一种拒止环境下的欠驱动无人艇分布式编队控制方法

    公开(公告)号:CN114564015A

    公开(公告)日:2022-05-31

    申请号:CN202210170540.9

    申请日:2022-02-24

    IPC分类号: G05D1/02

    摘要: 本发明提供一种拒止环境下的欠驱动无人艇分布式编队控制方法,包括:步骤1:建立欠驱动无人艇的编队模型;步骤2:设计纯方位角的欠驱动无人艇编队的控制器;步骤3:验证基于纯方位角的欠驱动无人艇编队控制策略的稳定性。本发明仅通过视觉和惯性传感器实现欠驱动无人艇的编队控制,避免使用通信网络和定位传感器,以实现拒止环境下的控制应用。

    改进基于BP神经网络的水面无人艇航速在线预报方法

    公开(公告)号:CN108960421B

    公开(公告)日:2022-03-18

    申请号:CN201810577099.X

    申请日:2018-06-05

    IPC分类号: G06N3/08 G06N3/04

    摘要: 本发明提供了一种改进基于BP神经网络的水面无人艇航速在线预报方法。收集数据,挑选出需要的对预测速度有影响的四个体系指标;对所述的四个体系指标进行识别与处理和所有指标的无量纲化;对四个无量纲化后的体系指标数据进行主成分分析;对水面无人艇航速预测BP神经网络进行初始化;运用四个体系指标样本集对网络进行训练;对水面无人艇航速预测BP神经网络的泛化能力进行检验,进行分析并加以修正;通过修正后的水面无人艇航速预测BP神经网络,得到下一时刻无人艇的速度。本发明提供的水面无人艇的航速的预报方法结构清晰,逻辑性较强,易于编写计算机程序实现。本发明适用于水面无人艇航速预测及航迹规划,海面避障方面。

    一种水面无人艇路径跟踪控制方法

    公开(公告)号:CN110308719B

    公开(公告)日:2022-02-22

    申请号:CN201910436861.7

    申请日:2019-07-11

    IPC分类号: G05D1/02

    摘要: 本发明公开了一种水面无人艇路径跟踪控制方法,通过当前无人艇运动的状态信息、位置坐标信息,进行路径点的离散并根据点更新机制进行目标点的更新;通过状态信息进行航向规划,计算当前目标点的视线角视线余角横侧偏差SE、视线补偿量并求得当前航向误差根据航向规划信息,进行航向控制,计算控制器输出力矩Np,根据规划航速和海况估算推进器推力Xp;对输出推力Xp、输出力矩Np进行推力分配,求得各推进器的执行信号,并控制推进器执行指令动作。本发明使得无人艇可以跟踪曲线路径,保证了路径跟踪的快速性以及稳定性,在风浪存在的条件下大大避免了侧漂的发生,实现了对航速较为准确的控制,对于无人艇的路径跟踪控制有重要的作用。

    海豚自由游动的运动学记录装置

    公开(公告)号:CN112672063B

    公开(公告)日:2022-02-11

    申请号:CN202110033740.5

    申请日:2021-01-11

    IPC分类号: H04N5/232 H04N5/04

    摘要: 一种海豚自由游动的运动学记录装置,属于仿生流体力学领域。本发明针对现有技术中获取的海豚游动轨迹的数据误差大的问题。采用透明水箱用于为海豚提供游动空间,照明光源提供光照度;一号高速照相机对应透明水箱一侧壁居中设置,二号高速照相机对应透明水箱一端壁居中设置;一号激光发射装置对应透明水箱另一端壁设置,二号激光发射装置对应透明水箱一侧壁的相对侧壁设置;一号高速照相机上设置一号激光接收装置,二号高速照相机上设置二号激光接收装置;激光接收装置在接收激光发射装置发射的信号后,控制相应高速照相机快门的触发。本发明实现了海豚运动学数据的精确记录。

    一种基于MLP方法的欠驱动无人艇轨迹跟踪控制方法

    公开(公告)号:CN113848887A

    公开(公告)日:2021-12-28

    申请号:CN202111050187.2

    申请日:2021-09-08

    IPC分类号: G05D1/02

    摘要: 本发明是一种基于MLP方法的欠驱动无人艇轨迹跟踪控制方法。进行欠驱动水面无人艇的建模,得到USV运动学模型;采用径向基函数神经网络来近似未建模的动力学函数,进行模型动力学转换;进行欠驱动动力学的模型转换,将USV跟踪误差系统扩展为三阶,以实现交叉跟踪动力学的相对度;转换USV集成鲁棒有限时间控制器,进行有限时间USV轨迹跟踪;进行稳定性分析。数值仿真结果表明,该控制器不仅具有良好的跟踪精度,而且具有良好的抗干扰能力。

    一种自适应边界层水面无人艇控制导引方法

    公开(公告)号:CN109828570B

    公开(公告)日:2021-10-01

    申请号:CN201910120131.6

    申请日:2019-02-18

    IPC分类号: G05D1/02

    摘要: 本发明属于控制领域,具体涉及一种自适应边界层水面无人艇控制导引方法。包括神经网络离线训练,初始化算法控制参数,获取规划点及传感器信息,判断规划点是圆弧还是直线,根据当前水面无人艇至目标点距离(若为圆,则为已完成的跟踪角度),通过安全阈值观测器判断是否达到目标点,如果到达目标点,则将上一个目标点删除,再跳至步骤5,否则输出期望航向和期望航速。本发明通过自适应边界层在LOS算法中引入航速的考虑,提高其跟踪响应速度,利用双曲正切修正器优化LOS算法的跟踪控制精度。同时本算法采取模块化设计,不论是自适应边界层中的水面无人艇制动长度神经网络,速度优化层还是基于向量场改进的圆弧导引策略,都能够运用在其他算法中。

    一种动态环境下获取水面无人艇艏向可行区间的方法

    公开(公告)号:CN113110460A

    公开(公告)日:2021-07-13

    申请号:CN202110424038.1

    申请日:2021-04-20

    IPC分类号: G05D1/02

    摘要: 本发明的一种动态环境下获取水面无人艇艏向可行区间的方法涉及多运动障碍物情况下的水面无人艇的自主危险规避方法,目的是为了克服现有水面无人艇避障方法计算耗时长,容易导致避障失败的问题,具体步骤如下:步骤一、获取无人艇的航速Vs和障碍物的航速Vo;障碍物的数量为至少一个;步骤二、构建无人艇和障碍物的速度障碍模型,并获得碰撞锥;步骤三、创建速度空间;并将碰撞锥映射到速度空间,对速度空间进行区域划分;步骤四、根据无人艇的航速、障碍物的航速和碰撞锥,计算障碍物的航速位于不同区域情况下的无人艇的艏向可行区间或艏向禁止区间。

    一种基于模糊状态观测器的单喷泵推进无人水面艇自适应航向控制方法

    公开(公告)号:CN108983774B

    公开(公告)日:2021-06-01

    申请号:CN201810778764.1

    申请日:2018-07-16

    IPC分类号: G05D1/02

    摘要: 本发明公开了一种基于模糊状态观测器的单喷泵推进无人水面艇自适应航向控制方法,属于无人水面艇运动控制技术领域;本发明包括:(1)获取无人水面艇运动状态信息;(2)获取无人水面艇的航向指令信息;(3)自适应跟踪无人水面艇内外环境干扰;(4)借鉴残差分析思想对环境干扰力进行预估;(5)消除时间滞后对干扰力作用判断的影响。本发明针对喷水推进方式的无人滑行艇设计的模型导向型航向控制方法存在实际应用困难的弱点及未考虑推进装置的实际工作特性的问题进行了改进,得到了一种面向工程应用的自适应单喷泵推进无人水面艇航向控制方法,对单喷泵机械安装误差和环境干扰等不利因素具有自适应特性。

    一种履带桨叶一体化的两栖无人车船

    公开(公告)号:CN112248730A

    公开(公告)日:2021-01-22

    申请号:CN202011174849.2

    申请日:2020-10-28

    IPC分类号: B60F3/00

    摘要: 一种履带桨叶一体化的两栖无人车船,本发明涉及一种两栖无人车船,本发明为解决现有的两栖船采用两套推进机构或一套可以变形的推进机构满足两种航行,导致其船体重量大、结构复杂且水下阻力较大等问题,本发明包括船体、两个主动轮和两个从动轮,船体为矩形结构,所述一种履带桨叶一体化的两栖无人车船还包括履带和多个桨叶,两个主动轮沿船体宽度方向并排安装在船体的前端,两个从动轮沿船体的宽度方向并排安装在船体的后端,主动轮通过履带与从动轮连接,多个桨叶沿履带的长度方向安装在履带的外表面上。本发明结构简单,操作方便,解决了一般两栖船使用两套推进机构导致的机构复杂及操作繁琐的问题。

    带有太阳能板无源双模自动清洁装置的自然能驱动机器人

    公开(公告)号:CN112054761A

    公开(公告)日:2020-12-08

    申请号:CN202010805538.5

    申请日:2020-08-12

    摘要: 本发明属于自然能驱动机器人技术领域,具体涉及一种带有太阳能板无源双模自动清洁装置的自然能驱动机器人。本发明的太阳能清洁模块采用无源混合能源驱动,不消耗自然能驱动机器人本身所载能量;驱动能源易于获得且不单一,通过NSV的姿态变化和太阳能板周围的热量获得能量,能在不同天气的各个时刻进行捕获,双模的混合驱动源增加了装置的鲁棒性;本发明清洁太阳能板可自动完成且时机精准,根据比对太阳能板的发电状态和当时环境的理论发电状态决定清洁动作,摒弃了传统的定时清洁方式,达到耗能和捕能的最优状态。本发明通过混合的海上能源捕获,在不浪费NSV自身能量的前提下对太阳能板进行自动精准的清洗维护,提高NSV的续航力。