-
公开(公告)号:CN119900077A
公开(公告)日:2025-04-29
申请号:CN202411952924.1
申请日:2024-12-27
Applicant: 哈尔滨工业大学 , 哈工大郑州研究院 , 河南碳真芯材科技有限公司
Abstract: 一种基于铅制电子辐照载体制备CVD蓝色渐变金刚石的方法,本发明是要解决现有彩钻通过控制金刚石在生长杂质气体掺杂浓度,对颜色进行调控,在金刚石的后续加工中出现开裂的问题。制备方法:S1、预处理金刚石籽晶片;S2、等离子体刻蚀籽晶;S3、向真空腔内通入甲烷和氢气,进行微波等离子体化学气相沉积生长;S4、获得金刚石毛坯;S5、切除金刚石毛坯表面的多晶;S6、对切割后的毛坯进行HPHT处理;S7、将金刚石坯料放置在辐照载具的底板上,采用高能电子束辐照遮挡腔以及金刚石坯料。本发明将金刚石毛坯放置于特制的辐照载具中,实现对金刚石毛坯部分区域辐照,制备颜色渐变的蓝色金刚石,提高了金刚石的纯净程度。
-
公开(公告)号:CN119259601A
公开(公告)日:2025-01-07
申请号:CN202411672313.1
申请日:2024-11-21
Applicant: 哈尔滨工业大学 , 河南碳真芯材科技有限公司
Abstract: 一种MPCVD舱壁杂质的去除方法,本发明是要解决MPCVD设备舱壁的杂质难以去除的问题。MPCVD舱壁杂质的去除方法:一、在水冷台上放置样品托以保护水冷台,关闭MPCVD系统舱盖,在微波能量激发下产生氢氧等离子体,利用氢氧等离子体刻蚀处理舱体内部;二、将去离子水湿润吸水纸,得到湿润的吸水纸,然后将湿润的吸水纸贴附在MPCVD系统的舱壁上;三、取下贴附的吸水纸,使用无水乙醇打湿无尘布,对舱壁擦拭干净;四、使用吸尘器清理MPCVD系统的舱体内部;五、再次在微波能量激发下产生氢氧等离子体,利用氢氧等离子体再次刻蚀处理舱体内部。本发明通过氢氧等离子体清洗与去离子水浸润,酒精擦拭即可去除沉积杂质。
-
公开(公告)号:CN118748097A
公开(公告)日:2024-10-08
申请号:CN202410801466.5
申请日:2024-06-20
IPC: G21H1/06
Abstract: 一种叠层p‑金刚石/n‑β‑Ga2O3异质结同位素电池,本发明要解决n型金刚石掺杂困难,金刚石的厚度难降低等问题。本发明异质结同位素电池由下至上依次由放射源正电极层A、半导体器件A、放射源背电极层B、半导体器件B和放射源正电极层C形成叠层结构,其中半导体器件A从下至上依次由p+‑金刚石帽子层A、p‑金刚石发射层A、n‑β‑Ga2O3基层A和n+‑β‑Ga2O3缓冲层A形成叠层结构;所述的半导体器件B从下至上依次由n+‑β‑Ga2O3缓冲层B、n‑β‑Ga2O3基层B、p‑金刚石发射层B、p+‑金刚石帽子层B形成叠层结构。本发明采用了叠层结构,提高了器件的能量密度,还兼具高功率、小体积等特点。
-
公开(公告)号:CN117448794A
公开(公告)日:2024-01-26
申请号:CN202311393073.7
申请日:2023-10-25
IPC: C23C16/511 , C23C16/27
Abstract: 使用毛发作为碳源通过CVD工艺制备生命钻石的方法,本发明为了解决现有通过MPCVD方法制备钻石时以甲烷气体作为碳源,价格较为昂贵,导致钻石生长速率缓慢的问题。制备生命钻石的方法:一、对高温高压金刚石籽晶基底进行清洗;二、对毛发进行超声清洗,将预处理的毛发放入坩埚中,通入氩气和少量氧气保温,然后以600~1200℃的温度萃碳处理;三、激活等离子体,升高和微波功率,使金刚石籽晶的表面温度达到700~1000℃使腔体保持封闭进行等离子体化学气相沉积生长。本发明以毛发作为碳源通过CVD装置进行生命钻石的生长,改善了原本使用甲烷作为碳源价格昂贵的问题,且合成的钻石具有更加独特和深刻的纪念意义。
-
公开(公告)号:CN116641107A
公开(公告)日:2023-08-25
申请号:CN202310545689.5
申请日:2023-05-15
Applicant: 哈尔滨工业大学(深圳)
IPC: C25D3/56 , C25B11/031 , C25B11/061 , C25B11/089 , C25F3/22 , C25D5/34 , C25B3/26
Abstract: 本申请涉及多孔合金材料工艺技术领域,尤其涉及一种多孔铜锡合金材料及其制备方法和应用。本申请的多孔铜锡合金材料的制备方法包括以下步骤:提供金属基底、锡片和电镀液;其中,电镀液中含有铜离子和锡离子;将金属基底和锡片置于电镀液中,然后以金属基底为阴极、锡片为阳极进行电沉积处理,在金属基底表面生成多孔铜锡合金材料。本申请实施例提供的制备方法在金属基底表面形成的多孔铜锡合金材料不仅致密不易脱落,具有很好的催化稳定性,而且其表面的孔径分布均匀、活性表面积高,多孔孔径微观可调、宏观可控,同时该制备方法的工艺简单高效,对原料及设备要求低,可以大规模制备,具有很好的工业化应用前景。
-
公开(公告)号:CN116580869A
公开(公告)日:2023-08-11
申请号:CN202310479247.5
申请日:2023-04-28
Applicant: 哈尔滨工业大学
Abstract: 一种含金刚石颗粒的烧结银浆料的制备方法及利用其进行焊接的方法,本发明涉及烧结银浆料的制备方法及利用其进行焊接的方法。本发明要解决现有银烧结浆料烧结温度高,且对于大尺寸表面的连接需要施加压力,而压力过大对器件的可靠性影响大,而无压烧结通常仅适用于小尺寸连接,烧结层致密度较低,导致低连接强度以及热导率低于块体银,并且烧结后溶剂有机物部分残留,会引起长期可靠性下降的问题。方法:一、柠檬酸处理;二、混合;三、分散;四、离心收集并干燥;五、制备含有稀释剂的浆料;六、去除稀释剂。本发明用于含金刚石颗粒的烧结银浆料的制备及利用其进行焊接。
-
公开(公告)号:CN115951279A
公开(公告)日:2023-04-11
申请号:CN202211543329.3
申请日:2022-12-02
Applicant: 哈尔滨工业大学
IPC: G01R33/20
Abstract: 一种微波耦合光探测磁共振装置,本发明针对金刚石中的NV色心量子态难以初始化、操控及读出以及NV色心光强变化检测等问题。本发明微波耦合光探测磁共振装置中光学系统连接单元包括成像激光器、激发激光器、准直转接件、光路室、镜头组件和相机,光路室内部设置有反射镜组、二相色镜、中部反射镜和一号半透半反镜,激光发射器发出激光经反射镜组的多次反射进入镜头组件,经过一号半透半反镜的一路分光进光谱仪,另一路分光进入计数单元,在计数单元中设置有单光子探测器和半透半反镜,微波信号施加到样品上。本发明微波耦合光探测磁共振装置设计多通道光路模式,实现光谱、光强、光像同时测量,具有光-微波脉冲调制、量子光源反聚束等功能。
-
公开(公告)号:CN114232086B
公开(公告)日:2023-01-17
申请号:CN202111603964.1
申请日:2021-12-24
Applicant: 宜昌中碳未来科技有限公司 , 哈尔滨工业大学
Abstract: 用于含裂纹籽晶的MPCVD单晶金刚石的生长方法,本发明目的是为了解决MPCVD单晶金刚石同质外延生长方法中含裂纹籽晶生长易碎裂问题。生长方法:一、在正交偏振光下单晶金刚石籽晶裂纹影响区域呈现黑色;二、采用激光切割去除裂纹影响区域,形成矩形缺口;三、清洗籽晶;四、将清洗过的籽晶放置于管式炉中退火处理;五、将退火后的籽晶放置于MPCVD设备中,控制舱内气压、微波功率和籽晶温度,通入甲烷和氮气使单晶金刚石横向生长并填充矩形缺口;六、进行MPCVD单晶金刚石的垂直外延生长。本发明能够对缺口侧面进行有效处理并促进横向生长,使得含裂纹籽晶也能够被用于高品质单晶生长,减少了籽晶的浪费并降低了生产成本。
-
公开(公告)号:CN114411250B
公开(公告)日:2022-10-28
申请号:CN202210072423.9
申请日:2022-01-21
Applicant: 哈尔滨工业大学
Abstract: 一种MPCVD单晶金刚石拼接生长方法,本发明为了解决拼接单晶金刚石材料接缝难处理、拼接接缝性质较差的问题。拼接生长方法:一、将多个单晶金刚石籽晶放置于籽晶托盘的方形籽晶垫片上;二、通入氢气并启动微波发生器产生等离子体;三、向反应舱内通入氧气和氩气,保持籽晶温度为1000‑1200℃,进行刻蚀处理;四、将预刻蚀处理后的单晶金刚石籽晶刻蚀面朝上放置于生长样品托盘上;五、通入氢气并启动微波发生器产生等离子体;六、促进金刚石籽晶边缘刻蚀台阶区域的横向生长连接,完成单晶金刚石拼接生长。本发明通过生长前的特殊预刻蚀工艺强烈刻蚀单晶金刚石籽晶四周边缘,形成微观台阶形貌区域,为拼接金刚石接缝处提供有利生长条件,提高接缝处生长品质。
-
公开(公告)号:CN115072717A
公开(公告)日:2022-09-20
申请号:CN202210656914.8
申请日:2022-06-10
Applicant: 哈尔滨工业大学
Abstract: 使用金属铁刻蚀高温高压金刚石制备定点浅层NV色心的方法,它为了解决现有制备金刚石内NV色心需要用到复杂的化学气相沉积气氛或大型粒子注入设备,且难以控制色心制备定位等问题。获得定点浅层NV色心的方法:一、清洗高温高压金刚石;二、在金刚石表面沉积铁薄膜,铁薄膜呈点阵排列;三、将带有铁薄膜的金刚石放入CVD生长舱体内,通入氢气,升高气压和功率进行刻蚀处理;四、将退火后的金刚石置入食人鱼溶液浸泡。本发明利用金属铁在等离子体环境下对高温高压金刚石进行刻蚀,在该过程中产生空位,并利用退火使得空位向下迁移并被替位氮原子捕获,由于刻蚀发生在金属薄膜与金刚石的界面处,因此产生的NV色心位于近表面处。
-
-
-
-
-
-
-
-
-