-
公开(公告)号:CN110377986B
公开(公告)日:2021-02-02
申请号:CN201910594463.8
申请日:2019-07-03
Applicant: 北京交通大学 , 广州地铁集团有限公司
IPC: G06F30/27 , G06N20/10 , G06Q10/00 , G06F111/10 , G06F119/04 , G06F119/14
Abstract: 本发明提供了一种地铁小半径曲线外轨侧磨预测方法,用以解决现有技术中地铁在小半径曲线段运行安全保障问题。所述预测方法建立小半径曲线外轨侧磨计算简化模型基础上,分析外轨磨耗的关键致因因素,再根据关键磨耗因素及计算简化模型,获得磨耗规律,预测外轨寿命。本发明不仅能对曲线外轨的磨耗寿命进行预判并以此提出最佳维保周期,为维修部门提供有针对性的钢轨打磨或更换建议,从而降低时间、经济成本,而且能得到影响曲线外轨磨耗的关键因素,通过致因分析来进行相应的设计及运行调整,减缓曲线外轨的磨耗速率,从而提升曲线车辆运行的寿命及安全性,具有相应的经济效益和社会效益。
-
公开(公告)号:CN111310948B
公开(公告)日:2024-04-30
申请号:CN202010240479.1
申请日:2020-03-31
Applicant: 北京交通大学 , 广州地铁集团有限公司
IPC: G06Q10/20 , G06Q10/04 , G06Q10/067 , G06Q10/0635 , G06Q30/0201 , G06Q50/26 , G06F17/18
Abstract: 本发明提供了一种轨道交通车载信号系统的优化维修策略的获取方法。该方法包括:绘制轨道交通车载信号系统的故障树,对故障树进行定量分析,获取故障树中各单元的关键重要度;将故障树转化为贝叶斯网络,对贝叶斯网络进行后验概率推理,综合参考故障树中各单元的关键重要度和所述贝叶斯网络中各个节点的后验概率,确定各个节点的重要度;选取具有较高重要度的各个节点作为系统的薄弱环节,建立具有较高重要度的各个节点对应的事件的基于状态的维修模型,根据基于状态的维修模型获取轨道交通车载信号系统的优化维修策略。本发明不仅能在系统发生故障时提供快速定位故障设备的参考依据,并且能推测出车载信号设备的最佳维修维保时间。
-
公开(公告)号:CN112164044B
公开(公告)日:2025-02-14
申请号:CN202011010912.9
申请日:2020-09-23
Applicant: 广州地铁集团有限公司 , 北京交通大学
Inventor: 蔡昌俊 , 魏秀琨 , 王海 , 江思阳 , 何江海 , 贾利民 , 高劲 , 尹贤贤 , 刘兰 , 闫雅斌 , 魏德华 , 孟鸿飞 , 李赛 , 杨子明 , 滕延芹 , 潘潼 , 翟小婕 , 所达 , 管青鸾
Abstract: 本发明提供了一种基于双目视觉的刚性接触网的磨耗分析方法。该方法包括:通过两个相机采集列车顶部与隧道顶部的刚性接触网的接触线图像;对两个相机采集到的接触线图像对进行校正,利用立体匹配算法获取校正后的图像对的视差图;根据双目视觉立体成像原理将视差图转换为深度图,提取深度图中的接触线部分,对接触线部分进行三维重建可视化,得到刚性接触网的磨耗特征及分布。本发明利用接触网表面三维图以及各类别磨耗病害曲线图,能够较好地描述接触线表面磨耗情况,实现对刚性接触网的自动化、智能化检测。
-
公开(公告)号:CN111428406B
公开(公告)日:2022-06-03
申请号:CN202010207617.6
申请日:2020-03-23
Applicant: 北京交通大学 , 广州地铁集团有限公司
IPC: G06F30/23
Abstract: 本发明提供了一种钢轨小半径曲线内轨的波磨波长和波深的估算方法。该方法包括:建立轨道小半径曲线内轨波磨的波长和波深估算模型;基于有限元及动力学仿真确定所述波长和波深估算模型的参数;分析小半径曲线内轨波磨波长和波深发展特性;基于小半径曲线钢轨振动频响特性计算及车辆通过激励分析和波磨主振频率分析,提出了轨道结构超谐振动导致波磨产生的理论。该发明能对曲线内轨波磨的产生和发展趋势进行预判,为维修部门提供有针对性的钢轨打磨或维保建议,从而降低时间、经济成本,提升曲线车辆运行的寿命及安全性。
-
公开(公告)号:CN109783929B
公开(公告)日:2021-02-19
申请号:CN201910023389.4
申请日:2019-01-10
Applicant: 北京交通大学 , 广州地铁集团有限公司
IPC: G06F30/20
Abstract: 本发明提供了一种地铁车辆受电弓碳滑板磨耗估算方法及寿命预测方法,用于解决现有技术中无法对碳滑板磨耗进行准确估算的问题。所述磨耗估算方法及寿命预测方法,结合碳滑板磨耗率曲线和接触线的布置方式,计算出碳滑板在一定的运行里程内不同位置的磨耗量,得到沿碳滑板横向分布的磨耗轮廓,将碳滑板磨耗外形分布计算出来并可视化,并进一步对碳滑板的使用寿命进行预测。本发明对碳滑板的磨耗程度做出预判,为维修部门提供有针对性的碳滑板打磨或更换建议,降低了时间、经济成本,同时得到碳滑板磨耗较严重的区域,通过致因分析来进行相应的技术调整,避免在碳滑板上形成凹槽,从而提升弓网运行的安全性,具有一定的经济效益和社会效益。
-
公开(公告)号:CN109783928B
公开(公告)日:2021-04-13
申请号:CN201910023386.0
申请日:2019-01-10
Applicant: 北京交通大学 , 广州地铁集团有限公司
IPC: G06F30/20 , G06F119/04
Abstract: 本发明提供了一种地铁接触线磨耗分布预测方法及维保方法,用以解决现有技术中无法对地铁接触线磨耗分布进行准确预测的问题。所述接触线磨耗分布预测方法及维保方法,建立接触线磨耗率计算简化模型,根据所述简化模型对接触线磨耗分布进行预测,并在预测的基础上有针对性的制定维保策略。本发明通过磨耗机理分析,从磨耗机制的角度建立接触线磨耗率计算模型,并结合实际弓网电流和行车速度、接触力等对接触线的磨耗分布作出计算分析,直观地反映出不同位置接触线的磨耗程度,并提出了对接触线磨耗的提前预估和差异化维保方法,对减少维修成本和提高刚性接触网接触线的安全性能具有重要的意义。
-
公开(公告)号:CN112164044A
公开(公告)日:2021-01-01
申请号:CN202011010912.9
申请日:2020-09-23
Applicant: 北京交通大学 , 广州地铁集团有限公司
Inventor: 蔡昌俊 , 魏秀琨 , 王海 , 江思阳 , 何江海 , 贾利民 , 高劲 , 尹贤贤 , 刘兰 , 闫雅斌 , 魏德华 , 孟鸿飞 , 李赛 , 杨子明 , 滕延芹 , 潘潼 , 翟小婕 , 所达 , 管青鸾
Abstract: 本发明提供了一种基于双目视觉的刚性接触网的磨耗分析方法。该方法包括:通过两个相机采集列车顶部与隧道顶部的刚性接触网的接触线图像;对两个相机采集到的接触线图像对进行校正,利用立体匹配算法获取校正后的图像对的视差图;根据双目视觉立体成像原理将视差图转换为深度图,提取深度图中的接触线部分,对接触线部分进行三维重建可视化,得到刚性接触网的磨耗特征及分布。本发明利用接触网表面三维图以及各类别磨耗病害曲线图,能够较好地描述接触线表面磨耗情况,实现对刚性接触网的自动化、智能化检测。
-
公开(公告)号:CN109658387B
公开(公告)日:2023-10-13
申请号:CN201811425533.9
申请日:2018-11-27
Applicant: 北京交通大学
Inventor: 魏秀琨 , 江思阳 , 贾利民 , 尹贤贤 , 赵利瑞 , 魏德华 , 杨子明 , 李赛 , 孟鸿飞 , 滕延芹 , 王熙楠 , 管青鸾 , 所达 , 翟小婕 , 潘潼 , 陈亚兰
IPC: G06T7/00
Abstract: 本发明提供一种电力列车的受电弓碳滑板缺陷的检测方法。该方法包括:构建改进的RCNN网络模型,利用训练集数据对改进的RCNN网络模型进行训练。通过安装在列车轨道旁的工业线阵相机采集电力列车的受电弓图片,将受电弓图片输入到训练好的改进的RCNN网络模型,改进的RCNN网络模型利用卷积运算提取所述受电弓图片中的受电弓碳滑板区域,利用损失函数对受电弓碳滑板区域进行缺陷类别检测。本发明的方法通过区域生成网络和快速区域卷积神经网络的结合,对训练图片的自主学习与特征提取,从而能对采集系统拍摄的图片中受电弓碳滑板的有效区域及缺陷类别进行分析,能够对受电弓碳滑板的状态进行实时监测,保障城市轨道列车安全运行,具有较大的应用前景。
-
公开(公告)号:CN109711635B
公开(公告)日:2020-10-27
申请号:CN201910015954.2
申请日:2019-01-08
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于车站能力保持的设备维修策略优化方法,包括:基于Anylogic建立车站的客流仿真模型,统计车站各设备的各部分故障率;根据仿真模型,计算车站期望能力,并进行车站期望能力灵敏度分析,得出车站不同设备故障的可靠度约束值;对车站各设备的各部分故障率进行分布函数拟合,得出最优分布参数,进而得出各设备中各部分的可靠度函数及故障概率密度函数;通过维修周期优化模型计算出各设备中各部件的最优维修周期。本发明在保障车站关键设备可靠性前提下,以设备维修成本最小化为目标,分别确定设备不同部分的维修周期,提高车站关键设备可靠度,实现车站能力保持,提高设备维修效率和经济效益。
-
公开(公告)号:CN110533640A
公开(公告)日:2019-12-03
申请号:CN201910753916.7
申请日:2019-08-15
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于改进YOLOv3网络模型的轨道线路病害辨识方法,包括:获取和标注轨道图像数据集;构建改进YOLOv3网络模型;将所述的轨道图像数据集分为训练集和测试集,通过训练集对所述的改进YOLOv3网络模型进行训练;通过训练好的改进YOLOv3网络模型对测试集进行检测,根据检测结果对轨道线路病害进行辨识。本方法采用YOLOv3网络模型,有效地提升轨道线路多目标病害检测的效率、精度和速度。
-
-
-
-
-
-
-
-
-