一种超导转变边探测器的制备方法

    公开(公告)号:CN111063788B

    公开(公告)日:2022-06-07

    申请号:CN201911186950.7

    申请日:2019-11-27

    Abstract: 本申请提供一种超导转变边探测器的制备方法,包括以下步骤:通过磁控溅射方法在衬底上制备铝(Al)薄膜;对Al薄膜进行光刻和湿法刻蚀处理;获取探测器薄膜和电极图形;对Al薄膜再次进行光刻处理,采用光刻胶覆盖电极图形区域;采用多能量离子注入方法对探测器薄膜区域进行锰(Mn)离子注入;通过调整Mn离子的注入量能够调整探测器薄膜的超导转变温度,超导转变温度范围为1.2K‑50mK;去除所述光刻胶;获取待处理器件。本申请实施例采用多能量离子注入方法对探测器薄膜区域进行Mn离子注入,电极区域不进行Mn离子注入,如此,能够实现基于同一层Al薄膜通过选区注入实现探测器和超导电极两种不同超导转变温度的薄膜。

    一种基于MoN的SNS约瑟夫森结及其制备方法

    公开(公告)号:CN114566588A

    公开(公告)日:2022-05-31

    申请号:CN202210245977.4

    申请日:2022-03-09

    Inventor: 张露 陈垒 王镇

    Abstract: 本发明提供一种基于MoN的SNS约瑟夫森结及其制备方法,该基于MoN的SNS约瑟夫森结的制备方法包括以下步骤,提供一衬底,于衬底上形成层叠的NbN底层膜、MoN势垒层及NbN顶层膜的功能材料层,其中,采用直流反应磁控溅射法形成MoN势垒层,刻蚀功能材料层以形成底电极、MoN结势垒层及顶电极,并形成覆盖底电极、MoN结势垒层及顶电极显露表面的隔离层,于隔离层上形成第一接触孔及第二接触孔,并形成覆盖隔离层及填充第一接触孔与第二接触孔的配线层,刻蚀配线层以形成第一配线部及第二配线部。本发明通过采用直流反应磁控溅射的方法形成MoN势垒层,得到电阻率稳定的MoN势垒层,提升了约瑟夫森结的质量。

    超导磁通量子存储单元结构及其写入和读取方法

    公开(公告)号:CN111725382B

    公开(公告)日:2022-02-22

    申请号:CN201910223216.7

    申请日:2019-03-22

    Inventor: 陈垒 吴丽丽 王镇

    Abstract: 本发明提供一种超导磁通量子存储单元结构及其写入和读取方法,该结构包括:约瑟夫森结存储环路,具有一个第一约瑟夫森结;发热电阻,设置于约瑟夫森结存储环路中的第一约瑟夫森结附近,用于控制约瑟夫森结的温度。通过在第一约瑟夫森结附近设置发热电阻,利用发热电阻发热来调节第一约瑟夫森结区附近的温度,从而改变其临界电流,而不需要通过外部磁场耦合来改变第一约瑟夫森结的临界电流,相对于现有技术中的外部磁场耦合的方式调制临界电流,本发明采用发热电阻调制临界电流可使得约瑟夫森结存储环路的面积大大减小;利用纳米桥结替代传统的隧道结,在获得高动态电感的同时也可以进一步减小存储环路对几何电感的需求从而减小环路面积,并且也可以缩小第一约瑟夫森结的面积。

    一种基于离子注入的冷子管开关及其制备方法

    公开(公告)号:CN113764569A

    公开(公告)日:2021-12-07

    申请号:CN202111039268.2

    申请日:2021-09-06

    Abstract: 本发明涉及一种基于离子注入的冷子管开关及其制备方法,冷子管开关包括门线和控制线,所述控制线与所述门线平行并叠加于所述门线上,所述门线的材料为通过离子注入方法得到的超导薄膜。本发明的基于离子注入的冷子管开关,采用离子注入方法得到的超导薄膜作为冷子管开关的门线材料,可以对超导薄膜的临界温度和临界磁场进行连续性调控,因此可以根据冷子管开关所需的工作参数来选择相应注入浓度的超导薄膜,从而使冷子管开关的工作参数具有灵活性。

    超导集成电路的布局方法
    205.
    发明公开

    公开(公告)号:CN113642280A

    公开(公告)日:2021-11-12

    申请号:CN202010345034.X

    申请日:2020-04-27

    Abstract: 本发明提供一种超导集成电路的布局方法,包括:基于标准单元库建立以器件管脚为数据主体的数据库,数据库包括时序及物理信息;基于数据库进行静态时序分析,得到每个管脚的时序信息;基于各管脚的时序信息及器件的逻辑深度确定各管脚的优先级,对优先级高的管脚进行直连,以构造初始布局结果;基于初始布局结果利用最小通道密度算法检查可布线性,若存在不可布线的通道,将挡住布线的器件移开,留出足够的布线空间后走线;否则直接走线。本发明的超导集成电路的布局方法实现了基于版图的静态时序分析算法,继而利用时序分析结果,考虑电路本身多种物理属性,完成自动布局,节省设计面积,同时布局结果无需额外走线资源。

    多光谱超导纳米线单光子探测器

    公开(公告)号:CN109659386B

    公开(公告)日:2021-08-20

    申请号:CN201811486995.1

    申请日:2018-12-06

    Abstract: 本发明提供一种多光谱超导纳米线单光子探测器,包括:衬底;第一光学薄膜叠层结构,位于衬底的上表面;第二光学薄膜叠层结构,位于第一光学薄膜叠层结构的上表面;第二光学薄膜叠层结构的中心波长与第一光学薄膜叠层结构的中心波长不同;超导纳米线,位于第二光学薄膜叠层结构的上表面。本发明的第二光学薄膜叠层结构即作为反射镜用于在其中心波长处达到高效吸收,又对第一光学薄膜叠层结构反射波段的光起到相移的作用,导致其吸收波长发生偏移、吸收峰数量变多,可以实现多个波段的高效吸收,即可以得到多个共振吸收波长,从而可以满足用户对不同波段单光子探测器的应用需求,以及多波段成像或多波段探测等应用的需求。

    提高超导集成电路工作范围的方法

    公开(公告)号:CN113065301A

    公开(公告)日:2021-07-02

    申请号:CN202110426087.9

    申请日:2021-04-20

    Abstract: 本发明提供一种提高超导集成电路工作范围的方法,包括:基于工作原理确定第一信号与第二信号的时序关系,其中,所述第二信号滞后于所述第一信号,并获取所述第一信号及所述第二信号的延时偏离范围;调整所述第一信号及所述第二信号的延时时间,确保所述第二信号的最小延时偏离时间大于所述第一信号的标准延时时间。本发明针对不确定度较大的超导工艺,能在较大程度上有效地提高集成电路的工作范围。

    超导高速存储器
    208.
    发明公开

    公开(公告)号:CN112949229A

    公开(公告)日:2021-06-11

    申请号:CN202110340321.6

    申请日:2021-03-30

    Abstract: 本发明提供一种超导高速存储器,包括:输入缓冲阵列,用于并行暂存输入数据;存储阵列,连接于输入缓冲阵列的输出端,包括多个存储块,用于并行存储输入缓冲阵列输出的数据;输出缓冲阵列,连接于存储阵列的输出端,用于并行暂存存储阵列输出的数据;地址译码控制电路,连接输入缓冲阵列、存储阵列及输出缓冲阵列,分别为输入缓冲阵列及第二缓冲阵列提供有效信号,为存储阵列提供置位信号及复位信号。本发明的超导高速存储器架构简单,可以对并行数据进行存储,拓展了目前应用超导电路实现的高速存储器只能存储串行数据的现状,且无需加入额外的并串转换电路,简化了设计、缩短了存取时间、也降低了片上硬件资源的消耗。

    约瑟夫森结及其超导器件与制备方法

    公开(公告)号:CN112670401A

    公开(公告)日:2021-04-16

    申请号:CN202011518329.9

    申请日:2020-12-21

    Abstract: 本发明提供一种约瑟夫森结、超导器件及制备方法,约瑟夫森结制备包括:在衬底上形成第一超导材料层、势垒材料层、第二超导材料层;刻蚀第二超导材料层形成上电极;在势垒材料层上沉积绝缘材料,然后刻蚀掉,紧接着刻蚀势垒层;最后刻蚀第一超导材料层,得到下电极。本发明在刻蚀势垒层之前,先沉积一层绝缘材料,基于同一掩膜层先刻蚀绝缘材料,不去除光刻胶,接着进行势垒层的刻蚀,很好的保护了势垒层,避免了势垒层与显影液反应生成黑色反应物。先沉积的绝缘层还可以提升后沉积的绝缘层的绝缘效果,减小漏电流,并且可以实现同质生长,两者不存在明显界面,对后续工艺无影响,可以提升超导电路的性能和稳定性,以及整体超导电路的工作范围。

    单光子探测器及制备方法
    210.
    发明公开

    公开(公告)号:CN112229510A

    公开(公告)日:2021-01-15

    申请号:CN202011101934.6

    申请日:2020-10-15

    Abstract: 本发明提供一种单光子探测器及制备方法,包括:衬底及形成于所述衬底上的超导线,所述超导线包括多个直线部及连接直线部的拐角部;其中,所述超导线的拐角部的厚度大于直线部的厚度。本发明的单光子探测器及制备方法将超导线拐角部的厚度加厚(大于直线部厚度),从而提升拐角区域的临界电流。尽管超导线拐角部仍然存在“电流拥挤效应”,但因为拐角区域整体的临界电流提升至高于直线部的临界电流水平,拐角区域不再是限制整体超导线临界电流的瓶颈,从而达到抑制拐角区域“电流拥挤效应”所带来的不良影响的目的。

Patent Agency Ranking