-
公开(公告)号:CN111861924A
公开(公告)日:2020-10-30
申请号:CN202010715325.3
申请日:2020-07-23
申请人: 成都信息工程大学
IPC分类号: G06T5/00
摘要: 本发明涉及一种基于进化GAN的心脏磁共振图像数据增强方法,该方法在训练生成器时,对生成器进行突变生成多个子代生成器,通过适应性分数函数来评判多个生成器的适应性分数,根据分数来选择最优的子代生成器作为下一个迭代的父代生成器,同时在判别器训练阶段,结合特征向量的线性插值合成新的训练样本并生成相关的线性插值标签,不仅拓展了整个训练集的分布,也对离散样本空间进行连续化并且提高了领域间的平滑性,从而使得模型能够更好地得到训练。本发明的方法图像增强方法,能够生成高质量且多样的样本对训练集进行扩充,最终提高了分类结果的各项指标。
-
公开(公告)号:CN111859338A
公开(公告)日:2020-10-30
申请号:CN202010650672.2
申请日:2020-07-08
申请人: 成都信息工程大学
IPC分类号: G06F21/32 , A61B5/0476 , A61B5/00
摘要: 本发明属于信息识别技术领域,公开了一种身份识别方法、系统、存储介质、计算机程序、终端,获得电极帽采集到的脑电信号,输入至身份识别系统;对输入的脑电信号进行噪声去除使用ICA算法和滤波使用带通滤波器进行预处理,滤波操作过后获得有效频段的脑电;将预处理之后的脑电信号使用AR和SWT算法提取脑电信号特征;最后使用图卷积网络算法计算,输出用户ID,对脑电信号进行身份识别。本发明能够根据人体在不同状态下产生的EEG信号,自动的识别用户的身份,降低了对人状态的限制,解决了将人体限制于某一种状态下的EEG信号对人身份的识别;提供了高级的安全的防伪技术,使得黑客和用户都无法获取身份识别口令。
-
公开(公告)号:CN111797674A
公开(公告)日:2020-10-20
申请号:CN202010278235.2
申请日:2020-04-10
申请人: 成都信息工程大学
摘要: 本发明公开了一种基于特征融合和粒子群优化算法的MI脑电信号识别方法,包括以下步骤:S1、采集MI脑电信号,并对采集到的MI脑电信号进行带通滤波,随后通过小波软阈值法进行去噪操作,并提取脑电特征信号;S2、采用PSO-RF对脑电特征信号进行特征筛选。本发明结合了带通滤波、小波去噪、通道筛选、特征提取、特征融合、特征选择以及模式分类,对这七部分进行了有效的整合,最终得到的集成分类器能够达到98.34%的平均正确率,且AUC值和F-score也都表现优异,因此能够达到精确运动想象分类的目的。
-
公开(公告)号:CN107424154A
公开(公告)日:2017-12-01
申请号:CN201710267501.X
申请日:2017-04-21
申请人: 成都信息工程大学
摘要: 本发明涉及一种基于动态分配的分水岭图像分割并行方法,将图像平均分成k个基础子图,并将基础子图动态分配给k个线程同时处理,并让先处理完基础子图的线程分担任务较重的线程的任务;然后对基础子图进行分水岭分割,通过排序和浸没对像素点进行处理;再通过改进灰度准则对过分割的基础子图进行后处理;最后采用层叠拼接的方法对基础子图进行并行拼接。本发明的方法通过将基础子图动态分配给多个线程同时进行处理,提高了算法的效率,采用改进灰度准则,具有一定的噪声抑制作用,增强了算法的鲁棒性,最后采用层叠拼接基础子图,进一步的提高了算法效率。
-
公开(公告)号:CN118629672A
公开(公告)日:2024-09-10
申请号:CN202411110690.6
申请日:2024-08-14
IPC分类号: G16H70/40 , G16H20/10 , G16H50/70 , G06F18/25 , G16C20/50 , G16C20/70 , G16B35/00 , G16B40/00 , G06N3/045 , G06N3/042 , G06N3/0464 , G06N3/0455
摘要: 本发明公开了一种基于多模态数据融合的药物协同组合预测方法,首先获取药物组合样本的药物特征向量和细胞系基因表达量;接着基于多头自注意力的图注意力网络和最大池化操作提取药物特征向量中的药物分子图特征;再基于可变形卷积网络提取药物特征向量中的药物摩根指纹特征,并通过空间重建模块抑制药物摩根指纹特征的冗余;然后基于多层感知机提取细胞系基因表达量中的细胞系特征;最后采用Transformer将药物分子图特征、重建后的药物摩根指纹特征和细胞系特征进行特征融合,得到药物协同组合预测结果。本发明通过融合药物的多模态数据,增强了模型对药物的表征能力,进而提高了对未知药物协同组合的预测精度和泛化能力。
-
公开(公告)号:CN118609855A
公开(公告)日:2024-09-06
申请号:CN202411078638.7
申请日:2024-08-07
摘要: 本发明公开了一种基于异构图神经网络和多组学的癌症药物反应预测方法,涉及癌症药物反应预测领域,其通过构建细胞‑药物异构图神经网络,并将异构图神经网络应用到癌症药物反应预测问题模型构建,能够有效地学习细胞系与癌症药物之间存在的复杂联系;并且融合多组学数据,从多组学角度全面地学习细胞系特征,使模型更符合生物学意义,具备更好的鲁棒性,提高了癌症药物反应预测的准确率。
-
-
公开(公告)号:CN116756657B
公开(公告)日:2023-11-17
申请号:CN202311031625.X
申请日:2023-08-16
申请人: 成都信息工程大学
IPC分类号: G06F18/2415 , G06F18/25 , G06F18/10 , G06N3/0464 , G06N3/0455 , G06N3/047 , G06N3/0499 , G06N3/048 , G06N3/084 , G06F123/02
摘要: 本发明公开了一种基于CNN和Transformer的fNIRS脑力负荷检测方法,其包括获取fNIRS采集设备采集的原始数据,并对原始数据进行预处理得到氧合血红蛋白和脱氧血红蛋白浓度的信号#imgabs0#和#imgabs1#;对信号#imgabs2#和#imgabs3#进行一维卷积操作,并在通道维度上对卷积操作后的两个信号进行组合,得到组合信号Hb;采用卷积神经网络对组合信号Hb进行局部细粒度时间特征的提取,得到特征矩阵;采用Transformer模块对特征矩阵进行特征增强提取,得到状态特征;将状态特征输入多层感知机分类层,得到脑力负荷检测的分类结果。
-
公开(公告)号:CN116662782A
公开(公告)日:2023-08-29
申请号:CN202310648362.0
申请日:2023-05-29
IPC分类号: G06F18/213 , G06F18/214 , G06F18/241 , G06F18/25 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08 , A61B5/374 , G06F123/02
摘要: 本发明公开了一种基于MSFF‑SENet的运动想象脑电图解码方法,包括:S1、构建MSFF‑SENet模型;其中,MSFF‑SENet模型包括多尺度时空块、多尺度时间块、PSD‑Conv块、SE特征融合块和分类块;S2、构建EEG信号数据集,对MSFF‑SENet模型进行训练;S3、将预处理的EEG信号输入至MSFF‑SENet模型中,获得运动想象脑电图解码分类结果。本发明提出了一种新的MSFF‑SENet模型,其相较于常见的时空模型更为敏感且准确地捕获MI‑EEG数据中的时间和多光谱特征。
-
公开(公告)号:CN116312765A
公开(公告)日:2023-06-23
申请号:CN202310122535.5
申请日:2023-02-15
申请人: 成都信息工程大学
IPC分类号: G16B20/20 , G16B40/20 , G16B30/00 , G06N3/0464
摘要: 本发明提供了一种基于多阶段的非编码变异对增强子活性影响预测方法,涉及生物信息技术领域,该方法包括获取增强子相关特征,并对其进行预处理;构建并训练基于元学习的染色质特征预测模型;基于特征融合模型得到融合多染色质特征的联合表征;构建和训练基于多染色质特征联合表征的增强子活性预测模型;利用染色质特征预测模型以及增强子活性预测模型预测变异对增强子活性的影响;根据变异对增强子活性的影响,对功能性变异进行筛选。本发明提出了一个有效的增强子活性预测框架,实现变异对增强子活性影响的精确预测,解决了传统方法基于DNA序列进行预测,效果不佳的缺点。
-
-
-
-
-
-
-
-
-