-
公开(公告)号:CN118330549B
公开(公告)日:2024-09-10
申请号:CN202410364777.X
申请日:2024-03-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种冲击噪声下基于复合熵的宽带测向方法及系统。该方法包括:在冲击噪声下构建基于聚焦中值离差复合熵的低阶矩阵,建立基于复合熵的低阶矩阵的加权信号子空间拟合宽带信号测向模型,所设计宽带信号测向模型在冲击噪声环境下能有效测向,且具有良好的解相干能力;设计连续量子白骨顶鸡搜索机制求解加权信号子空间拟合宽带信号测向模型,能够在减少计算量的情况下,提高求解精度,使宽带测向估计结果更准确和具有鲁棒性。
-
公开(公告)号:CN118282442A
公开(公告)日:2024-07-02
申请号:CN202410363674.1
申请日:2024-03-28
Applicant: 哈尔滨工程大学
IPC: H04B7/04 , H04W12/122 , H04W52/26 , H04W72/044 , H04W72/50
Abstract: 本发明提供了一种智能反射面辅助的Massive MIMO的资源分配方法及系统,属于无线物理层安全通信技术领域。为了解决智能反射面辅助的Massive MIMO系统现有资源分配方法,对于系统资源的利用率低,信息传输吞吐量低,算法寻优效果差,收敛速度慢的问题。本发明通过对传统袋獾算法引入量子化和香味刺激机制,设计了在窃听器吞吐量受限的条件下,联合优化发射功率系数和智能反射面的相移变量的优化算法,极大提升了智能反射面辅助的Massive MIMO通信系统接收端合法信息的吞吐量,提升了系统资源的利用率,突破了原算法仅进行局部寻优、收敛较慢的局限,提升了寻优效果和收敛速度。
-
公开(公告)号:CN118277757A
公开(公告)日:2024-07-02
申请号:CN202410363850.1
申请日:2024-03-28
Applicant: 哈尔滨工程大学
IPC: G06F18/2111 , G06F18/15 , G06F18/241 , G06N3/006 , G06N3/0499
Abstract: 本发明提供了一种基于离散沙猫搜索机制的特征选择方法及系统,属于特征选择方法领域。为了解决现有封装式特征选择方法选择的特征子集精度不够,与后续学习算法结合的分类正确率不高和时间复杂度高的问题。本发明将解决连续优化问题的沙猫群搜索机制进行离散化处理,得到寻优性能优越和更适合解决特征选择问题的离散沙猫群搜索机制,使其具有更高的鲁棒性,采用离散沙猫搜索机制也更适用于特征选择问题,突破了沙猫群搜索机制的应用局限;同时采用BP神经网络作为后续学习算法的分类器,将BP神经网络优越的分类能力与特征选择相结合,极大的提升了所选特征子集的精度,拥有更快的收敛速度、更高的收敛精度和更好的鲁棒性。
-
公开(公告)号:CN118112499A
公开(公告)日:2024-05-31
申请号:CN202410116933.0
申请日:2024-01-29
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子金鹰优化布局的动态目标TDOA定位方法及系统,涉及无人机集群信息交互技术领域。本发明的技术要点包括:建立多无人机定位系统的基于几何精度因子的优化布局模型和目标函数;其中多无人机定位系统包括一个主无人机和多个辅无人机;利用量子金鹰算法对多个无人机的排布方式进行优化,以选择最优排布方式;利用优化后的多无人机最优排布方式对动态目标进行观测,获得动态目标的观测位置。本发明解决了现有TDOA定位方法对空中动态目标定位不准的难题,所设计的量子金鹰机制可以对多无人机定位系统优化布局模型进行高精度的求解,提升了Chan算法对动态目标定位的精度。
-
公开(公告)号:CN117993038A
公开(公告)日:2024-05-07
申请号:CN202410172822.1
申请日:2024-02-07
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于离散量子电磁场优化机制的分布式阵列布局结构优化方法、系统及存储介质,涉及阵列信号处理技术领域,为解决现有方法多以最大旁瓣电平为优化目标,在小采样快拍、冲击噪声等恶劣条件下,分布式阵列性能衰减严重的问题。包括如下过程:设置空间中的辅助信源信息和噪声信息,以模拟测试分布阵列,将信源方位均方误差作为优化目标方程;初始化量子电磁场中的量子电磁粒子信息,获得局部和全局最优测量位置;分别采用基于量子编码的演进策略和基于量子旋转门的演进策略对每个电磁粒子的量子旋转角和量子位置进行更新并获得测量位置;对粒子的局部和全局最优测量位置进行更新;将最终得到的全局最优解转化为所需的阵列布局结构信息。
-
公开(公告)号:CN118282442B
公开(公告)日:2024-10-22
申请号:CN202410363674.1
申请日:2024-03-28
Applicant: 哈尔滨工程大学
IPC: H04B7/04 , H04W12/122 , H04W52/26 , H04W72/044 , H04W72/50
Abstract: 本发明提供了一种智能反射面辅助的Massive MIMO的资源分配方法及系统,属于无线物理层安全通信技术领域。为了解决智能反射面辅助的Massive MIMO系统现有资源分配方法,对于系统资源的利用率低,信息传输吞吐量低,算法寻优效果差,收敛速度慢的问题。本发明通过对传统袋獾算法引入量子化和香味刺激机制,设计了在窃听器吞吐量受限的条件下,联合优化发射功率系数和智能反射面的相移变量的优化算法,极大提升了智能反射面辅助的Massive MIMO通信系统接收端合法信息的吞吐量,提升了系统资源的利用率,突破了原算法仅进行局部寻优、收敛较慢的局限,提升了寻优效果和收敛速度。
-
公开(公告)号:CN118334512A
公开(公告)日:2024-07-12
申请号:CN202410364298.8
申请日:2024-03-28
Applicant: 哈尔滨工程大学
IPC: G06V20/10 , G06V10/82 , G06V10/764 , G06V10/80 , G06N3/0464
Abstract: 本发明公开了基于SSIM及级联深度神经网络的SAR图像目标识别方法及系统。所述方法包括:对SAR图像进行预处理;利用结构相似衡量指标对SAR图像进行粗类别划分;利用卷积层、池化层、全连接层、批归一化层、空洞空间金字塔池化模块及幻想组块构成浅层网络,对SAR图像进行粗分类,利用卷积层和卷积块注意力模块构建级联模块,筛选粗类别特征,并对筛选后的特征进行权重划分;融合筛选并权重划分后的粗类别特征,利用多个幻想组块构建深层网络,对SAR图像进行细分类;将待识别SAR图像输入训练好的目标识别模型,获取目标识别结果。本发明提高了深度网络对SAR图像的识别性能同时改善了由于样本不足造成网络分类性能大幅度下降的问题。
-
公开(公告)号:CN118013839A
公开(公告)日:2024-05-10
申请号:CN202410172703.6
申请日:2024-02-07
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06N10/60 , G06N10/20 , G06F111/04
Abstract: 本发明一种基于量子晶体结构机制的欠定盲源分离方法、系统及存储介质,涉及盲源分离领域,为解决现有方法对初始估计信号设置较敏感,需要源信号的稀疏度作为先验知识的问题。包括:步骤1:接收观测信号,根据估计出的混合矩阵构建源信号恢复模型,并构建适应度函数模型;步骤2:初始化量子晶体的量子位置,计算适应度值,确定最优量子晶体;步骤3:确定量子主晶体和量子平均晶体,基于隔室的不同对量子位置进行更新;步骤4:计算分支晶体的适应度值,通过贪婪选择策略更新量子位置,确定最优量子晶体的量子位置;步骤5:迭代至输出全局最优位置;步骤6:迭代至原始初始信号全部更新完毕;步骤7:根据新的初始估计信号设置进行源信号恢复。
-
公开(公告)号:CN118013839B
公开(公告)日:2024-07-19
申请号:CN202410172703.6
申请日:2024-02-07
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06N10/60 , G06N10/20 , G06F111/04
Abstract: 本发明一种基于量子晶体结构机制的欠定盲源分离方法、系统及存储介质,涉及盲源分离领域,为解决现有方法对初始估计信号设置较敏感,需要源信号的稀疏度作为先验知识的问题。包括:步骤1:接收观测信号,根据估计出的混合矩阵构建源信号恢复模型,并构建适应度函数模型;步骤2:初始化量子晶体的量子位置,计算适应度值,确定最优量子晶体;步骤3:确定量子主晶体和量子平均晶体,基于隔室的不同对量子位置进行更新;步骤4:计算分支晶体的适应度值,通过贪婪选择策略更新量子位置,确定最优量子晶体的量子位置;步骤5:迭代至输出全局最优位置;步骤6:迭代至原始初始信号全部更新完毕;步骤7:根据新的初始估计信号设置进行源信号恢复。
-
公开(公告)号:CN117992807A
公开(公告)日:2024-05-07
申请号:CN202410172704.0
申请日:2024-02-07
Applicant: 哈尔滨工程大学
IPC: G06F18/23 , G06F18/2413 , G06F18/214 , G06N10/60 , G06Q50/18
Abstract: 一种基于量子法医调查机制的特征选择方法、系统及存储介质,涉及数据处理领域,为解决现有的特征选择方法分类正确率不高以及时间复杂度高,选择的特征子集精度不够的问题。包括:步骤一:对数据集进行归一化处理,采用K近邻分类器对训练集样本进行聚类,对测试集样本进行分类,构建特征选择的目标函数;步骤二:初始化量子警察群体中每个成员的量子位置,计算量子警察个体的适应度,确定初始全局最优量子位置;步骤三:分别对调查组和追捕组每个成员的量子位置进行更新;步骤四:更新调查组和追捕组以及量子警察群体的全局最优量子位置;步骤五:对调查组和追捕组中的部分成员进行交换,继续演化;步骤六:最终迭代得到选取的最优特征子集。
-
-
-
-
-
-
-
-
-