-
公开(公告)号:CN118277757A
公开(公告)日:2024-07-02
申请号:CN202410363850.1
申请日:2024-03-28
Applicant: 哈尔滨工程大学
IPC: G06F18/2111 , G06F18/15 , G06F18/241 , G06N3/006 , G06N3/0499
Abstract: 本发明提供了一种基于离散沙猫搜索机制的特征选择方法及系统,属于特征选择方法领域。为了解决现有封装式特征选择方法选择的特征子集精度不够,与后续学习算法结合的分类正确率不高和时间复杂度高的问题。本发明将解决连续优化问题的沙猫群搜索机制进行离散化处理,得到寻优性能优越和更适合解决特征选择问题的离散沙猫群搜索机制,使其具有更高的鲁棒性,采用离散沙猫搜索机制也更适用于特征选择问题,突破了沙猫群搜索机制的应用局限;同时采用BP神经网络作为后续学习算法的分类器,将BP神经网络优越的分类能力与特征选择相结合,极大的提升了所选特征子集的精度,拥有更快的收敛速度、更高的收敛精度和更好的鲁棒性。
-
公开(公告)号:CN119167754A
公开(公告)日:2024-12-20
申请号:CN202411184377.7
申请日:2024-08-27
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及阵列天线技术领域,尤其是大型直线阵列天线的稀疏化设计,构造大规模天线稀疏阵列优化的目标函数;大规模天线稀疏阵列主要是根据天线阵列的旁瓣电平等目标优化天线阵元的摆放形式,如果在规定的栅格内摆放阵元,则栅格标记位记为“1”,如果没有摆放阵元则栅格标记位记为“0”,其中“1”与“0”表示栅格的标志位,所以在栅格中存在两种情况,有阵元和无阵元,也就是对栅格位置是否有阵元即天线的摆放位置进行优化,栅格标志位向量为I=[I1,I2,I3,…,IN],与传统使用sigmoid函数映射的粒子群算法相比,本发明的苍鹭群觅食优化机制采用双曲正切函数进行映射实现个体位置更新,可以更好的进行概率选择变异,在寻优策略上有进一步提升。
-
公开(公告)号:CN118354392B
公开(公告)日:2024-10-29
申请号:CN202410631447.2
申请日:2024-05-21
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子绡蝶机制的可扩展层次路由方法。该方法包括:建立无线传感器网络系统模型;设定无线传感器网络运行参数和初始化网络状态,网络运行开始;建立无线传感器网络簇首配置成本函数和适应度函数;初始化量子绡蝶群并设定相关参数;根据映射方程、适应度和感知函数计算所有量子绡蝶所分泌信息素量,并确定量子绡蝶群全局最优量子位置;量子绡蝶依同等概率执行确定性或随机性移动,并在移动过程中使用模拟量子旋转角来演化量子绡蝶的量子位置;应用贪心策略选择出下一代量子绡蝶量子位置;输出当前无线传感器网络簇首配置结果;建立当前无线传感器网络区长概率函数配置区长并进行数据传输;无线传感器网络运行终止。
-
公开(公告)号:CN118334512B
公开(公告)日:2024-09-13
申请号:CN202410364298.8
申请日:2024-03-28
Applicant: 哈尔滨工程大学
IPC: G06V20/10 , G06V10/82 , G06V10/764 , G06V10/80 , G06N3/0464
Abstract: 本发明公开了基于SSIM及级联深度神经网络的SAR图像目标识别方法及系统。所述方法包括:对SAR图像进行预处理;利用结构相似衡量指标对SAR图像进行粗类别划分;利用卷积层、池化层、全连接层、批归一化层、空洞空间金字塔池化模块及幻想组块构成浅层网络,对SAR图像进行粗分类,利用卷积层和卷积块注意力模块构建级联模块,筛选粗类别特征,并对筛选后的特征进行权重划分;融合筛选并权重划分后的粗类别特征,利用多个幻想组块构建深层网络,对SAR图像进行细分类;将待识别SAR图像输入训练好的目标识别模型,获取目标识别结果。本发明提高了深度网络对SAR图像的识别性能同时改善了由于样本不足造成网络分类性能大幅度下降的问题。
-
公开(公告)号:CN118330549A
公开(公告)日:2024-07-12
申请号:CN202410364777.X
申请日:2024-03-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种冲击噪声下基于复合熵的宽带测向方法及系统。该方法包括:在冲击噪声下构建基于聚焦中值离差复合熵的低阶矩阵,建立基于复合熵的低阶矩阵的加权信号子空间拟合宽带信号测向模型,所设计宽带信号测向模型在冲击噪声环境下能有效测向,且具有良好的解相干能力;设计连续量子白骨顶鸡搜索机制求解加权信号子空间拟合宽带信号测向模型,能够在减少计算量的情况下,提高求解精度,使宽带测向估计结果更准确和具有鲁棒性。
-
公开(公告)号:CN118191763A
公开(公告)日:2024-06-14
申请号:CN202410363701.5
申请日:2024-03-28
Applicant: 哈尔滨工程大学
Abstract: 本发明提供了一种强冲击噪声下非相干分布源幅相误差校正和测向方法及系统,属于阵列信号处理领域。为了解决现有非相干分布源测向方法仅适用于高斯噪声,不适用于冲击噪声及存在幅相误差的情况,会造成性能恶化甚至失效的问题。本发明基于非相干分布源模型,设计了更具鲁棒性的基于量子蒲公英飘移机制的幅相误差校正和测向方法,以及利用加权范数协方差抑制冲击噪声,并利用极大似然方法实现了幅相误差和中心方位角联合估计,最后利用信号协方差矩阵估计角度扩展。本发明在强冲击噪声环境下具有鲁棒性,利用量子蒲公英飘移机制进行高效求解,实现了幅相误差和角度参数的联合最优估计,突破了现有非相干分布源测向方法的应用局限。
-
-
-
-
-