-
公开(公告)号:CN118818414A
公开(公告)日:2024-10-22
申请号:CN202411183169.5
申请日:2024-08-27
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司
IPC: G01R35/04
Abstract: 本发明公开了一种基于动量更新双路重构自校正电能表异常检测方法及系统,属于电能表异常检测技术领域。本发明方法,包括:获取电能表的原始时间序列数据,并基于所述原始时间序列数据生成时间序列集;基于所述时间序列集及基于动量更新Transformer记忆模块的双路重构自校正框架,训练得到用于电能表异常检测的检测模型;基于所述检测模型,根据目标电能表的时间序列集,对所述目标电能表的异常进行检测。本发明增强了模型对正常数据的学习能力同时提高正异常的区分度,提高了异常检测的性能。
-
公开(公告)号:CN118484703A
公开(公告)日:2024-08-13
申请号:CN202410561513.3
申请日:2024-05-08
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司 , 国网山西省电力公司 , 国网山西省电力公司营销服务中心
Inventor: 孟之航 , 高欣 , 李保丰 , 翟峰 , 赵兵 , 郜波 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 徐萌 , 冯云 , 赵英杰 , 卢建生 , 任宇路 , 石智珩 , 谢振刚 , 杨子成 , 杨帅
Abstract: 本发明公开了一种基于迁移学习的电能表故障分类方法及装置。其中,方法包括:收集电能表的历史故障数据样本集;分别遍历历史故障数据样本集中的每一故障类别样本,将该故障类别下所有样本作为少数类样本集,其余各故障类别的样本作为多数类样本集,生成多个二类数据集;根据预先训练的迁移数据选择器以及迁移任务监督器,分别对多个二类数据集进行对抗迭代,生成多个迁移数据集;分别将多个迁移数据集输入至少数类样本生成模型中,生成多个平衡样本集分别训练分类器,生成多个故障类别分类器;将实时采集的待测故障数据分别输入至多个故障类别分类器,输出多个故障类别概率,并选取多个故障类别概率中最大值作为待测故障数据的故障类别。
-
公开(公告)号:CN115361734A
公开(公告)日:2022-11-18
申请号:CN202210825377.5
申请日:2022-07-14
Abstract: 本发明所提供的基于信息时效性的功率和IRS相移联合优化方法及装置,包括获取峰值信息年龄违规概率;对峰值信息年龄违规概率进行随机网络演算处理,得到峰违规限制条件;获取IRS信息,根据信号信息、信道信息以及IRS信息计算有效容量,根据有效容量和违规限制条件构建有效容量优化模型;将有效容量优化模型求解过程转化为马尔科夫决策过程;基于双延迟DDPG方法求解马尔科夫决策过程,确定IRS相移值以及源节点的发送功率值。本发明利用峰值信息年龄违规概率量化信息时效性保障需求,在信息时效性保障需求下,联合控制设备功率和IRS相移以最优化IRS辅助的短包数据传输系统中的有效容量,且不会产生复杂的计算。
-
公开(公告)号:CN107438258A
公开(公告)日:2017-12-05
申请号:CN201710414243.3
申请日:2017-06-05
Applicant: 北京邮电大学深圳研究院
CPC classification number: H04W24/02 , H04W24/10 , H04W36/0016 , H04W36/0088 , H04W36/18
Abstract: 本发明提供一种基于用户移动性管理的通信模式切换方法及装置。所述方法包括:S1,基于D2D及蜂窝通信混合网络,检测正在通信的第一用户设备和第二用户设备之间的相对距离;S2,检测所述第一用户设备和第二用户设备之间的信号质量,当所述相对距离及信号质量满足切换触发条件时,向所述第一用户设备的本小区基站或者所述第一用户设备的邻区基站发送测量报告,并获取所述本小区基站或者所述邻区基站的切换判决;S3,基于所述切换判决,进行所述第一用户设备和第二用户设备之间的D2D-蜂窝通信模式的切换。本发明实现D2D通信模式和蜂窝通信模式之间的无缝切换,降低用户间的干扰,提高通信质量。
-
公开(公告)号:CN119128750A
公开(公告)日:2024-12-13
申请号:CN202411176227.1
申请日:2024-08-26
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司
Inventor: 高欣 , 陈玲俐 , 李保丰 , 翟峰 , 赵兵 , 郜波 , 王一帆 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 尹建芹 , 徐萌 , 冯云 , 赵英杰 , 于秀丽
IPC: G06F18/2433 , G01R35/04 , G06N3/0455 , G06F123/02
Abstract: 本发明公开了一种基于多粒度动态感受野的电能表异常检测系统及方法,属于电能计量技术领域。本发明系统,包括:多粒度动态感受野模块,用于对电能表的补丁块数据进行遍历处理,以输出感受野数据;多维时序编解码器模块,用于对所述多粒度动态感受野模块输出的感受野数据进行重构,输出重构数据;双层异常检测模块,用于计算出所述多维时序编解码器模块输出的重构数据的异常分数,基于所述异常分数,确定电能表的异常。本发明通过感受野及数据重构,能够识别数据的异常,以此确定异常分数,并解决了现有重构方法在处理低信息密度的多维时序数据时可能出现的信息丢失或语义特征挖掘不足的问题。
-
公开(公告)号:CN118411560A
公开(公告)日:2024-07-30
申请号:CN202410523072.8
申请日:2024-04-28
Applicant: 中国电力科学研究院有限公司 , 北京邮电大学 , 国网山西省电力公司 , 国网山西省电力公司营销服务中心
Inventor: 李保丰 , 翟峰 , 高欣 , 苏俊池 , 方潇 , 赵兵 , 郜波 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 徐萌 , 冯云 , 赵英杰 , 卢建生 , 任宇路 , 石智珩 , 谢振刚 , 杨子成 , 杨帅
IPC: G06V10/764 , G06V10/774 , G06V10/40 , G06N3/0464
Abstract: 本发明属于图像多目标检测技术领域,公开了一种目标检测模型构建方法、目标检测方法及相关装置;其中,所述目标检测模型构建方法包括:以基于YOLO框架的目标检测网络为基准模型,将基准模型的特征提取网络中的所有卷积层替换为重排网络模块和设置于重排网络模块后的无参数注意力模块,获得轻量化目标检测网络;基于选定的训练数据集对所述轻量化目标检测网络进行深度学习预训练,然后基于教师模型使用置信度蒸馏损失进行蒸馏训练,达到预设收敛条件后,构建获得目标检测模型。本发明构建获得的目标检测网络在面临复杂的检测场景和实时的检测任务时,具有较高的检测精度和检测效率。
-
公开(公告)号:CN117998552A
公开(公告)日:2024-05-07
申请号:CN202311695242.2
申请日:2023-12-11
IPC: H04W52/06 , H04W52/38 , G06N3/0455 , G06N3/0464 , G06N3/08 , H04J14/04
Abstract: 本发明属于无线通信技术领域,公开了一种模分多址接入方法、装置、设备及存储介质。该方法包括:获取发送节点待传输的原始数据,并对原始数据进行特征提取,得到语义向量;基于发送节点对应的功率参数,为语义向量分配对应的功率参数,得到功率语义向量;对功率语义向量进行整合,得到功率整合向量;将功率整合向量发送至接收节点进行解码,按照功率参数,依次得到发送节点的原始数据。通过串行干扰抵消的方式,减少解码时各个发送节点语义向量叠加带来的相互干扰,提高解码的正确率。
-
公开(公告)号:CN117216654A
公开(公告)日:2023-12-12
申请号:CN202311109470.7
申请日:2023-08-30
Applicant: 中国电力科学研究院有限公司 , 北京邮电大学 , 国网重庆市电力公司营销服务中心
Inventor: 刘婧 , 于海波 , 陈天阳 , 李强伟 , 高欣 , 谭煌 , 陈昊 , 陈文礼 , 李媛 , 刁新平 , 乔文俞 , 程瑛颖 , 苏宇 , 李亚杰 , 田成明 , 谷凯 , 郜波 , 郑安刚
IPC: G06F18/241 , G06F18/2415 , G06F18/21 , G06N3/0455 , G06N3/096
Abstract: 本发明公开了一种基于类别迁移的电能表评价校准模型测评方法及系统,属于电能计量技术领域。本发明方法,包括:获取不同台区在评价校准模型下的性能表现数据和不同台区的特征数据,将所述性能表现数据和所述特征数据作为跨类别样本迁移框架的输入数据集;将所述输入数据集划分为多个不平衡二类数据集,基于跨类别样本迁移框架平衡多个不平衡二类数据集,得到平衡数据集,基于基础分类器对所述平衡数据集进行分类;基于一对多分类框架及分类后的平衡数据集,对所述评价校准模型在不同台区上的表现进行分类,以确定评价校准模型在不同台区上的性能等级。本发明基于跨类别样本迁移框架能够预测出评价校准模型在不同台区上的性能等级。
-
公开(公告)号:CN117092582A
公开(公告)日:2023-11-21
申请号:CN202310990073.9
申请日:2023-08-08
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司 , 国网山西省电力公司营销服务中心
IPC: G01R35/04 , G06F18/213 , G06F18/214 , G06F18/22 , G06N3/0455 , G06N3/094
Abstract: 本发明公开了一种基于对抗对比自编码器的电能表异常检测方法及装置。其中,方法包括:获取待测电能表历史检测的多变量长时间序列数据;对多变量长时间序列数据进行归一化处理,划分预设窗口长度的多个时间窗口数据;将多个时间窗口数据输入至预先训练的异常检测模型中,输出每个时间窗口数据对应的重构数据,异常检测模型中采用对抗对比自编码器;根据每个时间窗口数据的重构数据以及时间窗口数据确定该时间窗口数据每个时间点的异常分数,并根据异常分数,确定每个时间点的异常程度。
-
公开(公告)号:CN115412202B
公开(公告)日:2023-06-16
申请号:CN202210917842.8
申请日:2022-08-01
IPC: H04L1/00 , H04N19/149 , H04N19/169 , H04B17/391 , G06N3/04 , G06N3/08 , G16H30/20 , G16H30/40
Abstract: 本发明公开了一种基于医学图像的语义通信方法及相关设备,所述基于医学图像的语义通信方法包括:基于深度学习获取医学图像中的医学知识;将所述医学图像和所述医学知识输入到编码器神经网络,以获得第一联合语义特征,所述第一联合语义特征包括图像特征和知识特征,所述第一联合语义特征经过信道传输后,输出为第二联合语义特征;基于解码器神经网络对所述第二联合语义特征进行解码,获得所述医学图像和所述医学知识。本发明中通过编码器神经网络独立编码医学图像和医学知识,最大限度保留医学图像中的医学知识,使得接收端能够接收并恢复携带准确医学知识的医学图像,进而提高语义通信过程中接收端接收到的医学图像的准确性。
-
-
-
-
-
-
-
-
-