-
公开(公告)号:CN110065939A
公开(公告)日:2019-07-30
申请号:CN201810062548.7
申请日:2018-01-23
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B32/186 , C01B32/194
Abstract: 本发明提供一种具有石墨烯气泡的石墨烯结构及其制备方法,制备方法包括:提供一衬底;于衬底上表面形成氢钝化层和位于氢钝化层上表面的石墨烯层;将一探针置于石墨烯层上,并给探针施加一预设电压,以激发探针对应位置的部分氢钝化层转换成氢气,氢气使得其对应位置的石墨烯层凸起以形成包覆氢气的石墨烯气泡。通过上述方案,本发明提供一种具有石墨烯气泡的石墨烯结构以及该石墨烯结构的制备方法,本发明的技术方案可以精确地控制石墨烯气泡的形成位置,并实现了石墨烯气泡的大小以及形状等的高度可控,本发明的制备方法操作简单,具有很强的可操作性和实用价值。
-
公开(公告)号:CN109841939A
公开(公告)日:2019-06-04
申请号:CN201910099321.4
申请日:2019-01-31
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明的无源滤波器及其制备方法,该方法包括:提供绝缘衬底;于绝缘衬底的至少一面上形成金属导线,金属导线的一端为电磁波信号的输入端,另一端为电磁波信号的输出端;于金属导线表面及金属导线所在的绝缘衬底表面覆盖屏蔽粉层。通过改变金属导线的线宽及长度等参数可以改变无源滤波器的大小,增大无源滤波器的适用范围,使无源滤波器可以放入小型仪器中进行滤波;另外,使用半导体工艺中的金属剥离方法或掩膜版蒸镀金属方法形成金属导线,大大减小了金属导线的线宽及金属导线的间距,使无源滤波器做到更小;最后,工艺制备简单,易于实施。
-
公开(公告)号:CN105866983B
公开(公告)日:2019-05-07
申请号:CN201610216678.2
申请日:2016-04-08
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G02F1/015 , H01L31/115 , B82Y30/00
Abstract: 本发明提供一种锗银复合材料及其在光电器件中的应用,所述锗银复合材料包括本征锗及埋在所述本征锗中的银纳米颗粒。所述锗银复合材料可以通过离子注入法将银离子注入到本征锗中并退火得到。本发明可以利用银纳米颗粒的局域表面等离子体共振增强作用,以及纳米颗粒之间表面等离子体共振耦合排斥作用,调控共振增强峰位频率在近红外波段,从而增强锗在近红外波段的光电响应。通过控制纳米银颗粒在本征锗中的密度,可以有效的控制增强锗光电响应的频谱范围从可见光到近红外。
-
公开(公告)号:CN106328502B
公开(公告)日:2019-02-01
申请号:CN201510355810.3
申请日:2015-06-24
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/265 , H01L21/324 , C30B29/10
Abstract: 本发明提供一种SiGeSn材料及其制备方法,制备方法包括以下步骤:提供衬底,所述衬底包含SiGe层;向所述SiGe层内注入含有Sn元素的原子、分子、离子或等离子体;将注入后的所述衬底进行退火处理。本发明的SiGeSn材料及其制备方法相较于现有技术具有成本低廉、工艺简单、质量更好、更利于大规模生产的优点。
-
公开(公告)号:CN109280903A
公开(公告)日:2019-01-29
申请号:CN201811245546.8
申请日:2018-10-24
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种高密度锗纳米线的制备方法,包括如下步骤:1)提供一锗衬底,锗衬底包括相对的第一表面及第二表面;2)于锗衬底的第一表面生长石墨烯;3)于锗衬底的第一表面形成铟催化剂层,且铟催化剂层至少覆盖石墨烯;4)于铟催化剂层远离锗衬底的表面生长锗纳米线。本发明无需采用电子束蒸发的方式沉积金属,大大简化了锗纳米线制备的工艺流程,并降低成本,非常适合于大规模低成本的锗纳米线的制备;本发明采用铟作为催化剂生长的锗纳米线具有较高的长宽比,同时具有较高的表面密度,这些特点使得该方法更便于锗纳米线的转移与应用,从而为基于四族纳米线的器件制备奠定工艺基础;同时,本发明制备的锗纳米线具有很好的稳定性和重复性。
-
公开(公告)号:CN108793146A
公开(公告)日:2018-11-13
申请号:CN201810714966.X
申请日:2018-07-03
Applicant: 中国科学院上海微系统与信息技术研究所 , 中国科学院大学
IPC: C01B32/194
CPC classification number: C01B32/194
Abstract: 本发明提供一种转移石墨烯的方法,包括以下步骤:提供一衬底;在所述衬底上生长石墨烯,形成石墨烯/衬底结构;在所述石墨烯上涂敷派瑞林,形成派瑞林/石墨烯/衬底结构;利用腐蚀液去除所述派瑞林/石墨烯/衬底结构中的所述衬底,形成派瑞林/石墨烯结构;将所述派瑞林/石墨烯结构翻转,形成石墨烯/派瑞林结构,完成所述石墨烯的转移。本发明采用派瑞林作为石墨烯的转移介质及支撑层,仅经过一次腐蚀液去除衬底后进行翻转,即可获得高质量、大面积、无损、洁净的石墨烯。
-
公开(公告)号:CN105321821B
公开(公告)日:2018-09-25
申请号:CN201410328962.X
申请日:2014-07-11
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , H01L29/78 , H01L29/06
Abstract: 本发明提供一种应力可调的悬浮应变薄膜结构及其制备方法,该方法包括以下步骤:S1:提供一自上而下依次包括顶层应变半导体层、埋氧层及半导体衬底的半导体结构,刻蚀顶层应变半导体层形成预设图形微结构及基座;所述微结构包括一对平板及连接于该一对平板之间的至少一条中心桥线;所述平板的外端连接于基座;S2:通过干法腐蚀去除所述微结构下方的埋氧层以释放微结构,使得所述平板应力弛豫,中心桥线应力增加。本发明通过弹性变形机制和图形化改变顶层应变半导体层本身的固有应力,使得平板应力弛豫,而中心桥线应力增加,从而实现应力大小及应力区域的调控,在绝缘体上应变半导体材料结构上制备高质量、大应变的应变纳米线,工艺简单高效。
-
公开(公告)号:CN105977145B
公开(公告)日:2018-07-24
申请号:CN201610457787.3
申请日:2016-06-22
Applicant: 中国科学院上海微系统与信息技术研究所 , 中国科学院大学
IPC: H01L21/265 , H01L21/266 , H01L21/324
Abstract: 本发明提供一种应变量子点的制备方法及应变量子点。所述制备方法包括以下步骤:在标的材料上形成光刻胶,在所述光刻胶上形成多个注入窗口,进行H+离子或He离子注入,去除所述光刻胶,进行退火处理,使所述标的材料中的H+离子或He离子聚集成H2或He产生气泡凸起,从而得到标的材料的应变量子点。本发明的方法新颖,制备过程简单,可操作性强,应变量可观、可调;制备过程可控性强,注入窗口的大小、形状、间距,H+离子或He离子注入的能量、剂量,退火温度、时间等工艺参数均可调;且方法可用范围广,晶体材料均可使用该方法制备应变量子点。
-
公开(公告)号:CN107653446A
公开(公告)日:2018-02-02
申请号:CN201610591642.2
申请日:2016-07-26
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: C23C16/0272 , C23C16/26
Abstract: 本发明提供一种提高石墨烯成核密度的石墨烯生长方法,包括如下步骤:S1:提供一Ge衬底,对所述Ge衬底进行离子注入;S2:进行退火,使所述Ge衬底中的注入离子至少有一部分析出到所述Ge衬底表面,以增加所述Ge衬底表面的石墨烯成核点;S3:提供碳源,在所述Ge衬底表面生长得到石墨烯。本发明为石墨烯在Ge表面的生长提供了更多的成核点,从而提高石墨烯的成核密度,大大的增加了石墨烯的生长速度,有利于减少石墨烯的生产成本,并可以通过调节离子的注入剂量与注入能量来调制石墨烯的成核密度。
-
公开(公告)号:CN104157579B
公开(公告)日:2017-10-03
申请号:CN201410457619.5
申请日:2014-09-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336
Abstract: 本发明提供一种多沟道全包围栅极的半导体器件结构的制备方法,所述制备方法包括步骤:1)提供一硅衬底,于所述硅衬底表面形成Ge底层;2)在所述Ge底层上生长SiGe/Ge周期结构,最上一层用Ge覆盖;3)于所述SiGe/Ge周期结构及Ge底层中刻蚀出直至所述硅衬底的多个间隔排列的凹槽;4)采用选择性腐蚀工艺去除凹槽之间的SiGe/Ge周期结构中的SiGe,形成具有间隔的多层Ge结构;5)于所述多层Ge结构的上表面及多层Ge结构之间及侧壁形成栅介质层。本发明提供了一种工艺简单,成本低廉的多沟道全包围栅极的半导体器件结构的制备方法,所制备的半导体器件结构具有多个沟道,可以进一步提高器件性能。本发明具有结构及工艺简单,集成度高等优点,适用于工业生产。
-
-
-
-
-
-
-
-
-