical fiber cable. The cable sheath includes from 55% to 68% by weight of a mineral-based flame retardant additive and from 35% to 45% by weight of a polymer blend. The polymer blend includes a co-polyester or co-polyether and a polyolefin or a polyolefin elastomer.
A cable assembly including a tracer conduit and one or more data transmission conduits. Physically separable proximal and/or distal portions of the data transmission conduit(s) and the tracer conduit are held together by a sleeve. In some examples the sleeve is axially and radially expandable and collapsible multiple times. In some examples, the tracer conduit transmits a visible laser light signal that can be observed after it radially diffuses through the sleeve.
An opto-mechanical assembly includes a first thermal control element disposed on a region of a first section of an enclosure; a second thermal control element disposed on a region of a second section of the enclosure; and an optical element that includes a first portion and a second portion. The first thermal control element is configured to heat the first portion of the optical element and to cause the first portion of the optical element to be associated with a first temperature, and the second thermal control element is configured to heat the second portion of the optical element and to cause the second portion of the optical element to be associated with a second temperature. This causes a difference between the first temperature and the second temperature to satisfy a temperature difference threshold. Accordingly, this also causes a temperature gradient along an axis of the optical element to satisfy a temperature gradient threshold.
A photonics transceiver is described herein, wherein the photonics transceiver exhibits improved areal bandwidth density and improved energy per bit consumption relative to conventional photonics transceivers. The photonics transceiver achieves an areal bandwidth density of at least 5 Tbps/mm2 with an energy consumption of less than 500 fJ/bit (sum of energy consumed for both a transmitted bit and a received bit). The photonics transceiver is a multi-chip module, where chips in the multi-chip module are tightly integrated with one another. The multi-chip module includes light source, photodetector, photonics, and control/logic chips. The photonics chip includes transparent conducting oxide integrated optical modulators and multiplexers and demultiplexers based on MEMS-tunable optical ring resonators.
Compact ASIC, chip-on-board, flip-chip, interposer, and related packaging techniques are incorporated to minimize the footprint of optoelectronic interconnect devices, including the Optical Data Pipe. In addition, ruggedized packaging techniques are incorporated to increase the durability and application space for optoelectronic interconnect devices, including an Optical Data Pipe.
A combination of an adapter panel and at least one two-piece fiber optic adapter includes an adapter panel having a first side and a second side, the adapter panel having a window extending between the first side and the second side, the adapter panel having a thickness and a two-piece fiber optic adapter formed by joining a first piece to a second piece via a latching mechanism, each of the first piece and second piece having a longitudinal opening to receive fiber optic connectors from either side of the adapter panel. The latching mechanism is positioned at least partially within the window and the thickness of the adapter panel.
An in-plane photonic device is provided for transmission of an optical signal across a gap, in particular an in-plane photonic device for use in a photonic integrated circuit with one or more in-plane crossings of electrical connections and photonic waveguides. One embodiment relates to an in-plane photonic device for use in a photonic integrated circuit with in-plane crossings of electrical connections and photonic waveguides, including: at least one input optical waveguide; and at least one output optical waveguide; wherein the at least one input optical waveguide and the at least one output optical waveguides are positioned such that a gap between them separates the input and the output optical waveguide(s), and wherein the input and the output optical waveguides are configured for optical mode matching across the gap, such that an optical signal can be transmitted from the input optical waveguide to the output optical waveguide across the gap.
A display device includes a liquid crystal module (10, 20, 30) including a display panel (10) and a light emitting unit (20) that illuminates the display panel (10). The light emitting unit (20) includes a support substrate (24) that is disposed to face the display panel (10), a light guide member (21) that is provided between the display panel (10) and the support substrate (24), and has a first end surface (213) and a second end surface (214), a light source (22) that is disposed to face the first end surface (213), and a holding member (25) that is provided between the display panel (10) and the support substrate (24) along an outer edge of the support substrate (24), and has a facing surface joined to the second end surface (214). This display device has a structure suitable for a thin profile.
According to an embodiment, an illumination device includes a light guide having a first plane, a second plane opposed to the first plane and substantially parallel to the first plane, and a tilted plane opposed to the first plane and tilted to the first plane, the tilted plane and the second plane being arranged in a first direction, and a light emitting device including a first light emitting part, a second light emitting part, and a third light emitting part which are located directly below the tilted plane, arranged in the first direction, and configured to emit light having wavelengths different from each other.
There is provided a display device exhibiting a good color reproducibility, even when observed through polarized sunglasses. A display device comprises a polarizer a and an optical film X on a surface on a light emitting surface side of a display element, wherein L1, which is the light incident vertically on the optical film X, among light incident on the optical film X from the display element side, satisfies a specific condition, and L2, which is the light emitting vertically from the light emitting surface side of the optical film X, and passing through a polarizer b having the absorption axis parallel to the absorption axis of the polarizer a, satisfies a specific condition.
A test device for the irradiation of products which are fed into a housing along at least two tracks. At least one separate sensor is provided for each track in order to separately monitor the arrival at a target position selected individually for each track preferably within the housing of the test device.
This present disclosure provides a multi-ply radiation dosage indicator, which includes a first ply having two visible readable indicia thereon. The dual radiation sensitive zones are capable of changing opacity in response to exposure radiation. Each radiation sensitive zone can respond to an irradiation dose in tandem or independent of one another. Once the radiation sensitive zone exceeds the design exposure threshold, the visibility of the indicia is altered thereby providing an indication of irradiation exposure. The radiation sensitive zone may either be transparent or opaque and can change its opacity in response to exposure to radiation exceeding a predetermined threshold so as to change the visibility of the indicia.
A method, apparatus, and system for determining whether all extrinsic matrices are accurate is disclosed. A plurality of post-LIDAR fusion point clouds that are based on simultaneous outputs from a plurality of LIDAR devices installed at one ADV are obtained. The obtained plurality of point clouds are filtered to obtain a first set of points comprising all points in the plurality of point clouds that fall within a region of interest. Each point in the first set of points corresponds to one coordinate value on the axis in the up-down direction. A distribution of the first plurality of coordinate values is obtained. A quantity of peaks in the distribution of the first plurality of coordinate values is determined. Whether all extrinsic matrices associated with the plurality of LIDAR devices are accurate is determined based on the quantity of peaks in the distribution of the first plurality of coordinate values.
A LIDAR system, preferably including one or more: optical emitters, optical detectors, beam directors, and/or processing modules. A method of LIDAR system operation, preferably including: determining a signal, outputting the signal, receiving a return signal, and/or analyzing the return signal.
Aspects of the present disclosure involve systems, methods, and devices for autonomous vehicle localization using a Lidar intensity map. A system is configured to generate a map embedding using a first neural network and to generate an online Lidar intensity embedding using a second neural network. The map embedding is based on input map data comprising a Lidar intensity map, and the Lidar sweep embedding is based on online Lidar sweep data. The system is further configured to generate multiple pose candidates based on the online Lidar intensity embedding and compute a three-dimensional (3D) score map comprising a match score for each pose candidate that indicates a similarity between the pose candidate and the map embedding. The system is further configured to determine a pose of a vehicle based on the 3D score map and to control one or more operations of the vehicle based on the determined pose.
An object detection device includes: a wave receiver that receives a reflected wave generated by reflection, by an object, of a transmission wave incident on the object; a determination section that determines whether, in a change over time in an amplitude of the reflected wave received by the wave receiver, an amplitude of a falling portion is greater than a predetermined criterion, the amplitude of the falling portion being decreased after the amplitude has reached a maximum value; and a processing section that, on the basis of a determination by the determination section that the amplitude of the falling portion is greater than the predetermined criterion, performs a process in which the object is treated as an object to be avoided.
A method for detecting a horizontally buried linear object is provided, the horizontally buried linear object having a longitudinal extension. The method comprises moving, with a flying platform comprising a radar for synthetic aperture radar, SAR, vertical imaging, along a trajectory corresponding to a synthetic aperture. The method further comprises transmitting and receiving radar signals while moving along the trajectory corresponding to the synthetic aperture. The method also comprises forming a SAR image based on collected data representing radar signal reflections received from the ground. The method additionally comprises detecting one or more features in the formed SAR image relating to the horizontally buried linear object. Said trajectory is oriented in a direction substantially perpendicular to an expected orientation of the longitudinal extension of the horizontally buried object and traversing the horizontally buried object.
A filter circuit for an imaging device including a probe configured to propagate an ultrasonic wave through an object includes a diode bridge configured to receive, from a transducer of the probe, a composite signal that includes a test signal and a reflected signal. The reflected signal corresponds to reflected waves sensed by the transducer in response to the ultrasonic wave propagated through the object. The diode bridge is further configured to block the test signal from the composite signal and pass the reflected signal. The filter circuit further includes an output node configured to output the reflected signal and a first node and a second node that connect the diode bridge to a bias voltage. The bias voltage causes a bias current to flow from the first node to the second node through the diode bridge.
A radar-data collection system a radar, a camera, and a controller-circuit. The radar and the camera are intended for mounting on a host-vehicle. The radar is configured is to indicate a radar-profile of an object detected by the radar. The camera is configured to render an image of the object. The controller-circuit is in communication with the radar and the camera. The controller is configured to determine an identity of the object in accordance with the image, and annotate the radar-profile in accordance with the identity.
A method for processing coherent MIMO radar processing DDMA waveforms includes: generating waveforms on transmitters, the waveforms, modulo the pulse repetition frequency, being identical from one transmitter to the next, to within a phase ramp specific to each transmit path; generating, for at least one receiver, a Range-Doppler representation of echoes of transmitted waveforms, where, for each receiver, echoes of a transmitter occupy at least one frequency cell in the Doppler spectrum, each signal band specific to a transmitter, placement of the signal bands in the Doppler spectrum being determined by phase ramp applied to each transmitter, the waveforms generated to leave a portion of Doppler spectrum between two signal bands unoccupied; identifying the transmitter corresponding to each signal band, due to Range-Doppler representation of echoes of transmitted waveforms. The method is suitable for the millimetre band, automotive or aircraft radar, for detection of target relative to the carrier.
A system for augmenting 360-degree aspect monostatic radar cross section of an aircraft. The system may comprise a pair of pods mountable on opposing wing tips of an aircraft and each having a pod housing with an elongate body tapering forwardly to a nose and rearwardly to a tail. Each pod may comprise a forward SDL disposed within the nose, a rear SDL disposed within the tail, and a pair of mid-body SDLs disposed within a mid-section of the pod housing. The SDLs may be arranged within the pods to reflect radiation and provide coverage around the aircraft over a region of about 360 azimuth degrees. Each SDL may comprise radar absorbing material located on an interior reflective surface, and portions of the elongate bodies may be constructed of radome material. The SDLs may be Luneburg lens having diameters of at least approximately 8-inches.
In one embodiment, an MRI apparatus includes: a current-driven magnet configured to generate a magnetic field that predominantly determine a magnetic resonance frequency; a detector configured to detect a position of an object to be imaged in a movable state in the magnetic field; and control circuitry configured to set an imaging region of the object depending on a motion of the object by controlling a drive current of the current-driven magnet based on the detected position of the object.
Examples of an electronic device are described. In some examples, the electronic device includes a first shared line of a plurality of first contacts to respectively connect to a plurality of integrated circuits, a plurality of second lines of respective second contacts to respectively connect to the plurality of integrated circuits, and a third shared line of a plurality of third contacts to respectively connect to the plurality of integrated circuits. In some examples, the electronic device includes circuitry to determine whether one of the third contacts is connected to an integrated circuit based on a state of the first shared line and a state of one of the second lines that is associated with the one of the third contacts.
A thermal conditioning device (100) is proposed, wherein a process heat-conductive fluid (110) is caused to circulate in a plurality of extensible elements (105); a pressure of the process heat-conductive fluid (110) is regulated to lengthen the extensible elements (105) so that they are pressed against corresponding electronic devices under test (205) for conditioning them thermally. A test apparatus (200) comprising this thermal conditioning device (100) is also proposed. Moreover, a corresponding method for condition electronic devices under test (105) thermally and a corresponding method for testing electronic devices (205) are proposed.
A test control port (TCP) includes a state machine SM, an instruction register IR, data registers DRs, a gating circuit and a TDO MX. The SM inputs TCI signals and outputs control signals to the IR and to the DR. During instruction or data scans, the IR or DRs are enabled to input data from TDI and output data to the TDO MX and the top surface TDO signal. The bottom surface TCI inputs may be coupled to the top surface TCO signals via the gating circuit. The top surface TDI signal may be coupled to the bottom surface TDO signal via TDO MX. This allows concatenating or daisy-chaining the IR and DR of a TCP of a lower die with an IR and DR of a TCP of a die stacked on top of the lower die.
Provided are a device and a method for monitoring substrates to determine a processed state of the substrates and inspecting presence of abnormality in the processed substrates.
A device for inspecting substrates includes a substrate mounting part moving relative to the substrate and for mounting a substrate, a measurement part for monitoring the substrate, a control part configured to control a movement path of the measurement part so that at least some regions are monitored from positions different from each other with respect to a plurality of substrates, and an analysis part configured to determine presence of abnormality from monitoring information about the plurality of substrates.
The present disclosure provides a detection system that includes a first sensing device configured for sensing an acoustic wave and an electromagnetic wave and generating a first combined signal and a signal processing device configured to determine the occurrence and properties of an electrical discharge.
One embodiment includes an electrometer system. The system includes a sensor cell comprising alkali metal atoms within, and a probe laser configured to generate a probe beam, the probe beam being provided through the sensor cell. The system also includes a coupling laser configured to generate a coupling beam. The coupling beam can be provided through the sensor cell to combine with the probe beam provided through the sensor cell to provide a Rydberg energy state of the alkali metal atoms, the probe beam exiting the sensor cell as a detection beam. The system further includes a sensor control system configured to monitor the detection beam to detect an external signal based on monitoring a phase of the detection beam.
An integrated circuit includes a first circuit and a power meter coupled to the first circuit at selected proxy locations. The power meter includes circuitry for generating toggle data, such as signal transitions or signal levels, from signals at the proxy locations and combiner circuitry for combining the toggle data in a first time window with a set of weight value to produce a measure of power usage in the first circuit. The proxy locations and weight values are selected automatically based on simulated or emulated signals from a larger set of locations in the first circuit and associated power usage in the first circuit.
A current sensor is configured to detect a current flowing through an electrical conductor. The current sensor includes a core and a coil wound around the core. The core has a hollow configure to allow the electrical conductor to pass through the hollow. The core substantially has a C-shape haying a gap connected to the hollow. At least a part of the gap of the core is located inside the coil. This current sensor suppresses the influence of external noise.
Immobilising isolated mycolic acid antigens of tuberculous mycobacterial origin or a synthetic analogue thereof on a screen-printed electrode by binding of the antigens to a self-assembled monolayer comprising a thiolated hydrophobic substance to produce immobilized mycolic acids antigens in the form of a mycolic acid antigen-containing self-assembled monolayer coating on a surface of the electrode.
This invention resides in using metal complex-activated particles to bind molecules, polymers and other particles to each other, so as to produce multifunctional conjugates having controlled ratios of two or more different molecules.
Components, systems, and methods for gas sensing identification are generally disclosed. In some embodiments, a characteristic of an article (e.g., identity, authenticity, property, product associated information such as age or quality, etc.) may be determined by determining the presence (e.g., an amount) or absence of a chemical compound (or compounds) emanating from the article. For example, the presence or absence of the compound (or compounds) emanating from the article identifies a characteristic of the article. In some embodiments, the chemical compound(s) has been proactively added to the article. That is to say, in some embodiments, the chemical compound is not inherently associated with the article but is added in order to, for example, identify a characteristic of the article.
The present disclosure relates generally to detection of molecular biomarkers in a sample or diagnosis of a subject based upon detection or quantification of molecular biomarkers in a sample, specifically to the identification and use of biomarkers for pancreatic cysts.
The present invention relates to compositions and methods use in designing immunoassay controls. In various aspects, the invention provides synthetic peptides comprising the sequence CPRRPYIL (SEQ ID NO: 1) or an analog thereof; ELAGLGFAELQC (SEQ ID NO: 4) or an analog thereof; and CDWRKNIDAL (SEQ ID NO: 8) or an analog thereof; specific binding reagents that bind to a CPRRPYIL (SEQ ID NO: 1), ELAGLGFAELQC (SEQ ID NO: 4) or CDWRKNIDAL (SEQ ID NO: 8) peptide; methods of producing such reagents; and assays utilizing such reagents to provide assay controls signals that are unrelated to the measurement of the analyte or analytes of interest in that no reagents used in the analyte assay(s) contribute to the control signal.
A microfluidic device capable of trapping contents in a manner suitable for high-throughput imaging is described herein. The microfluidic device may include one or more trapping devices, with each trapping device having a plurality of trapping channels. The trapping channels may be configured to receive contents via an inlet channel that connects a sample reservoir to the trapping channels via fluid communication. The trapping channels are shaped such that contents within the trapping channels are positioned for optimal imaging purposes. The trapping channels are also connect to at least one exit channel via fluid communication. The fluid, and contents within the fluid, may be controlled via hydraulic pressure.
A method for testing drug response of a cardiomyocyte, the method comprising: testing a response of the cardiomyocyte to an added drug in a culture medium under a condition in which a distance from a liquid surface of the culture medium to a bottom surface of a culture vessel contacted by the cardiomyocyte is 5.0 mm or less; or testing a response of the cardiomyocyte to an added drug immediately after placing the cardiomyocyte in a culture medium under a condition in which a distance from a liquid surface of the culture medium to a bottom surface of a culture vessel contacted by the cardiomyocyte is 5.0 mm or less.
Methods, systems, and computer-readable storage media for accurate time delay estimation using coherent averaging. A plurality of out-of-bracket acoustical impulses are generated in a pipe segment of a fluid distribution system. Signal data representing the acoustical impulses sensed at two locations along the pipe segment are recorded. Precise timings for the generation of the acoustical impulses are obtained, and the acoustical impulses in the signal data recorded from the first location are averaged based on the precise timings to produce a near-sensor average impulse. Similarly, the acoustical impulses in the signal data recorded from the second location are averaged based on the same precise timings to produce a far-sensor average impulse. A time delay between arrival of the plurality of out-of-bracket acoustical impulses at the first and second locations is estimated from the timing of the near-sensor average impulse and the far-sensor average impulse.
Embodiments of the present technology may allow for the analysis of molecules by tunneling recognition at a tunneling junction. A tunneling junction of the present technology can include an insulating layer between two electrodes. A voltage may be applied to the electrodes. When a molecule makes contact with both electrodes, the molecule allows current to tunnel through the molecule. The characteristics of the current may aid in identifying a portion of the molecule, for example, a particular nucleotide or base present in a nucleic acid molecule. Methods and systems for analysis of molecules are described.
Measurement unit for an ion-sensitive solid-state electrode, that serves to measure pH in a measurement solution, with a layered structure including an ion-sensitive glass layer with a first ring-shaped contact surface, an electrically conducting layer that directly or via at least one intermediate layer adheres to the ion-sensitive glass layer, and a substrate that adheres to the electrically conducting layer and is provided with a second ring-shaped contact surface; and with a holding member that is provided with a first ring-shaped sealing surface, a second ring-shaped sealing surface, and an annular section; wherein the first ring-shaped sealing surface is sealingly connected to the first ring-shaped contact surface, wherein the second ring-shaped sealing surface is connected to the second ring-shaped contact surface of the substrate, and wherein the first and second ring-shaped sealing surfaces of the holding member are sealingly connected by the annular section.
An electrochemical test sensor is adapted to receive a fluid sample including an analyte. The electrochemical test sensor includes a base. The base includes an enzyme adapted to react with the analyte. The electrochemical test sensor further includes a plurality of electrodes, a near field communication (NFC) tag chip, an analog front end (AFE) and a microcontroller.
A sample inspection apparatus includes a source of electromagnetic radiation, a beam former for producing a plurality of coaxial and substantially conical shells of radiation, a detection surface and a set of conical shell slot collimators. Each conical shell has a different opening angle. The detection surface is arranged to receive diffracted radiation after incidence of one or more of the conical shells upon the sample to be inspected. The set of conical shell slot collimators is provided at or close to the detection surface which each stare at different annular regions of different corresponding conical shells.
A method for measuring optical signal detector performance that includes directing light emitted from an optical signal detector onto a first non-fluorescent surface portion in a first detection zone of the optical signal detector. A first characteristic of light detected by a first sensor of the first optical signal detector is measured while the first non-fluorescent surface portion is in the first detection zone of the optical signal detector. Light emitted from the optical signal detector is directed into a first void in the first detection zone of the optical signal detector. A second characteristic of light detected by the first sensor of the optical signal detector is measured while the first void is in the first detection zone of the optical signal detector. And an operational performance status of the optical signal detector is determined based on at least one of the first characteristic and the second characteristic.
A detecting apparatus for use in specifying regions having different impurity concentrations in an ingot includes an ingot holding unit having a holding surface for holding the ingot thereon, an excitation light source for applying excitation light having a predetermined wavelength to a face side of the ingot held on the holding surface, and a photodetector for detecting fluorescence emitted from the ingot upon exposure to the excitation light and generating an electric signal representing a number of photons of only light whose wavelength is in an infrared radiation range, of the detected fluorescence.
A method of foreign object debris discrimination incudes illuminating particulates located within a sensing volume with a first electromagnetic radiation pulse emitted from a first source, and illuminating the particulates within the sensing volume with a second electromagnetic radiation pulse emitted from a second source, wherein the second electromagnetic radiation pulse has a second wavelength range within the terahertz (THz) regime. The first electromagnetic radiation returns and the second electromagnetic radiation returns are compared to determine a scattering ratio from the comparing step. The scattering ratio is then utilized to determine a resultant foreign object debris type of the solid objects.
Spectra matching is widely used in various applications including the search for a spectrum of an unknown or subject material, chemical, or compound in an existing spectral database and quality control by means of comparing the spectra of products with standards. New systems and methods are described for identifying an unknown compound by calculating the similarities of Fourier-transform infrared (FTIR) spectra of organic compounds. The systems and methods incrementally calculate the spectral similarity based on the local spectral shapes. This reduces the bias caused by uneven weighing of large or broader peaks. In addition, the new systems and methods tolerant to the common issues in spectra matching including baseline offset, baseline sloping, and deviations in wavenumber axis alignment, suggesting its robustness and practical applicability.
Exemplary embodiments are directed to a system for sampling sub-slab soil gas having an adaptor body that includes a first barbed portion, a collar portion, a second barbed portion, an internal cavity that axially passes through the length of the adaptor body, and a coupling portion. The system further includes one or more extensions such as a fitting extension, a filter extension, a sieve extension and a length extension, each of which are threadably retainable with the coupling portion of the adaptor body.
An apparatus to test, at home, the firmness of a sleep surface to be used by an infant is disclosed. The apparatus is based on the home version of the Australian/New Zealand Standard AS/NZS 8811.1:2013. The apparatus comprises two pieces, one piece is the support to hold a defined weight, and the other piece is used as a scale to visualize how much the piece with the weight sinks into the sleep surface.
An optical assembly for an analyzer instrument for analysis of elemental composition of a sample using optical emission spectroscopy includes: an exciter generating an excitation focused at a target position to produce optical emission from the sample; and an optical arrangement including a light collection arrangement transferring the optical emission from the target position to a detector assembly's detector interface. The light collection arrangement includes: an off-axis parabolic light collecting mirror including an aperture, a lens arrangement including converging and diverging axicon lens portions, the lens arrangement positioned so its optical axis is parallel to that of the light collecting mirror and intersects a surface of the light collecting mirror at the aperture, and an off-axis parabolic focusing mirror having its focal point at the detector interface, the optical axis of the lens arrangement being parallel to that of the focusing mirror and intersects the focusing mirror's surface.
An assembly for measurements of one or more optical parameters of a medium is disclosed. The assembly comprises a light sheet generator, a light intensity modulator, a holder for a sample, and an optical sensor. A method of using the assembly for measuring one or more optical parameters of a medium is also disclosed.
A spectrometer includes a support having a bottom wall part and a side wall part arranged on one side of the bottom wall part, a light detection element supported by the support to face a surface of the bottom wall part on the one side through a spectroscopic space, a resin molded layer provided at least on the surface of the bottom wall part on the one side, and a reflecting layer provided on the resin molded layer and included in an optical function part on the bottom wall part. The resin molded layer has a first part having a shape corresponding to the optical function part and a second part which surrounds the first part and is thinner than the first part.
A weigh platter assembly includes a weigh platter and a parallax based off-platter detection assembly having a light emission assembly, a light detection assembly, and a controller. The light emission assembly has a light source to emit a light beam along a lateral edge of the weigh platter. The light detection assembly detects at least a portion of the light beam reflected from an object extending across the light beam and includes a sensor offset from the light source and an aperture positioned in front of the sensor and configured to limit a field of view of the sensor along the lateral edge between proximal and distal edges of the weigh platter. The controller is configured to provide a first signal in response to a first value received from the sensor and to provide a second signal, different from the first signal, in response to a second value.
By implementing an oil monitoring in a rotary meter, the meter can check the oil level, condition and/or both level and condition and report any issues detected such as out-of-limit low oil condition, contamination, etc. The function can trigger a preventative maintenance on the rotary gas meter with a view to improving its longevity. Oil level monitoring may be signalled using sensors such as switches. Oil colour, clarity, aeration and foaming, corrosion, varnish, wear debris, or other quality monitoring may be signalled using sensors such as spectrometers. A rotary meter may be configured with one or more such sensors for (multi-)parameter monitoring and the one or more sensors positioned in respective locations such as at an oil reservoir.
An integrated circuit includes one or more central processing unit (CPU) cores configured to cause a first ultrasonic transducer to generate ultrasonic signals into a fluid moving in a pipe and the first or a second ultrasonic transducer to receive the ultrasonic signals from the fluid. The CPU core(s) also compute a first value indicative of at least one of a standard deviation and a time correlation based on the received ultrasonic signals. The CPU core(s) further determine a second value indicative of a volume of gas bubbles in the fluid using the computed first value indicative of the at least one of the standard deviation and time correlation.
Systems and methods involving obtaining point cloud data from one or more sources corresponding to one or more zones within a real-world space, the point cloud data representing surface features of structures detected within the one or more zones; defining a plurality of first-level nodes based on the point cloud data, individual first-level nodes corresponding to obtained point cloud data corresponding to individual zones of the one or more zones; identifying connections between two or more first-level nodes, the connections between the two or more first-level nodes based on connections between the point cloud data for the zones corresponding to the two or more first-level nodes; and defining a plurality of second-level nodes, individual second-level nodes corresponding to aggregated subsets of first-level nodes for which connections are identified.
Aspects of the disclosure relate to pre-computing routes for autonomous vehicles using map shards. For example, a shard from a plurality of shards of a map may be selected. Each shard including a plurality of nodes and edges connecting pairs of nodes of the plurality of nodes, and each node of the plurality represents a location. A plurality of port nodes for the shard are identified. Each port node has an edge that enters into the selected shard or exists the selected shard. For each port node of the plurality having an edge that enters into the selected shard, optimal routes to each other port node of the plurality having an edge that exits the selected shard may be determined. The optimal routes for the selected shard may be sent to the autonomous vehicles in order to enable the autonomous vehicles to use the optimal routes to determine routes.
An object of the present invention is to provide a method for determining an update area, an information processing device, and a program that appropriately determines an area for updating map information. The method for determining the update area is implemented by an update area determination system, and the update area determination system includes a point identification unit and a target area determination unit. The point identification unit executes a point identification procedure for identifying two points on a map, and the target area determination unit executes a target area determination procedure for determining a target area that is a target for an update when map information is updated using a distance between the two points and position information of a representative point preset for each of a plurality of areas formed by dividing the map.
In one embodiment, a method includes collecting, by a magnetic navigation device, magnetic measurements of a particular geographical region in accordance with a position and trajectory of the magnetic navigation device; accessing a global navigation satellite system (GNSS) signal status and a network connection status on the magnetic navigation device; determining an operational mode for the magnetic navigation device based on the GNSS signal status and the network connection status; determining whether to transmit the magnetic measurements to a server or store the magnetic measurements locally on the magnetic navigation device based on the operational mode; and performing navigation or localization operations using the operational mode.
The present disclosure provides a method, an apparatus, a computer device and a computer-readable storage medium for positioning, and relates to the field of autonomous driving. The method obtains inertial measurement data of a device to be positioned at a current time and point cloud data collected by a LiDAR on the device at the current time; determines, by integrating the inertial measurement data, inertial positioning information of the device in an inertial coordinate system at the current time; and determines, based on the inertial positioning information, the point cloud data and at least one local map built in a local coordinate system, a positioning result of the device in the local coordinate system at the current time. Techniques of the present disclosure can provide an effective and stable local positioning result.
A sensing device includes a resonant member that is movable in a first mode and a second mode, and an electrode. The resonant member has a capacitive surface portion that faces and is capacitively coupled to a capacitive surface portion of the electrode. Displacement for each point along the capacitive surface portion of the resonant member in the first mode is substantially tangent to the point.
Through discrimination of the scattered signal polarization state, a lidar system measures a distance through semi-transparent media by the reception of single or multiple scattered signals from a scattering medium. Combined and overlapped single or multiple scattered light signals from the medium can be separated by exploiting varying polarization characteristics. This removes the traditional laser and detector pulse width limitations that determine the system's operational bandwidth, translating relative depth measurements into the conditions of two surface timing measurements and achieving sub-pulse width resolution.
A method is provided. The method includes obtaining an enhanced state graph. The enhanced state graph represents a set of objects within an environment and a set of positions of the set of objects. The enhanced state graph includes a set of object nodes, a set of property nodes and a set of goal nodes to represent a set of objectives. The method also includes generating a set of instructions for a set of mechanical systems based on the enhanced state graph. The set of mechanical systems is configured to interact with one or more of the set of objects within the environment. The method further includes operating the set of mechanical systems to achieve the set of objectives based on the set of instructions.
A method for positioning a body that has a surface extending along a circular arc, includes: attaching the body to a machine part that is capable of swiveling; attaching a stationary, first distance gauge; attaching a stationary, second distance gauge; determining three first distance values and three second distance values at three defined angular positions of the machine part different from each other; calculating a first offset value, based on the three first distance values and the corresponding angular positions, and a second offset value, based on the three second distance values and the corresponding angular positions; shifting the body relative to the machine part, until the first offset value is determined by the first distance gauge and the second offset value is determined by the second distance gauge within permissible tolerances.
A detonator which includes a housing which has a passage with an inlet and an outlet and which is of reducing cross sectional area from the inlet to the outlet and wherein the inlet is configured to be exposed to an end of a shock tube, and a fusible link is located at the outlet.
A payload container for providing a horizontal dispersion pattern of sub-projectiles suitable for combatting surface targets is in the form of a cylinder and includes at least two sub-projectiles arranged in a core enclosed by a container wall, wherein the sub-projectiles are linearly disposed. In addition, a projectile and use of the same include at least one payload container or a plurality of sequentially arranged payload containers displaced by a displacement angle relative to each other. The displacement angle is predetermined in such way so that the sub-projectiles are vertically lined at the time when the mechanical force from the carrier shell disappears and the sub-projectiles are spread to the left and to the right, providing a horizontal dispersion pattern.
Provided is a frangible munitions device optimized for a dome and cylinder that yields fragments having shapes corresponding to a predetermined embossment pattern upon explosive rupture. The embossment pattern includes a first set of inner regular hexagonal embossments formed into the dome and cylinder that are aligned with the axis of the cylinder, and a second set of outer pre-deformed hexagonal shapes that distort to produce regular hexagonal shapes after drawing into the cylinder wall. The second set of shapes are separated by sharp transition regions. The shapes are embossed in a repeated pattern around the hollow cylinder and the dome top. The dome yields a plurality of fragments having shapes corresponding to the first set of inner regular hexagonal embossments upon explosive rupture, while the cylinder yields a plurality of fragments having shapes corresponding to the second set of outer pre-deformed hexagonal embossments upon explosive rupture.
This installation for locating impacts comprises an interactive plate, at least three transducers arranged and distributed against the interactive plate in order to pick up progressive mechanical waves propagating therein and to transform them into electrical signals, and an electronic central unit programmed to locate an impact in the interactive plate by an analysis of the electrical signals that it receives from the transducers. It further includes an additional plate attached to the front face of the interactive plate and having an impact-receiving zone, and means for attaching the additional plate to the interactive plate, configured to ensure contact against the entire portion of the front face of the interactive plate located opposite the impact-receiving zone of the additional plate.
Firearm associated electronic devices are provided. In one aspect a firearm associated device has a housing having a holding area and an opening through which a removable component may be positioned in the holding area, a door movable relative to the housing and having a door latch that moves along a path as the door moves and a housing latch movable between a first latch position where the housing latch is not in the path to a second latch position where the housing latch blocks movement of the door latch from a first range of positions where the door prevents the removable component from passing through the opening to a second range of positions where the door does not prevent the removable component from passing through the opening. A housing latch biasing member biases the housing latch into the second latch position. When the door latch is in the first range of positions and the housing latch is in the second latch position the door latch is movable along the path but is blocked by the housing latch from passing to the second range of positions.
A firearm magazine includes an elongated tube defining a tube axis and having an upper end with feed lips and an opposed lower end. The tube has elongated front, rear, left and right side walls. A closure element is a bottom cap removably connected to the lower end of the tube and includes a latch movable between a retention position wherein the closure element is secured to the tube, and a released position wherein the closure element is removable from the tube. The closure element includes a spring loaded latch biased upward to lock into its retention position, and the closure element is slidably receivable onto the lower end of the tube by movement transverse to the tube axis in a removal direction. The latch is on a tube side opposite from the removal direction and configured to abut the tube to prevent removal when locked in its retention position.
A conveyor mechanism for use with ammunition rounds includes a plurality of clamshells pivotally interconnected to each other, with each clamshell including a first body and a second body pivotally connected to the first body. Each clamshell is selectively transitional between an ammunition holding configuration and an ammunition release position, with the second body pivoting relative to the first body to facilitate transition between the ammunition holding configuration and the ammunition release configuration. The first and second bodies are configured to cooperatively engage one of the ammunition rounds when the clamshell is in the ammunition holding configuration.
Methods and valves for providing a continuous flow of cooler fluid in a fluid circuit of a thermal control system between a cooler and automotive transmission such that free flow of cooler fluid between the cooler and transmission exists at vehicle start-up. Fluid flow to and from the cooler is bypassed in case of pressure increases in cooler lines or pressure differentials, for example cause by a blockage in the cooler, such that the cooler fluid flow bypasses the cooler and continues in the fluid circuit through a thermal element of the thermal control system and back to the transmission.
In some respects, concepts disclosed herein generally concern systems, methods and components to detect a presence of a liquid externally of a desired primary flow path through a segment of a fluid circuit, e.g., throughout a cooling loop. Some disclosed concepts pertain to systems, methods, and components to direct seepage or leakage of a liquid coolant toward a lead-detection sensor. As but one example, some disclosed liquid-cooled heat exchangers incorporate a leak-detection sensor, which, in turn, can couple with a computing environment that monitors for detected leaks, and, responsive to an indication of a detected leak, invokes a task to control or to mitigate the detected leak.
A modular heat exchange assembly includes a cold plate defining a finned surface and a corresponding plurality of microchannels. Selected ones of the plurality of microchannel extend from a first end to an opposed second end. A fluid receiver unit defines an inlet port and a first fluid connector fluidically coupled with the inlet port. A fluid transfer unit defines an outlet port and a second fluid connector matingly engageable with and disengageable from the first fluid connector to fluidly couple the fluid receiver unit and the fluid transfer unit together. The fluid transfer unit defines a distribution manifold configured to distribute coolant among the selected microchannels at a position between the first ends and the second ends of the selected microchannels. The fluid transfer unit further defines a collection manifold configured to receive coolant from the selected microchannels. The collection manifold and the outlet port are fluidically coupled together.
Provided herein is an example heat sink including a heat dissipation unit including a plurality of heat dissipation fin groups including a plurality of heat dissipation fins, the plurality of heat dissipation fin groups forming a laminated structure and a plurality of heat pipes, one end portions of which are thermally connected to a heating element and other end portions of which are inserted into a space provided between the plurality of heat dissipation fin groups forming the laminated structure and thermally connected to the heat dissipation unit.
A core body includes a structure having a plurality of connected unit cells. At least one unit cell has one or more sidewalls that are curved and define a portion of an inner passageway within and through the unit cell. The one or more sidewalls define multiple orifices and include a cone disposed between at least some of the orifices. A dimple is defined along an outer surface of the unit cell at the cone. The outer surface at least partially defines an outer passageway that is sealed from the inner passageway by the one or more sidewalls. The one or more sidewalls are configured to transport one or more of thermal energy from a first fluid or a component of the first fluid flowing in the inner passageway to a second fluid flowing in the outer passageway without the first fluid mixing with the second fluid.
A natural gas liquid plant is retrofitted with a bolt-on unit that includes an absorber that is coupled to an existing demethanizer by refrigeration produced at least in part by compression and expansion of the residue gas, wherein ethane recovery can be increased to at least 99% and propane recovery is at least 99%, and where a lower ethane recovery of 96% is required, the bolt-on unit does not require the absorber, which could be optimum solution for revamping an existing facility. Contemplated configurations are especially advantageous to be used as bolt-on upgrades to existing plants.
Exemplary embodiments provide a refrigeration system having an interior space cooled by a plurality of cooling. Each cooling unit is capable of operating either synchronously when in communication with a control panel or under independent operation. Each cooling unit is modularly and replaceable without the use of tools by means of a quick connect system. The cooling units use a heat exchanger cooled by chilled water and make use of an electronic super heat control and electronic expansion valve to regulate the flow of refrigerant for improved efficiency.
A vacuum insulated appliance includes an outer wrapper and an inner liner. A ladder rack is coupled to the inner liner. The ladder rack includes first and second sidewalls coupled together by a connecting wall that defines a plurality of apertures. An adapter member includes a hook configured to extend through an aperture of the plurality of apertures when coupled to the ladder rack. The adapter member is coupled with a locking member that engages inner surface of first and second sidewalls of the ladder rack. A cantilever support is coupled to the adapter member and extends outward from the ladder rack. A rail assembly is coupled to an upper surface of the cantilever support. A spacer is coupled to an end of the cantilever support and abuts an inner liner surface. A storage feature is coupled to the rail assembly and is operable between stowed and deployed positions.
Methods are directed towards dynamically determining refrigerant film thickness at the rolling-element bearing and for dynamically controlling refrigerant film thickness at the rolling-element bearing. Further, an oil free chiller system is configured for dynamically determining refrigerant film thickness at the rolling-element bearing of the oil free chiller system, wherein the oil free chiller system is also configured for dynamically controlling refrigerant film thickness at the rolling-element bearing of the oil free chiller system.
Systems and methods for regenerative ejector-based cooling cycles that utilize an ejector as the motivating force in a cooling loop to regeneratively sub-cool a refrigerant in a single-stage cooling cycle.
A device comprising a fin structure, a vent disposed in the fin structure, a cooling coil disposed in the vent, a light disposed in the fin structure and wherein the fin structure is configured to create a Coanda effect for air exiting the vent.
A method for controlling a heating, ventilation, or air conditioning (HVAC) system in a building. The method includes receiving environmental data of the HVAC system via a cloud network and generating an application based on the received environmental data of the HVAC system. The method further includes providing the application to a user interface via the cloud network. The application receives control instructions via the user interface and provides control signals to a plurality of HVAC equipment in the building to satisfy the control instructions.
A flow control device (1) for an HVAC fluid transportation system comprises a flow tube (10) formed in one piece, a flow measurement system (11) integrated with the flow tube (10) and configured to measure a volumetric flow of fluid (ϕ) through the flow tube (10), and an electronic circuit (12) arranged in a fixed fashion on the flow tube (10) and connected electrically to the flow measurement system (11). The flow control device (1) further comprises a control signal output terminal (13) attached to the flow tube (10) and connected to the electronic circuit (12). The electronic circuit (12) is configured to generate and apply on the control signal output terminal (13) an actuator control signal, using the volumetric flow of fluid (ϕ) measured by the flow measurement system (11), for an actuator actuating a valve of the HVAC fluid transportation system (2) arranged outside the flow tube (10) of the flow control device (1).
An HVAC system includes a reversing valve configured to receive refrigerant and direct the received refrigerant based on an operating mode of the HVAC system. A sensor measures a heat-exchanger temperature associated with an outdoor heat exchanger. A controller monitors an outdoor temperature and the heat-exchanger temperature and compares these temperatures. The controller determines whether the HVAC system is intended to operate in a cooling or heating mode. If the heat-exchanger temperature is less than the outdoor temperature and the HVAC system is intended to operate in the cooling mode, the controller determines that a first reversing-valve fault is detected. The first reversing-valve fault is associated with the reversing valve being in the heating configuration when the HVAC system is intended to operate in the cooling mode.
A frame that is configured to hold a window air conditioner unit includes a main frame body having an opening formed therein for receiving the air conditioner unit. The frame includes a pair of adjustable side support frames that are slidingly coupled to the main frame body for filling a space between sides of the air conditioner unit and sides of the window frame. Each of the side support frames includes a take-up device for securing the frame within a window channel of the window frame. The take-up device has a fixed stop fixedly attached to the side support frame and an adjustable stop that is movable in a forward-rearward direction. The take-up device further includes an actuator that is accessible to a user along the main frame body and is configured to move the adjustable stop in the forward-rearward direction.
Embodiments of a wind guard system for blocking a cross-wind from flowing through a gap defined between a griddle and a cooking station. The wind guard system includes multiple wind guard members each having a shield portion and a hook portion, the hook portion extending from an upper end portion of the shield portion. The hook portion is sized and configured to be positioned to removably hang over a top edge of upstanding walls of the griddle member so that a height of the shield portion extends downward to cover the gap defined between an underside of the griddle member and the upper side of the cooking station to at least partially prevent wind from moving through the gap.
A cooking appliance includes a cooktop having at least one heating element for heating a cookware member on or to be placed on the cooktop, the at least one heating element being adjustable between a working-power level wherein the at least one heating element is energized to generate heat and a zero-power level wherein the at least one heating element is not energized. The cooking appliance further includes a temperature sensor configured to detect a temperature or rate of temperature change of a cooking element. The cooking appliance further includes a control device configured to adjust the at least one heating element from the working-power level to the zero-power level based on the temperature or rate of temperature change of the cooking element. The at least one heating element will remain at the zero-power level until a user intervenes to re-energize the at least one heating element.
A consumer appliance with a body. A cartridge removably mounted to the body. The cartridge having a surface with a first colored region and a second colored region. A control circuit positioned within the body. A first emitter positioned on the body that projects a light at the first colored region. A second emitter positioned on the body that projects light at the second colored region. A first light sensor positioned on the body that sends a first signal to the control circuit based on a color of light reflected from the first colored region.
The invention provides an arrangement (1) comprising a device (1000), wherein the device (1000) comprises a luminescent material comprising element (100) and a light transmissive element (200), wherein: (a) the device (1000) has a first device axis (A1); (b) the luminescent material comprising element (100) comprises a luminescent material (110) configured to emit luminescent material light (111) upon irradiation with first light (11), wherein the luminescent material comprising element (100) has a first length (L1) and a characteristic first dimension (D1) perpendicular to the first length (L1), wherein D1/L1<1; wherein the luminescent material comprising element (100) is configured at a non-zero first distance (r1) from the first device axis (A1), and wherein the luminescent material comprising element (100) at least partly surrounds the first device axis (A1); (c) the light transmissive element (200) is transmissive for the first light (11), wherein the light transmissive element (200) comprises a element light entrance part (201 and an element light escape part (202), wherein the element light escape part (202) and the luminescent material (110) are radiationally coupled; wherein one or more of the following applies: (i) the first device axis (A1) intersects the light transmissive element (200), and (ii) the light transmissive element (200) at least partly surrounds the first device axis (A1); and (d) the luminescent material comprising element (100) is in thermal contact with one or more of (a) the light transmissive element (200) and (b) an optional thermally conductive element (300).
An illuminating device for vehicles, including a housing, in which a light source and an optical unit for generating a predefined light distribution are arranged, including a cover shield, which closes an opening of the housing and through which light passes from an interior of the housing into surroundings, including means for condensation removal and/or deicing of the cover shield, characterized in that the cover shield includes a temperature-dependent light absorber, with the aid of which light is converted into heat depending on the temperature.
An attachment system for roof-mounted equipment of this disclosure includes a pedestal having rails and corresponding channels at a top and bottom wall surface, the rails and channels located below the bottom wall surface configured to receive an adhesive for mounting the pedestal to a roof structure without penetrating the roof, the rails and channels located below the top wall surface including at least one channel configured to accept a fastener of the piece of equipment to be mounted on the pedestal.
A mounting bracket for mounting an electronic device to the T-bar of a drop ceiling provides for self-locking snap-action securing of the mounting bracket to a flange of the T-bar, suspending the mounting bracket from the T-bar. The mounting bracket also provides for self-locking snap-action attachment of the mounted device to the bracket, suspending the device from the suspended mounting bracket. A split adapter allows vertical offsetting of the device from the ceiling, reducing vertical displacement of ceiling tiles resting on the T-bar. The split adapter has two halves the are laterally slid on to the T-bar flange and are then longitudinally slid together to be joined against lateral separation. The composite adapter thus formed presents an adapter flange to which the mounting bracket snap-secures, the mounting bracket locking the adapter halves against longitudinal separation.
An isolation coupler for coupling a functional element to a support structure includes a first bracket. The first bracket includes a number of first-bracket sides. The number of first-bracket sides forms a closed polygonal shape, in plan view. The isolation coupler further includes a number of isolators coupled to each one of the first-bracket sides. The isolation coupler also includes a second bracket. The second bracket includes a number of second-bracket sides. The second bracket sides are coupled to the isolators. The number of second-bracket sides is equal to the number of first-bracket sides and forms the closed polygonal shape, in plan view. The isolators separate each one of the first-bracket sides from a corresponding one of the second-bracket sides to attenuate a load transferred from the first bracket to the second bracket.
A method for sealing a liquid leak in a pipe. The method may include wrapping a circumference of the pipe with a gasket material at a location of the leak to create an annular cavity between the gasket material and the pipe. The method may also include allowing the leaking liquid to exit from the annular cavity. The method may further include securing the gasket material to the pipe. The method may also include injecting an expandable grout into the annular cavity between the pipe and the gasket material. The method may further include allowing the grout to expand upon contact with the leaking liquid to create a seal around the leak. The method may also include adhering a reinforcement material to the gasket material and the pipe to reinforce the gasket material and the pipe at the location of the leak.
A fluid conduit interlock comprises at least one retention member for engaging a fluid conduit, the or each retention member configured to be movable between a retention position for retaining the fluid conduit and a release position for releasing the fluid conduit, a valve member configured to be movable between a valve open position for opening a hollow bore and a valve closed position for closing the hollow bore, and an interlock mechanism configured to operably link the movement of the or each retention member and the movement of the valve member so that the or each retention member in the release position locks the valve member in the valve closed position and so that the valve member in the valve open position locks the or each retention member in the retention position.
A pipe fitting configured to be coupled to a pipe. The pipe fitting includes a body that is elongate along a central axis that extends in a longitudinal direction. The body includes a shell, a stiffener, and a shell-stiffener. The shell includes a shell inner surface that defines a shell through hole that extends through the shell in the longitudinal direction. The stiffener is positioned within the shell through hole, and the stiffener includes a stiffener outer surface that faces the shell inner surface such that the stiffener outer surface and the shell inner surface cooperate to define a pocket configured to receive the pipe. A shell-stiffener seal member is positioned about the stiffener such that a seal member inner surface is substantially flush against the stiffener outer surface and a seal member outer surface abuts against the shell inner surface.
A line feedthrough for guiding at least one line through a component, contains a cladding tube, at least one element which is mounted within the cladding tube and can rotate relative to the cladding tube, and a sealing element which is in the form of a flexible hose body and arranged within the cladding tube and the element. The hose body is connected, in an axial end region, to the element and can be displaced by rotational movement between a closed position and an open position. A guide element is provided which can be displaced in the longitudinal direction relative to the cladding tube, and which cooperates with a guide track of the element. The guide track of the element is in a spiral shape, such that a displacement of the guide element in the longitudinal direction leads to a rotation of the element relative to the cladding tube.
A passive microfluidic valve includes a first manifold portion having a first chamber; a first inlet fluidly coupled to the first chamber; and a second inlet. The valve also includes a second manifold portion in fluid communication with the first chamber via a channel. The second manifold portion includes a second chamber fluidly coupled to the first chamber and the second inlet. The valve further includes a flexible membrane disposed between the first manifold portion and the second manifold portion and separating the first chamber and the second chamber, the flexible membrane configured to modulate a flow rate of a media flowing between the first inlet and the second inlet in either direction in response to pressure of the media flow.
A water arrestor valve assembly permits the servicing and/or replacement of a water hammer arrestor in a segment of a plumbing system. The water hammer arrestor can be isolated from the incoming and outgoing water supply by a valve or a tee-shaped valve body. In addition, the bleeder drain valve(s) can be located on the tee-shaped valve body to reduce the pressure and drain fluid before removal of the water hammer arrestor and can also be used to isolate, reduce the pressure and drain the length of piping of the fixture/appliance that is downstream of the water hammer arrestor.
A self closing tap (102) comprising a cartridge (12) and a tap handle interface is disclosed. The cartridge (12) comprises a piston (122), and a plunger (32). The piston (122) is comprised of a piston head (124), and a piston shaft (126), the piston shaft (126) has a longitudinal axis (A) and is fixed to the piston head (124) at a first end, and the second end of the piston shaft (126) is an engagement end (182). The plunger (32) is movably fixed to a first portion of the piston shaft (126) and adapted to move longitudinally along the first portion of the piston shaft (126). The plunger (32) has a first and second end with the second end of the plunger (32) being closer to the engagement end (182) of the piston shaft than the first end, the tap handle interface comprises a first and second recess (186, 154), the first recess (186) is adapted to receive the engagement end (182) of the piston shaft (126) and prevent rotation of the piston shaft (126) around its longitudinal axis (A), and the second recess (154) is adapted to receive at least the second end (126) of the plunger (32) and to prevent rotation of the plunger (32) around the piston shaft (126).
A pool cycling valve system with a pool cycling valve, a plurality of water zones, an interface, and a microcontroller. The pool cycling valve has a valve body with an inlet port and a plurality of outlet ports. Each of the plurality of water zones is configured to fluidly couple with a respective outlet port of the plurality of outlet ports. The interface is configured to receive input from a user for a user-selected sequence for activating each water zone, a user-selected duration of activate time per water zone, and a number of water pressure cycles for a particular water zone to receive prior to activation of a subsequent water zone. The interface is configured to communicate the input to the microcontroller. The microcontroller is configured to intelligently and selectively discharge water to each of the plurality of water zones based on the input received from the interface.
A rotary shifter having a knob bi-directionally and biasingly supported upon a housing in a monostable and return-to-center orientation. A printed circuit board assembly is incorporated into the housing and includes a sensor and a processor. A spur gear is rotatably supported within the housing and actuated by the knob, the spur gear supporting a magnet in proximity to the sensor. Rotation of the knob causing rotational displacement of the magnet relative to the sensor in order for the processor to instruct a change in shifter position. The knob incorporating a graphical display for indicating a current shifter position of the assembly.
Disclosed herein is an apparatus for variable fluid damping. The apparatus comprises a mount. The apparatus also comprises a damper coupled to the mount to apply a damping force in response to movement of the mount. The apparatus further comprises an electrical element positioned to correspond to the damper. The apparatus additionally comprises a rheological fluid disposed in the damper. The rheological fluid changes viscosity in response to a change in an output of the electrical element to change the damping force of the damper. The apparatus also comprises a controller to provide input to the electrical element in response to a normal operating condition or an emergency operating condition.
Systems and methods are provided for a compound bearing assembly including an offset coupler supporting an inner bearing and an outer bearing for distributing a rotational loading of the compound bearing assembly. In some embodiments, at least one of the bearings comprises a bearing cage with a plurality of elongated openings for receiving a respective plurality of balls. The compound bearing assembly is configured to support a drive shaft of a supercharger system of a vehicle or some other rotational system.
A cap system for enclosing a metallic fastener assembly extending through a structure, which includes a first securement mechanism positioned about a periphery of a washer of the metallic fastener assembly wherein the first securement mechanism includes a first tab member extending in a direction transverse to a plane of a surface of the washer and a second tab member extending in a direction transverse to the plane of the surface of the washer spaced apart from the first tab member about the periphery of the washer. Cap system further includes a cap member which includes a sidewall having an inner surface which defines a cavity dimensioned to receive the washer and defines a second securement mechanism complementary configured to engage the first securement mechanism; and an end of the sidewall of the cap member defines an opening which provides the washer to have access into the cavity.
A screw structure includes a screw and a washer mounted on the screw. The bottom face of the screw head is provided with a plurality of pressing portions. Each of the pressing portions has a top provided with a first plane and a bottom provided with a second plane having an area smaller than that of the first plane. Each of the pressing portions is provided with a first inclined face and a first steep arcuate face. The first inclined face is directed toward a clockwise direction of the screw when the screw is screwed. The first steep arcuate face is directed toward the external thread. When the screw is screwed into an article, the pressing portions press the washer, and an outer diameter of the washer is expanded outward and forms an expansion.
A connecting element for connecting at least two profile elements, wherein the connecting element is rotatable about an axis of rotation to produce a clamping force, wherein the connecting element has at least one first connecting section and at least one second connecting section, which are each designed to be received in one of the profile elements, wherein the first connecting section has at least one first clamping face, wherein the at least one first clamping face has a predetermined clamping contour, wherein the second connecting section has at least one second clamping face, wherein the first clamping face faces the second connecting section and the second clamping face faces the first connecting section, wherein the first connecting section and the second connecting section are formed such that the profile elements connected by the connecting element extend obliquely relative to each other or crosswise.
An adjusting mechanism of a box and a light emitting diode (LED) box assembly are provided. The adjusting mechanism of a box includes: a first adjusting structure which includes a first base, a rotating member, an adjusting lock hook movably arranged on the rotating member and a driving member arranged in the rotating member and driving the adjusting lock hook to move, where the rotating member can drive the adjusting lock hook to rotate when rotating such that the adjusting lock hook has a locking position and an unlocking position; and a second adjusting structure which includes a second base and an adjusting rod, where the adjusting lock hook is in the locking position when the adjusting lock hook cooperates with the adjusting rod, and the adjusting lock hook is in the unlocking position when the adjusting lock hook is separated from the adjusting rod.
A clamping assembly for attaching loads to various kinds of flanged seams, the assembly comprising a generally U-shaped clamp body, at least one clamping hammer disposed interior of the clamp body, the clamping hammer is secured to the clamp body along the longitudinal axis of the clamp body, at least one adjustment screw extending through the clamp body and adapted to selectively impinge against the clamping hammer and cause it to pivot about its axis or otherwise move inwardly within the clamp body, the adjustment screw extending transverse to the longitudinal axis of the clamping hammer, at least one locking screw adapted to selectively impinge against the clamping hammer to prevent pivoting of the same may be optionally provided whereby a standing seam received within the clamp body may be tightly grasped between the clamp body and the clamping hammer under action of the adjustment screw.
A rail element (10, 33) for a camera slider system or, more generally, a tube joiner for a rail comprised of an expansion device (23, 30), located internally at an open end (12, 32) of a tubular body (11, 33). The expansion device is configured to fit within a male part or joiner element (16, 31) that may be inserted into the end of the tube (10, 33) and can be actuated to an expanded state where it exerts force radially outwards through the joiner (16, 31) to hold it against the open end (12, 32), thereby joining two tubular or rail element ends together.
Provided is a driving apparatus capable of effectively preventing impact at the stroke end in the hydraulic cylinder. The driving apparatus includes a hydraulic pump, a cylinder control valve, an operation member, a drive command input unit inputting a cylinder drive command corresponding to a cylinder operation applied to the operation member to the cylinder control valve, a cylinder stroke detection unit, a cylinder drive command restriction unit restricting the cylinder drive command in response to the cylinder stroke to stop a piston of a hydraulic cylinder before the stroke end.
A compressor section for a gas turbine engine according to an example of the present disclosure includes, among other things, a low pressure compressor including a plurality of rotor blades arranged about an axis, a high pressure compressor, and a core flowpath passing through the low pressure compressor. The core flowpath at the low pressure compressor defines an inner diameter and an outer diameter relative to the axis. The outer diameter has a slope angle relative to the axis.
Ceiling fans typically include a motor including a rotor and a stator, blades, a downrod, and a mounting assembly for suspending the fan from a structure. The mounting assembly includes fasteners and brackets to secure the ceiling fan to the structure. The bracket receiving the downrod is fastened to a plate that is secured to the ceiling.
A compressor rotor for turbomachinery, such as a compressor, is provided. Disclosed embodiments can benefit from seal elements that may be arranged to inhibit passage onto respective hirth couplings of process fluid being processed by the compressor. A seal element may be affixed to adjacent rotor components (e.g., adjacent impeller bodies) by way of a slip or interference fit connection to one of the adjacent components and may be affixed to the other adjacent rotor component by way of a elastically flexible frustoconical inner surface of the seal element that permits the seal element to be placed in a spring-loaded condition, which generates a biasing force to circumferentially clamp onto a frustoconical outer surface of the other adjacent rotor component. This arrangement is conducive to user-friendly assembly/disassembly of the seal elements with respect to the adjacent rotor components.
Disclosed are a sealing structure and a scroll air compressor having the same. The sealing structure includes an orbiting scroll including an orbiting scroll spiral tooth, the orbiting scroll spiral tooth being provided with an orbiting scroll spiral tooth groove, an orbiting scroll wear-resistant sealing strip being provided in the orbiting scroll spiral tooth groove, a stationary scroll including a stationary scroll spiral tooth matched with the orbiting scroll spiral tooth, the stationary scroll spiral tooth being provided with a stationary scroll spiral tooth groove, a stationary scroll wear-resistant sealing strip is provided in the stationary scroll spiral tooth groove, the wear-resistant sealing strip is divided into sections including a high-temperature and high-pressure section and a medium-temperature and medium-pressure section.
A pump insert (1) for arranging in an accommodating space (104), the pump insert (1) comprising: a pump (10) comprising a pump chamber (15) and a delivery element (11) which can rotate about a rotational axis (D) and which is arranged in the pump chamber (15); an electric motor (20) comprising a rotor (21), which can rotate about the rotational axis (D), and a stator (22); and a drive shaft (30) which is mounted such that it can rotate about the rotational axis (D), wherein the rotor (21) and the delivery element (11) are connected via the drive shaft (30) in such a way that rotating the rotor (21) causes the delivery element (11) to rotate.
An electric oil pump includes a pump housing provided with an a first cavity and a second cavity; a first rotor assembly disposed in the first cavity; a stator assembly and a second rotor assembly that are disposed in the second cavity; an electric control board assembly; an isolating member, where the stator assembly is disposed at a first side of the isolating member, the electric control board assembly is disposed at a second side of the isolating member; and a wiring terminal fixedly connected to the isolating member; where a connecting position between the wiring terminal and the isolating member is sealed and a connecting position between the isolating member and the pump housing is sealed. The electric oil pump can prevent working medium from affecting the performance of the electric control board assembly.
A pump assembly and a high-pressure cleaning apparatus, the pump assembly includes a motor assembly, a motor housing for receiving the motor assembly, a transmission assembly driven by the motor assembly, a pump, and a pipe assembly connecting the motor housing and the pump. Mutually independent heat dissipation portions are provided at two sides of the motor housing.
The present invention relates to a method of controlling a wind turbine by automatic online selection of a controller that minimizes the wind turbine fatigue. The method therefore relies on an (offline constructed) database (BDD) of simulations of a list (LIST) of controllers, and on an online machine learning step for determining the optimal controller in terms of wind turbine (EOL) fatigue. Thus, the method allows automatic selection of controllers online, based on a fatigue criterion, and switching between the controllers according to the measured evolution of wind condition.
Disclosed herein are methods, systems, and devices for utilizing distributed reinforcement learning and consensus control to most effectively generate and utilize energy. In some embodiments, individual turbines within a wind farm may communicate to reach a consensus as to the desired yaw angle based on the wind conditions.
A buoyant wave energy device is disclosed that incorporates an open-bottomed tube of substantial length in which is partially enclosed a first body of water that oscillates in response to wave action. The device incorporates a buoy to which an upper end of the tube is connected and inside of which is trapped a second body of water of substantial mass. A differential phase in the oscillations of the water trapped in the tube, and the oscillations of the buoy of augmented mass, result in the periodic compression of a pocket of air trapped at the top of the tube, and in the subsequent expulsion of pressurized air through a turbine, thereby generating electrical power.
A secondary filter element for a filter arrangement is provided with a filter medium and a circumferentially extending sealing device that seals the secondary filter element in respect to a filter receptacle of the filter arrangement. The circumferentially extending sealing device has an oval geometry with a long side and a short side. The circumferentially extending sealing device has an outer surface projecting, in a radial direction of the secondary filter element, farther past the filter medium when viewed along the short side compared to when viewed along the long side. A filter arrangement has a filter receptacle. A main filter element is received in the filter receptacle, and a secondary filter element is received in the main filter element. The circumferentially extending sealing device of the secondary filter element projects in a radial direction of the secondary filter element outwardly past an interior of the main filter element.
A funnel or drain back seal and systems, assemblies, components, kits, and methods thereof can comprise a body defining an opening that extends from a top of the body to a bottom of the body; a head portion that extends outward from the top of the body; and a flap or lip that extends outward from the bottom of the body. The opening can be adapted to pass draining oil from the top of the body to the bottom of the body for supply into an engine block.
A method controls an opening speed of a purge valve according to the purge gas concentration implemented by an active purge system (APS). A purge controller varies, when a valve opening speed of a purge control solenoid valve (PCSV) is controlled, the valve opening speed of the PCSV using any one among a low concentration rate coefficient, a high concentration rate coefficient, a coolant temperature rate coefficient, and an ambient air temperature rate coefficient, and performs the purge control using a difference between the valve opening speeds, and thus dualizes the valve opening speed of the PCSV according to a hydrocarbon (HC) concentration, thereby stably controlling the air-fuel ratio, and simultaneously, securing the purge rate and relatively stably control an air-fuel ratio in a state of high concentration purge execution.
A gas turbine engine comprises a fan drive turbine for driving a gear reduction. The gear reduction drives a fan rotor. A lubrication system supplies oil to the gear reduction. The lubrication system includes a lubricant pump supplying a mixed air and oil to a deaerator inlet. The deaerator includes a separator that for separating oil, and delivering separated air to an air outlet, and for delivering separated oil back into an oil tank. The separator includes a member having lubricant flow paths on both of two opposed sides. A method of designing a gas turbine engine is also disclosed.
An exhaust system includes an exhaust line configured to receive an exhaust mixture. The exhaust system further includes an oscillating assembly connected to the exhaust line. The exhaust system further includes a feedback path extending from an external gas source to the oscillating assembly, wherein the feedback path is separate from the exhaust line.
An air guide duct for water ingress management having at least one air inlet and at least one air outlet channel which has an upstream inlet opening in fluid communication with the at least one air inlet and a downstream outlet opening into at least one of the front wheel wells, whereby incoming air from the front end of the motor vehicle is guided into at least one of the front wheel wells. A bottom surface of the upstream inlet opening is disposed at a first vertical position and a bottom surface of the downstream outlet opening is disposed at a second vertical position, with the bottom surface of the downstream outlet opening being disposed lower than the bottom surface of the upstream inlet opening relative to the front wheel wells such that a height differential is defined between the first vertical position and the second vertical position.
A vehicle exhaust system for allowing passage of exhaust gasses therethrough. The vehicle exhaust system has a first pipe having a first end and a second end. The first end defines an exhaust gas inlet and the second end defines an exhaust gas outlet. The vehicle exhaust system also has a second pipe positioned downstream of the first pipe and has a third end and a fourth end. At least a portion of the second end of first pipe is positioned within the third end of the second pipe defining an overlap between the second end of the first pipe and the third end of the second pipe. The first pipe and the second pipe together define a volume for the exhaust gasses. The volume comprises a first volume passageway between the exhaust gas inlet and the exhaust gas outlet and a second volume passageway defined by the overlap of the second pipe and the first pipe and having an inlet for exhaust gasses into the second volume passageway and an outlet from the second volume passageway positioned axially upstream of inlet. The inlet is positioned downstream of the exhaust gas outlet
The utility model provides an exhaust structure having a lightweight structure. The utility model provides an exhaust structure, comprising: an exhaust pipe; and a muffler connected to the exhaust pipe. The exhaust pipe includes an upstream side opening portion, a downstream side opening portion, and a winding portion. The winding portion is formed by winding pipings between the upstream side opening portion and the downstream side opening portion. The muffler is connected to the upstream side opening portion of the exhaust pipe, and the winding portion overlaps the muffler in a front-rear direction.
Methods and systems are provided for reducing emissions during an engine cold start. In one example, a method may include, during emission control device heating, injecting heated air into an exhaust runner of each cylinder of the engine during an exhaust stroke of the corresponding cylinder, after a blowdown exhaust pulse. In this way, an amount of hydrocarbons in feedgas provided to the emission control device prior to the emission control device reaching its light-off temperature may be reduced.
A filter element arranged exchangeably in a filter housing of a filter has a filter medium delimiting an element interior. An end body arranged at the filter medium has a fastening region surrounding the interior opening that communicates with the element interior. An insertion adapter for connecting the filter element to a fluid connector of the filter housing has an insertion sleeve insertable axially into the fastening region of the end body. The inward side of the fastening region is provided with a material that is initially flexible during manufacture of the filter element and hardens later on. The insertion sleeve has a holding element radially outwardly arranged at the circumference. With inserted insertion sleeve, the holding element is arranged in the fastening region. The initially flexible material of the fastening region flows behind the holding element and forms a form fit connection with the holding element when hardened.
An energy generation system, has a roof that is configured to rest upon a structure. A frame is joined to the roof with a mounting bracket. A turbine arranged in the frame with a first turbine shaft and a second turbine shaft. A first alternator is joined to the first turbine shaft with a first drive gear. A second alternator is joined to the second turbine shaft with a second drive gear. A switching system is joined to the first alternator and the second alternator. The switching system is programmed with a loop of instructions to determine a turbine rotational speed. Then, engage the first alternator. After that, monitor the turbine rotational speed. Following that, engage the second alternator.
A standpipe assembly configured to connect to a starter that includes a housing is described herein. The standpipe assembly includes: a standpipe having first and second openings at opposite ends of a hollow passageway, wherein the standpipe, upon being connected to the starter, is oriented within the housing so that the standpipe drains oil through the standpipe when oil in the housing reaches an overfill level, and is oriented in parallel to internal oil flow in the starter to inhibit interference with the internal oil flow during operation of the starter; and an attachment portion, wherein the attachment portion is structured to attach the standpipe assembly to the housing of the starter and prevent movement of the standpipe assembly with respect to the housing of the starter.
A valve for an air system in an aircraft engine, comprising: a housing defining a chamber having a valve axis circumscribed by a sealing surface; and a piston assembly within the chamber including: a sealing ring; and a body extending annularly about a piston axis collinear with the valve axis, having a first and a second piston surface axially spaced apart, a radially outer piston surface extending axially and located between the first and second piston surfaces, and an annular groove extending radially inwardly from the radially outer piston surface having first and second groove walls spaced apart and axially facing one another, the sealing ring within the annular groove, the body including: a first member defining the first piston surface and the first groove wall; and a second member defining the second piston surface and the second groove wall, the first member and the second member in mating engagement.
A turbofan engine includes a fan having a plurality of fan blades, a turbomachine operably coupled to the fan for driving the fan, the turbomachine including a compressor section, a combustion section, and a turbine section in serial flow order and together defining a core air flowpath, a nacelle surrounding and at least partially enclosing the fan, the nacelle including an inlet at a leading edge of the nacelle, the inlet defining an interior inlet surface that is non-annular, and an inlet pre-swirl feature located upstream of the plurality of fan blades, the inlet pre-swirl feature attached to or integrated into the nacelle.
An airfoil for a gas turbine engine defining a spanwise direction, a root end, a tip end, a leading edge end, and trailing edge end is provided. The airfoil includes: a body extending along the spanwise direction between the root end and the tip end, the body formed of a composite material; and a sculpted leading edge member attached to the body positioned at the leading edge end of the airfoil, the sculped leading edge member formed at least in part of a metal material and defining a non-linear patterned leading edge of the airfoil.
A method comprises: flowing a potted component in a liquid state over a tip of an airfoil, the tip of the airfoil having a coating disposed thereon, the coating comprising a metal plating and a plurality of protrusions, each protrusion in the plurality of protrusions extending from the metal plating; allowing the potted component to harden to form a hardened potted component; and removing the hardened potted component from the tip of the airfoil.
The disclosure provides rotary machines that include, in one embodiment, a shaft defining a central axis A, the shaft having a first end and a second end. The shaft can have a first gearbox disposed thereon defining one or more cavities therein. At least one contour is slidably received into an arcuate cavity in an exterior surface of the gearbox. The contour has a convex outer surface that cooperates with an inwardly facing curved surface of a housing to form a working volume. A gearbox mechanism consisting of gears, crankshafts, bearings and connecting rod creates an oscillatory motion 2 times per revolution such that the contour can navigate about the arcuate cavity without contacting the cavity at a high rate of rotating speed. Thus, said working volume can expand and compresses twice per rotatable shaft revolution.
The present disclosure relates to a crude oil parameter detection device, which includes a liquid cavity constituted by a first housing, a flow measurement cavity constituted by a second housing, a detection cavity constituted by a third housing, and a processing module; the flow measurement cavity is in-built in the liquid cavity; the first housing includes a first liquid inlet and a first liquid outlet; the second housing includes a second liquid inlet and a second liquid outlet; the second liquid outlet is in communication with the first liquid outlet through a liquid outlet pipeline; a float assembly is in-built in the flow measurement cavity, which includes a float and a float connection rod integrally connected with the float, and an end of the float connection rod is connected to a detection part; the detection cavity at least internally comprises a position detection module; the position detection module detects a position of the detection part at the end of the float connection rod to obtain a float height detection signal; and the processing module calculates a flow rate of measured crude oil according to the float height detection signal. The present disclosure can safely meter the crude oil flow rate of a crude oil transport pipeline and meet the accuracy of metering the crude oil.
A method may include obtaining well operation data regarding various well operations for a well delivery. The well operations may be performed by various service entities at a first well site. The method may further include determining a contribution weighting factor using a machine-learning model and the well operation data. The contribution weighting factor may correspond to a contribution of a first service entity among the service entities toward the well delivery. The method may further include determining, using the contribution weighting factor and an adjusted weighting factor, various performance indicator values for the first service entity. The adjusted weighting factor may be a weighting factor that is modified based on a size of the contribution weighting factor. The method may further include transmitting, based on the performance indicator values, a command to a second well site.
A device and method for manipulating a robotic end effector in a well. Actuators manipulate the end effector independently through multiple degrees of freedom to improve the perspective of the end effector. An imaging sensor may be used to image, measure and identify features of a well and objects located therein. The sensor may be an ultrasound transducer, camera or x-ray sensor arranged radially, axial or distributed over a 2D surface. The end effector may be connected to a tool, such as a fishing tool, a welder, a milling tool, or a repair tool.
An electrically driven fracturing system is provided. The electrically driven fracturing system includes: one or more frequency converter apparatuses; and a plurality of electrically driven fracturing apparatuses configured to pressurize and output fluid. One of the one or more frequency converter apparatuses is connected with multiple ones of the plurality of electrically driven fracturing apparatuses, respectively, and the frequency converter apparatus is configured to adjust pressure and flow rate of fluid output by the multiple electrically driven fracturing apparatuses.
A filter bypass tool for use in a subterranean well can include an inner tube having a flow passage extending longitudinally through the inner tube, a pipe surrounding the inner tube, with an annulus formed radially between the pipe and the inner tube, the pipe being perforated to permit fluid communication between the annulus and an exterior of the pipe, and a bypass valve having closed and open configurations. In the closed configuration the bypass valve blocks fluid flow from the annulus to the flow passage. In the open configuration the bypass valve permits fluid flow from the annulus to the flow passage. The bypass valve is configured to open in response to a predetermined pressure differential from the annulus to the flow passage.
The disclosure provides for a method for setting an inflatable packer. The method includes positioning an inflatable packer within a borehole, and pumping fluid into an inflatable element of the inflatable packer using a pump that is driven by a motor. The method includes measuring pressure of the inflatable element, determining a derivative of the measured pressure with respect to time, and determining onset of restraining of the inflatable element has occurred. Upon or after determining the onset of restraining, the method includes turning off the motor or slowing down an rpm of the motor. The disclosure also provides for a system, including a computer readable medium with processor-executable instructions stored thereon that are configured to instruct a processor to execute a pressure control algorithm to control a speed of the motor in response to pressure measurement data from the pressure sensor.
A system and method protect a packer during deployment in a borehole. The system comprises a shaft, the packer, a protective member, a movement mechanism, and an expansion mechanism. The shaft has a longitudinal length along a longitudinal axis extending in the borehole having an inner surface. The packer surrounds the shaft at a predetermined position along the longitudinal length. The protective member surrounds the shaft and is vertically positioned above or below the packer. The movement mechanism is configured to move the protective member to the predetermined position in order to surround the packer, thereby protecting the packer. The expansion mechanism is configured to expand the packer and the protective member when positioned around the packer to position the protective member in contact with the inner surface of the borehole. A method comprises steps performed during operation of the system.
An overshot for removing a fish from a wellbore includes a first catch that attaches to a fishing assembly and one or more additional catches that connect, in sequence, to the first catch. Each catch of the one or more additional catches includes a different internal diameter from other catches of the one or more additional catches. The one or more additional catches are connected, in order, according to their respective internal diameters. The overshot attaches to a top of the fish.
A slickline that includes both electrically conductive and fiber optic capacity. The slickline includes a fiber optic thread or bundle of threads disposed in a support tube and surrounded by an electrically conductive member such as tightly wound copper threads. In certain embodiments, the electrically conductive member may be provided in direct contact with the support tube without the requirement of an insulating layer. Alternatively, the tube itself may be foregone with a channel for the fiber optic thread or bundle defined by insulating material about the electrically conductive member. Either way, the overall profile of the slickline may advantageously be kept to a minimum.
A sensor device includes a tubular body having a first end and a second end opposite the first end, a pressure plug on the first end of the tubular body, and a sensor tip on the second end of the tubular body, wherein the sensor tip comprises an open end opposite the tubular body and an optical tip removably positioned through the open end and held in place by a removable cap. The optical tip includes an optical rod and a rod holder. The sensor device further includes an optical fiber extending from the pressure plug, through the tubular body, and into the sensor tip where the optical fiber is optically coupled to the optical rod. The pressure plug may include a slack cavity where the optical fiber is in slack under neutral temperature and pressure conditions to withstand expansion of the sensor device under high temperature or pressure conditions.
Fracturing fluid delivery systems having flexible fracturing fluid delivery conduits secured with quick connectors are provided. In one example, a fracturing system includes a wellhead assembly and a fracturing fluid conduit coupled to the wellhead assembly to route fracturing fluid to the wellhead assembly. The fracturing fluid conduit includes a flexible body defining a bore for conveying the fracturing fluid to the wellhead assembly. The fracturing fluid conduit is coupled to the wellhead assembly via an actuated connector including one or more locking members that move from an unlocked position to a locked position to secure the fracturing fluid conduit to the wellhead assembly. Additional systems, devices, and methods are also disclosed.
A vehicle door opening and closing control system may include an antenna provided at a vehicle, the antenna being configured to wirelessly communicate with a user's mobile device to recognize the location of the user's mobile device, a door opening and closing device configured to open or close a door of the vehicle, a rain sensor configured to detect a rainy weather state outside the vehicle, and a controller configured to control the operation of the door opening and closing device based on the location of the mobile device recognized by the antenna or the rainy weather state outside the vehicle detected by the rain sensor.
Window hinge assemblies with energy control and methods of using the same are described herein. The hinge assemblies include a track assembly, a shoe slidably engaged in a shoe track of the track assembly, a sash arm configured for attachment to a rotating sash, the sash arm being pivotally attached to the shoe, and a connecting arm pivotally connected to both the track assembly and the sash arm. The track assembly includes a base extending along a track axis, a shoe track extending along the track axis, and one or more energy control structures associated with the sash arm.
A power actuator for a latch of a motor vehicle closure panel has an electric motor to rotate a lead screw about an axis. A nut is disposed about the lead screw for selective translation along the lead screw. A clutch plate is configured for selective rotation about the axis when engaged with the nut, with a biasing member biasing the nut out of engagement with the clutch plate when the electric motor is de-energized. A carrier member is coupled with the nut to cause the nut to translate into engagement with the clutch plate during rotation of the lead screw, whereupon the nut and carrier member co-rotate with the clutch plate and leadscrew. A driven member is operably coupled with the clutch plate and with the latch via a cable/rod, such that the driven member maintains the latch in a cinched state when the electric motor is energized.
A locking device for a door located at a door frame having a door strike. The locking device includes an actuator having a neutral position and a displaced position, and a latchbolt assembly having an extended position configured to engage the door strike, and a retracted position configured to move past the door strike. The latchbolt assembly includes a latchbolt link configured to move the latchbolt in response to movement of the actuator. A first dampening device is disposed adjacent to the latchbolt link, with the dampening device resiliently engaging the latchbolt link as the latchbolt link moves from the retracted position to the extended position. The first dampening device limits movement of the latchbolt link. A second dampening device is configured to restrain movement of the latchbolt during movement from the retracted position to the extended position.
An adapter for either a handle set or a lever set door lever is equipped with a pair of springs to provide a pre-load on the spindle. The pre-load prevents sagging of the lever due to the large mass of the lever. A sleeve in the adapter is formed out of a compressible material that accepts the spindle in a press-fit configuration. This allows for greater manufacturing tolerances while still providing a solid and secure engagement between the spindle and the adapter. As a result, any free play in the lever is eliminated and the lever is maintained in a horizontal, home position when the lever is not in use. Following use through rotation of the lever, the springs promptly return the lever back to the home position while the sleeve prevents any slop or free-play in the lever's motion.
A door latch operator comprising: one of a knob and a lever on a door configured to articulate in response to a linear force, wherein the linear force is perpendicular to a central, longitudinal axis of a latch; a transmission configured to translate the linear force into a rotational motion; and a latch bolt configured to extend from the latch absent the rotational motion and retract into the latch upon reception of the rotational motion.
A modular step composed of a fiber reinforced thermoplastic. The modular step has a body and two flanges and is configured in size and shape to be detachably affixed to a window well. The modular step mates to the window using a friction fit, mechanical fasteners or tabs/slots. Multiple modular steps can be attached to a single window well. The modular step can be used to facilitate egress through a window well and improves the visual aesthetics of a window well.
A flooring underlayment comprises a membrane that includes a body panel having a panel top surface and a panel underside surface spaced apart from the panel top surface by a panel thickness. The membrane further includes a plurality of dimples projecting downward from the panel underside surface, each dimple having a dimple upper end open to the panel top surface, a closed dimple lower end spaced apart from the dimple upper end by a dimple height, and a dimple sidewall extending between the dimple upper end and the dimple lower end, the dimple sidewall configured to inhibit collapse of the dimple height when a load is applied to the flooring underlayment during use. The membrane includes a plurality of grooves open to the panel top surface and formed within a groove body projecting downward from the panel underside surface, each groove shaped to receive an elongated heating element therein.
A thermoplastic-based building panel, such as a floor panel. The building panel includes an upper layer arrangement, a lower layer arrangement, and a balancing layer provided between the lower and the upper layer arrangement. The building panel further includes a groove arrangement including grooves. A thermoplastic-based building panel including an upper layer arrangement and a balancing layer which is a bottom layer of the building panel. The building panel includes a groove arrangement, wherein a major portion of the grooves therein is provided in the balancing layer only. A thermoplastic-based building panel including a mechanical locking system for horizontally and/or vertically locking the building panel to an adjacent building panel. The mechanical locking system includes a cooperating surface which is situated in a balancing layer and is configured to cooperate with a cooperating surface of an adjacent building panel.
A method of assembling resilient floorboards is disclosed that includes the step of bending an edge of a floorboard during the assembling. The bending reduces the force required for connection of the edge to another edge of a juxtaposed floorboard. The floorboards may be provided with a mechanical locking system for vertical and horizontal locking of two adjacent floorboards.
A modular staircase frame is lightweight, adjustable, and may be brought to a worksite in pieces to be assembled. The modular staircase frame includes two opposing sets of laterally spaced blades, which may be adjustably connected to form laterally spaced ascending frame members. The opposing sets of blades may include a first pair of blades and a final pair of blades to anchor the frame to a first and second surface, respectively. The blades have openings for adjustable attachment of adjacent blades. The frame may also include stiffeners for added structural support. The opposing sets of laterally spaced blades may further include one or more corner blades for changing the direction of the staircase. Once the frame is installed, treads (temporary or final) can be removably installed on the frame to create a staircase.
For an enclosure including a ground area (2), a spectator area (3) around the ground area and a plurality of bearing points (12) around and above the spectator area, the method of mounting a roof structure comprises: assembling a tension ring (14) at the level of the ground area, the tension ring comprising at least one first cable extending along the tension ring and a plurality of connectors (15) spaced along the tension ring; attaching a plurality of second cables (13) to the plurality of connectors, each second cable having a first end connected to a respective one of the connectors and extending radially and outwardly from the tension ring, each second cable being associated with a respective one of the bearing points (12); and lifting the tension ring by pulling the connectors (15) by the second cables (13).
A wall panel of a moveable and demountable frameless wall panel system that is secured between a floor of a room and a ceiling rail secured to a ceiling of the room. The wall panel includes a frameless panel, an upper clamp assembly, a ceiling track configured to be removably inserted into the ceiling rail, a lower clamp assembly, a first height adjustment mechanism secured to the lower clamp assembly, a second height adjustment mechanism, and a bottom floor channel receiving the first height and second height adjustment mechanisms.
A disclosed corrugated end cap includes a corrugated frame having one or more corrugations defined by one or more sets of alternating peaks and valleys. The end cap also includes one or more ribs disposed in one or more of the valleys and one or more valley reinforcements disposed in the valleys and running over a top surface of the corrugated frame. For example, the one or more ribs may be configured to increase a resistance of the frame to bending. Additionally or alternatively, the top surface, a front surface, and a rear of the corrugated frame surround a recess configured to receive latch ridges from a stormwater chamber.
A drain pipe connector adapted to be disposed between a drain portal of a plumbing fixture and a sewage pipe. The drain pipe connector includes a first unidirectional valve adapted to be in fluid communication with the drain portal, and a drain trap in connected to the first unidirectional valve and adapted to be connected to the sewage pipe. The first unidirectional valve has a closed operative orientation, in which the first unidirectional valve forms a seal between the drain portal and the drain trap, and an open operative orientation which enables flow of fluid from the drain portal, via the first unidirectional valve, into the drain trap. The first unidirectional valve is normally closed, and when liquid drains into the first unidirectional valve, pressure applied by the liquid transitions the first unidirectional valve from the closed operative orientation to the open operative orientation, thereby enabling the liquid to flow into the drain trap.
The device and method disclosed comprises a portable housing continuous with a base that affixes to a drain stopper or directly to a sink or water basin to receive and direct water from a faucet or other similar dispenser, enlarging the surface area upon which the water flows. Greater water disbursement caused by the different flow configuration created by this device allows the sink or basin to stay cleaner by reducing dirt, debris, germs and grime buildup that would otherwise occur with use.
A cold water discharge apparatus, for discharging water from an outlet port when feed water is hot and from a cold water discharge port when the feed water is cold, includes a temperature-sensitive first switching valve body and a diaphragm-type second switching valve body. The first switching valve body is configured to open/close a cold water discharge flow channel depending on temperature. The second switching valve body is configured to open a discharge flow channel due to the pressure caused by the flow of hot water through the discharge flow channel. The second switching valve body is configured to close the discharge flow channel due to the pressure caused by the flow of the cold water through the cold water discharge flow channel. The second switching valve body is configured to discharge residual water from the cold water discharge flow channel after stopping water has cooled down.
Example aspects of a remote-operated flushing system and a method of operating a flushing system are disclosed. The remote-operated flushing system can comprise a fluid routing assembly comprising a valve, the valve configurable in an open configuration, wherein fluid is permitted to flow through the fluid routing assembly, and a closed configuration, wherein the fluid is prohibited from flowing through the fluid routing assembly; a control device configured to actuate the valve between the open configuration and closed configuration; a remote operation device wirelessly connected to the control device and configured to remotely operate the control device to control the actuation of the valve between the open configuration and closed configuration; and a sensor configured to detect a fluid property of the fluid within the fluid routing assembly, wherein the control device is configured to wirelessly send a signal representative of the fluid property detected by the sensor.
A handling system for handling ground-engaging wear parts used on earth working equipment includes handling tools to remove and handle wear parts from equipment and/or to install new wear parts. The tools can include a torque or other tool to engage and/or disengage a lock retained by the wear member. The handling system allows an operator maintain a distance from heavy parts being removed or installed, reducing the risk of injury.
A rotary drive machine for the installation of helical pile sections through installation openings in a slab floor inside of a building perimeter. A vertical frame having an upper end and an open lower end is positioned over an installation opening through which it is desired to rotationally install a helical pile section, and the vertical frame anchored to the slab floor. A rotary power means, attached to the helical pile section moves along a vertical movement guide and is driven by a vertical actuator to rotationally and vertically drive the helical section into the ground. A method of use is also disclosed.
The invention relates to a pile installation system for providing a pile in the ground, comprising;
an elongate pile installation tool for forming a bore hole and having a distal end,
an end member for coupling to the distal end of the pile installation tool, and
an electromagnetic device for releasable magnetically coupling the end member to the pile installation tool.
A barricade includes a foundation frame, a finger wedge barrier, a hinge hingedly coupling the finger wedge barrier to the foundation frame, and an actuator mechanism coupled to the foundation frame and the finger wedge barrier. The finger wedge barrier is configured to rotate about the hinge between a stowed configuration and a deployed configuration, and the actuator mechanism is configured to rotate the finger wedge barrier between the stowed configuration and the deployed configuration. The actuator mechanism includes an actuator comprising a housing and a rod configured to reciprocally move in the housing, a first linkage having a first end rotatably coupled to the rod and a second end rotatably coupled to the finger wedge barrier, and a second linkage having a first end rotatably coupled to the rod and a second end rotatably coupled to the foundation frame.
A highway work basket apparatus includes a vertically movable lift platform that can be selectively mounted on either side of the work basket. The frame of the work basket supports a pair of lift mechanisms mounted on opposing sides at the forward end of the work basket. A detachable lift platform is provided for selective attachment to one of the opposing lift mechanism to enable movement of highway markers between the levels of the truck bed and the surface of the highway. The floor of the lift platform has conveyors embedded therein and powered by the hydraulics of the highway truck on which the work basket is mounted to facilitate the movement of the highway markers onto or off of the surface of the highway. The frame of the work basket also supports a hitch receiver to permit a trailing attachment of a directional sign.
A power unit is configured for use as part of a concrete screed and includes a frame and a powered drive. The frame includes a drive housing. The powered drive is operably supported by the drive housing and is configured to rotate a rotatable concrete forming drum. The powered drive includes an electric motor and a battery operably coupled to the electric motor and configured to power the electric motor. The powered drive includes a drive shaft drivingly connectable relative to the drum, with rotation of the drive shaft causing corresponding rotation of the drum.
A system for controlling an engagement of a material supply machine with a paving machine is provided. The system includes one or more sensor(s) mounted on material supply machine and/or the paving machine and are configured to detect a position and distance of paving machine with respect to material supply machine. The sensor(s) further detect a relative speed between the two machines. A controller autonomously controls speed of material supply machine based on detected relative speed when distance is less than threshold. The speed of material supply machine is controlled to match speed of the paving machine. The controller also autonomously controls steering of material supply machine based on detected position of leading end of paving machine to align material supply machine with leading end of paving machine until the material supply machine engages with leading end of paving machine.
The present invention relates to novel lignin-derived compounds and compositions comprising the same and their use as redox flow battery electrolytes. The invention further provides a method for preparing said compounds and compositions as well as a redox flow battery comprising said compounds and compositions. Additionally, an assembly for carrying out the inventive method is provided.
In a process for producing bleached mechanical woodpulp, said process comprising the steps of
a) delaminating comparatively large particles of wood, which have optionally been pretreated with chemicals and/or water, into modified particles of wood,
b) grinding the modified particles of wood from a) in one or more refiners,
c) optionally treating the stalk obtained in step b) with oxidative or reductive bleaching agents, a composition Z is present during step a) and/or step b), said composition Z comprising one or more of the following components (Z1) to (Z3): a salt of dithionous acid H2S2O4 (Z1), a dithionous acid or dithionous acid derivative generator compound (Z2), a salt of sulfurous acid (sulfite) plus sodium tetraborohydride (Z3) and also optionally additives (Z4).
A sanitation system includes a drum configured to be positioned within a body of an appliance. The drum includes a lifter on an interior surface. A sanitation device is selectively disposed within the drum. The sanitation device includes a housing. A heatsink is integrally formed with the housing. The heatsink and the housing form an outer structure free of apertures. A sensor assembly is disposed within the outer structure. The sensor assembly includes a humidity sensor configured to sense humidity. A light source is disposed within the outer structure.
A laundry appliance includes a cabinet defining an opening with a laundry vessel mounted within the cabinet. The laundry vessel defines a treatment chamber. The laundry appliance also includes an electrolytic hypochlorous acid generator upstream of the treatment chamber with respect to a flow of cold water through the laundry appliance and a controller. The controller may be configured for and/or a method of sanitizing the laundry appliance may include opening a valve upstream of the electrolytic hypochlorous acid generator to provide the flow of cold water through the laundry appliance, confirming the presence of the cold water in the laundry appliance after opening the valve, and activating the electrolytic hypochlorous acid generator after confirming the presence of the cold water in the laundry appliance.
Embodiments herein describe mapping user drawn lines into an embroidery machine file. For example, a user can use a stylus or her finger to draw an embroidery design on a touch screen of a user device (e.g., a smartphone, tablet, laptop, etc.). An embroidery application executing on the user device can convert the user movements into needle point paths. The application can then convert the needle point paths into the embroidery machine file.
A method and a knitting device for plating with compound needles on a circular knitting machine is described herein. At least two yarns are inserted into the hook area of a compound needle. A sinker is moved in such a way relative to a knock-over edge disposed immovably on a cylinder that the sinker, by way of a guide means, guides at least one of the yarns further into the hook area of the compound needle, in the direction of the needle shank, and in doing so keeps the yarns separated. The sinker furthermore moves, in the longitudinal direction and the elevational direction, in such a manner relative to the knock-over edge that the guide means performs a movement which, at least section-wise, tracks at least one yarn.
A knitted component may include a knit element formed with a plurality of courses and a plurality of wales, where the plurality of courses include a first course and the plurality of wales include a first wale and a second wale. A set of inlaid strands including at least a first inlaid strand and a second inlaid strand may be included. A first area and a second area may be included, where in the first area, each inlaid strand of the set of inlaid strands extends through at least a portion of the first course, and where in the second area, the first inlaid strand extends through the first wale and the second inlaid strand extends through the second wale.
An improved insulating performance fabric has a double-knit body, formed with traditional, relatively smooth, outer surfaces, and an inner surface with the form of multiple fabric “bubbles” separated, e.g., by a grid pattern of intersecting grooves. An insulating, double-knit performance fabric of this disclosure may also be found in the form of a garment comprising the insulating, double knit performance fabric, or in the form of fabric article comprising the insulating, double knit performance fabric, etc.
The present disclosure discloses an antibody fragment library, method for preparing the library and its applications. The essential steps in construction of the library is devoid of any restriction enzyme. Emulsion based PCR has been used as an important tool for the construction and validation of the library. The method as disclosed in the present disclosure leads to construction of a library comprising at least 8 billion clones.
The present disclosure involves a method for partial gold plating of a metal packaging housing and a packaging housing thereof. The packaging housing may include a base. The base may be provided with at least one lead hole. A housing lead may be interspersed in the lead hole. The lead hole may be also provided with an insulator surrounding the housing lead. The method may include operations such as nickel plating, oxidation, gold plating, reduction, etc.
A heat shield structure for a substrate support in a substrate processing system includes an outer shield configured to surround a stem of the substrate support. The outer shield is further configured to define an inner volume between the outer shield and an upper portion of the stem and a lower surface of the substrate support and a vertical channel between the outer shield and a lower portion of the stem of the substrate support. The outer shield includes a cylindrical portion, a first lateral portion extending radially outward from the cylindrical portion, an angled portion extending radially outward and upward from the first lateral portion, and a second lateral portion extending radially outward from the angled portion.
The disclosure relates to a method for forming a low refractive index layer on a substrate. The method generally includes (a) applying a block copolymer layer on a substrate, the block copolymer including a polar polymeric block and a non-polar polymeric block; (b) swelling the block copolymer layer with a solvent to increase the block copolymer layer thickness; (c) depositing a metal oxide or metalloid oxide layer on polar polymeric blocks of the block copolymer layer; and (d) removing the block copolymer layer from the substrate, thereby forming a porous metal oxide or metalloid oxide layer on the substrate.
Embodiments described herein relate to apparatus and methods for processing a substrate. In one embodiment, a cluster tool apparatus is provided having a transfer chamber and a pre-clean chamber, a self-assembled monolayer (SAM) deposition chamber, an atomic layer deposition (ALD) chamber, and a post-processing chamber disposed about the transfer chamber. A substrate may be processed by the cluster tool and transferred between the pre-clean chamber, the SAM deposition chamber, the ALD chamber, and the post-processing chamber. Transfer of the substrate between each of the chambers may be facilitated by the transfer chamber which houses a transfer robot.
A physical vapor deposition (PVD) target for performing a PVD process is provided. The PVD target includes a backing plate and a target plate coupled to the backing plate. The target plate includes a sputtering source material and a dopant, with the proviso that the dopant is not impurities in the sputtering source material. The sputtering source material includes a diffusion barrier material.
This copper alloy for electronic or electric devices contains 100 mass ppm or greater and 400 mass ppm or less of Mg, 5 mass ppm or greater and 20 mass ppm or less of Ag, and less than 5 mass ppm of P with a balance being Cu and inevitable impurities, in which when a ratio of J3, in which all three grain boundaries constituting a grain boundary triple junction are special grain boundaries, to all grain boundary triple junctions is defined as NFJ3 and a ratio of J2, in which two grain boundaries constituting a grain boundary triple junction are special grain boundaries and one grain boundary constituting the grain boundary triple junction is a random grain boundary, to all grain boundary triple junctions is defined as NFJ2, an expression of 0.22<(NFJ2/(1−NFJ3))0.5≤0.45 is satisfied.
The present disclosure relates to a PCR detection kit for rapidly identifying Salmonella of specific serotypes. The kit includes primers for detecting tcpS gene, the primers for detecting the tcpS gene including a forward primer having a nucleotide sequence as set forth in SEQ ID NO. 1 and a reverse primer having a nucleotide sequence as set forth in SEQ ID NO. 2. The kit can identify Salmonella of enteritidis, pullorum/gallinarum, and dublin serotypes rapidly and in a high throughput, which can be used as an auxiliary method for the conventional serotyping of Salmonella.
This disclosure provides a biochip comprising a plurality of wells. The biochip includes a membrane that is disposed in or adjacent to an individual well of the plurality of wells. The membrane comprises a nanopore, and the individual well comprises an electrode that detects a signal upon ionic flow through the pore in response to a species passing through or adjacent to the nanopore. The electrode can be a non-sacrificial electrode. A lipid bilayer can be formed over the plurality of wells using a bubble.
Method and systems for identifying and distinguishing subjects using a biochip are described. Biochips comprising subject specific features comprising multiple non-overlapping probes are disclosed.
The present disclosure provides methods and systems for nucleic acid preparation and/or analysis. Nucleic acids may be derived from one or more cells. Nucleic acid preparation may comprise generating nucleic acid molecules of varying lengths. Nucleic acid analysis may comprise identifying nucleic acid sequence information with nucleosome position information.
We disclose dumbbell-shaped vectors adapted for efficient expression in mammalian cells. We also disclose a novel method allowing the efficient synthesis of dumbbell-shaped vectors at low cost for delivery of recombinant DNA and RNA into host cells; and the use of dumbbell-shaped vectors for transient expression in, for example, primary human cells.
Polypeptides comprising maltose/maltotriose transporters are provided. Additionally, polynucleotides, DNA constructs, and vectors encoding a maltose/maltotriose transporter, or yeast cells harboring such polynucleotides are provided. The yeast cell may be a Saccharomyces eubayanus cell modified to increase the expression or transport activity of a maltose/maltotriose transporter at the plasma membrane of the cell. Further, methods are provided for making a fermentation product by culturing any one of the yeast cells described herein with a fermentable substrate. Finally, methods are provided to select for and isolate maltotriose-utilizing strains of Saccharomyces eubayanus.
The present disclosure provides half duplex compounds comprising a first oligomeric compound and a second, shorter, oligomeric compound, wherein the first oligomeric compound is complementary to a target nucleic acid and the second oligomeric compound is complementary to the first oligomeric compound. In certain embodiments, the compounds disclosed herein are useful for modulating the expression of extra-hepatic target nucleic acids.
Provided are methods and compositions for negatively and positively selecting for different size nucleic acid (e.g., DNA or RNA) fragments on borosilicate glass fiber membranes, silica and metal oxide surfaces such that only those fragments falling within a desired size range are obtained.
Provided herein are compositions, foods comprising nepenthesin or a derivative thereof and methods of using nepenthesin or a derivative thereof for modulating gluten intolerance and related conditions, such as celiac disease. Further provided herein are pharmaceutical compositions comprising nepenthesin or a derivative thereof and methods of using nepenthesin or a derivative thereof to treat bacterial infections of the gastrointestinal tract, such as C. difficile or H. pylori. Further provided herein are compositions comprising recombinant nepenthesin I or nepenthesin II, or homologous proteins, and methods for making the same.
The present invention relates to microfluidic fluidic devices, methods and systems as microfluidic kidney on-chips, e.g. human Proximal Tubule-Kidney-Chip, Glomerulus (Kidney)-Chip, Collecting Duct (Kidney)-Chip. Devices, methods and systems are described for drug testing including drug transport and renal clearance. Further, such devices, methods and systems are used for determining drug-drug interactions and their effect upon renal transporter functions. Importantly, they may be used for pre-clinical and clinical drug development for treating kidney diseases and for personalized medicine.
A data collection hub and method wherein a controller is configured to receive data from a plurality of sensors sensing conditions related to the performance of operations on cells by at least one instrument. A database stores the data from the plurality of sensors and the controller is configured to compare data from the plurality of sensors for a past operation with the data for a more recent operation.
Provided is a cell culture apparatus including a culture vessel that stores a cell suspension containing cells; a first filter part that has a first filter membrane that performs membrane separation treatment on the cell suspension extracted from the culture vessel; a first circulation flow path that allows components blocked by the first filter membrane to return to the culture vessel; a second filter part that has a second filter membrane that performs membrane separation treatment on components of the cell suspension permeated through the first filter membrane; a second circulation flow path that allows components permeated through the second filter membrane to return to the culture vessel; and a recovery flow path that recovers components blocked by the second filter membrane. In the cell culture apparatus, an average hole diameter of the first filter membrane is 20 μm or smaller, and 0