基于多阶段的非编码变异对增强子活性影响预测方法

    公开(公告)号:CN116312765A

    公开(公告)日:2023-06-23

    申请号:CN202310122535.5

    申请日:2023-02-15

    摘要: 本发明提供了一种基于多阶段的非编码变异对增强子活性影响预测方法,涉及生物信息技术领域,该方法包括获取增强子相关特征,并对其进行预处理;构建并训练基于元学习的染色质特征预测模型;基于特征融合模型得到融合多染色质特征的联合表征;构建和训练基于多染色质特征联合表征的增强子活性预测模型;利用染色质特征预测模型以及增强子活性预测模型预测变异对增强子活性的影响;根据变异对增强子活性的影响,对功能性变异进行筛选。本发明提出了一个有效的增强子活性预测框架,实现变异对增强子活性影响的精确预测,解决了传统方法基于DNA序列进行预测,效果不佳的缺点。

    一种交互式单细胞ATAC-seq数据分析系统及方法

    公开(公告)号:CN116884500A

    公开(公告)日:2023-10-13

    申请号:CN202310861912.7

    申请日:2023-07-13

    IPC分类号: G16B40/00 G16B20/30

    摘要: 本发明公开了一种交互式单细胞ATAC‑seq数据分析系统及方法,本发明以scATAC‑seq特征峰的DNA序列作为数据集,利用基于scATAC‑seq特征峰的DNA序列作为数据集以此完成各个序列特征峰在各细胞中的染色质可及性、单细胞聚类、单细胞ATAC‑seq数据降噪、转录因子活性推断的任务。进一步地,本发明基于LoRA微调、Prefix微调与Adapter微调将预训练大模型适配到各个分析任务中,并以此搭建在线的交互式分析平台,有效降低了微调大型预训练模型的成本,使得生物信息学家可以轻松地进行单细胞ATAC‑seq数据分析,而无需掌握编程知识。