一种基于图卷积神经网络的方面级情感分析方法及装置

    公开(公告)号:CN112528672A

    公开(公告)日:2021-03-19

    申请号:CN202011463822.5

    申请日:2020-12-14

    Abstract: 本发明实施例提供了一种基于图卷积神经网络的方面级情感分析方法及装置,所述方法包括:获取待进行方面情感分析的句子,以及该待进行方面情感分析句子中的方面词;对待进行方面情感分析的句子以及方面词进行预处理,得到待进行方面情感分析的句子对应的输入向量序列以及句法加权图;将输入向量序列和句法加权图,输入预先训练的双重图卷积神经网络中,得到方面词对应的情感分析结果。本发明实施例,使用双重图卷积神经网络不仅关注句子的句法特征,还关注句子的语义特征,提取句子对应的语义相关特征,弥补了对句法不敏感的句子提取句法特征不准确的缺陷,提高情感分析结果的准确性。

    一种基于FPGA的YOLO网络前向推理加速器设计方法

    公开(公告)号:CN109214504A

    公开(公告)日:2019-01-15

    申请号:CN201810970836.2

    申请日:2018-08-24

    CPC classification number: G06N3/0454

    Abstract: 本发明提出了一种基于FPGA的YOLO网络前向推理加速器设计方法,所述加速器包括FPGA芯片和DRAM,所述FPGA芯片中的存储器BRAM作为数据缓冲器,所述DRAM作为主要存储设备;所述加速器设计方法包括以下步骤:(1)对原网络数据进行8bit定点数量化,得到对检测精度影响最小的小数点位置,形成量化方案,该量化过程是逐层进行的;(2)FPGA芯片对YOLO的九层卷积网络作并行计算;(3)位置映射。解决了现有技术中FPGA芯片上的存储资源的增长速度不及神经网络规模增长迅速,一般的目标检测网络很难按照传统的设计思路移植到FPGA芯片上的技术问题,实现使用更少片上资源达到更快速度的目的。

    一种大规模MIMO稀疏信道估计方法及相关设备

    公开(公告)号:CN115361258B

    公开(公告)日:2023-06-16

    申请号:CN202210826619.2

    申请日:2022-07-14

    Abstract: 本发明公开了一种大规模MIMO稀疏信道估计方法及相关设备,所述方法包括:本地服务器进行离线训练得到信道稀疏度认知神经网络、信道稀疏表示字典和信道稀疏重构神经网络;终端将OFDM信号输入到信道稀疏度认知神经网络中得到信道稀疏度;基站根据信道稀疏度确定下行传输信号中导频序列的长度;基站接收到下行传输信号后,根据信道稀疏度选择相应的信道稀疏表示字典进行信道稀疏表示,并根据信道稀疏重构神经网络一起进行信道稀疏重构。通过终端将OFDM信号输入到信道稀疏度认知神经网络中得到信道稀疏度,基站根据信道稀疏度进行信道稀疏表示,并根据信道稀疏重构神经网络一起进行信道稀疏重构,实现了高精度、低复杂度的信道估计。

    一种多特征多通道图卷积网络模型训练方法及属性情感三元组抽取方法

    公开(公告)号:CN114357156B

    公开(公告)日:2023-02-28

    申请号:CN202111473889.1

    申请日:2021-12-02

    Abstract: 本发明提供一种多特征多通道图卷积网络模型训练方法及属性情感三元组抽取方法,多特征多通道图卷积网络模型训练方法包括步骤:将第一语句输入预设的第一模型中,将第一语句划分为单词,编码得到第一词向量,得到隐藏状态序列,生成第一邻接张量;根据单词词性生成第二邻接张量,根据句法依存类型生成第三邻接张量,根据基于树的词对距离生成第四邻接张量,根据单词的相对距离生成第五邻接张量;隐藏状态序列分别与邻接张量图卷积,并平均池化,得到联合特征序列;将邻接张量进行拼接得到联合张量;根据联合张量和联合特征序列为每个词对生成第一词对向量,基于分类函数得到概率分布张量;计算总损失函数,根据总损失函数对第一模型进行训练。

    一种多特征多通道图卷积网络模型训练方法及属性情感三元组抽取方法

    公开(公告)号:CN114357156A

    公开(公告)日:2022-04-15

    申请号:CN202111473889.1

    申请日:2021-12-02

    Abstract: 本发明提供一种多特征多通道图卷积网络模型训练方法及属性情感三元组抽取方法,多特征多通道图卷积网络模型训练方法包括步骤:将第一语句输入预设的第一模型中,将第一语句划分为单词,编码得到第一词向量,得到隐藏状态序列,生成第一邻接张量;根据单词词性生成第二邻接张量,根据句法依存类型生成第三邻接张量,根据基于树的词对距离生成第四邻接张量,根据单词的相对距离生成第五邻接张量;隐藏状态序列分别与邻接张量图卷积,并平均池化,得到联合特征序列;将邻接张量进行拼接得到联合张量;根据联合张量和联合特征序列为每个词对生成第一词对向量,基于分类函数得到概率分布张量;计算总损失函数,根据总损失函数对第一模型进行训练。

    一种基于图卷积神经网络的方面级情感分析方法及装置

    公开(公告)号:CN112528672B

    公开(公告)日:2021-07-30

    申请号:CN202011463822.5

    申请日:2020-12-14

    Abstract: 本发明实施例提供了一种基于图卷积神经网络的方面级情感分析方法及装置,所述方法包括:获取待进行方面情感分析的句子,以及该待进行方面情感分析句子中的方面词;对待进行方面情感分析的句子以及方面词进行预处理,得到待进行方面情感分析的句子对应的输入向量序列以及句法加权图;将输入向量序列和句法加权图,输入预先训练的双重图卷积神经网络中,得到方面词对应的情感分析结果。本发明实施例,使用双重图卷积神经网络不仅关注句子的句法特征,还关注句子的语义特征,提取句子对应的语义相关特征,弥补了对句法不敏感的句子提取句法特征不准确的缺陷,提高情感分析结果的准确性。

Patent Agency Ranking