-
-
公开(公告)号:CN116312765A
公开(公告)日:2023-06-23
申请号:CN202310122535.5
申请日:2023-02-15
申请人: 成都信息工程大学
IPC分类号: G16B20/20 , G16B40/20 , G16B30/00 , G06N3/0464
摘要: 本发明提供了一种基于多阶段的非编码变异对增强子活性影响预测方法,涉及生物信息技术领域,该方法包括获取增强子相关特征,并对其进行预处理;构建并训练基于元学习的染色质特征预测模型;基于特征融合模型得到融合多染色质特征的联合表征;构建和训练基于多染色质特征联合表征的增强子活性预测模型;利用染色质特征预测模型以及增强子活性预测模型预测变异对增强子活性的影响;根据变异对增强子活性的影响,对功能性变异进行筛选。本发明提出了一个有效的增强子活性预测框架,实现变异对增强子活性影响的精确预测,解决了传统方法基于DNA序列进行预测,效果不佳的缺点。
-
公开(公告)号:CN116884495A
公开(公告)日:2023-10-13
申请号:CN202310991350.8
申请日:2023-08-07
IPC分类号: G16B30/00 , G06N3/0464 , G06N3/048 , G06N3/084 , G06F18/241 , G06N3/0499
摘要: 本发明公开了一种基于扩散模型的长尾染色质状态预测方法,包括S1、获取原始DNA序列,并对原始DNA序列进行处理得到DNA编码数据;S2、基于所述DNA编码数据构建DNA序列扩散模型;S3、结合UNet的噪声预测器,进行有条件的DNA序列扩散模型的逆向过程,得到具有不同染色质状态类别的平衡数据集;S4、基于所述平衡数据集,采用反向传播算法构建染色质状态预测模型。本发明利用基于DNA序列扩散模型从噪音中生成尾部类别染色质状态的DNA序列,从而实现样本平衡;然后,利用类别样本平衡的数据集训练染色质状态预测模型,染色质状态预测模型能够有效捕捉基于基因的语法规则,从而精确预测染色质状态。
-
公开(公告)号:CN116386720A
公开(公告)日:2023-07-04
申请号:CN202310383948.9
申请日:2023-04-11
申请人: 成都信息工程大学
摘要: 本发明公开了一种基于深度学习和注意力机制的单细胞转录因子预测方法,其包括获取单细胞染色质可及性分析测序数据,并对其进行预处理,之后进行数据增强操作,得到增强测序数据;提取增强测序数据中的回归峰作为特征向量S,拼接正向和反向的增强测序数据作为特征向量A,将取自全基因组的DNA序列数据转换为特征向量U;拼接特征向量S、特征向量A和特征向量U,并输入深度网络模型预测单细胞中每个转录因子的概率,深度网络模型包括卷积模块和通道注意力模型。
-
公开(公告)号:CN116805513B
公开(公告)日:2023-10-31
申请号:CN202311066361.1
申请日:2023-08-23
IPC分类号: G16B40/00 , G16B5/00 , G06N3/0455
摘要: 本发明公开了一种基于异构图Transformer框架的癌症驱动基因预测与分析方法,涉及生物信息学领域,该方法包括:利用基因与基因的相互作用关系、蛋白质与蛋白质的相互作用关系和基因与蛋白质的对应关系,构建基因与蛋白质的异构网络;构建异构图Transformer模块,并根据异构图Transformer模块和基因与蛋白质的异构网络生成目标节点的嵌入;构建全连接层分类模块,根据全连接层分类模块和目标节点的嵌入生成癌症驱动基因预测结果,并对癌症驱动基因预测结果进行分析。本发明能充分利用不同的生物网络中的实体之间的关联关系,解决了生物网络先验信息未充分利用的问题,进而提升了癌症驱动基因预测的准确性。
-
公开(公告)号:CN116884499A
公开(公告)日:2023-10-13
申请号:CN202310858474.9
申请日:2023-07-12
IPC分类号: G16B40/00 , G16B25/10 , G06N3/0455 , G06N3/084
摘要: 本发明公开了基于变分自编码器的单细胞转录因子调控网络构建方法,涉及基因转录调控领域,该方法包括:根据scATAC‑seq数据和scRNA‑seq数据,确定输入矩阵和真实标签矩阵;构建转录因子调控网络模型,并根据输入矩阵和转录因子调控网络模型确定预测标签矩阵;根据真实标签矩阵和预测标签矩阵,确定转录因子调控网络模型损失;采用双级优化策略对转录因子调控网络模型的内部参数进行更新;采用更新内部参数后的转录因子调控网络模型构建转录因子调控网络。本发明能提取并对齐单细胞ATAC‑seq和单细胞RNA‑seq数据中的高阶特征,结构化转录因子的调控关系,进而更全面准确地构建转录因子调控网络。
-
公开(公告)号:CN116153404B
公开(公告)日:2023-08-15
申请号:CN202310182496.8
申请日:2023-02-28
申请人: 成都信息工程大学
IPC分类号: G16B25/00 , G16B40/00 , G06N3/0455
摘要: 本发明公开了一种单细胞ATAC‑seq数据分析方法,通过提取单细胞分辨率的染色质可达性特征峰序列中转录因子‑DNA结合基元的所属种类、相对位置、长距离依赖关系等众多转录调控语法规则,从而更全面地表示单个细胞的功能状态和高阶特征。此外,本发明方法利用获取的转录调控语法规则、细胞功能状态和高阶特征,一站式地实现染色质可达性预测、细胞类型注释、染色质可达性图谱降噪、转录因子活性推断等一系列下游分析任务。
-
公开(公告)号:CN115938592A
公开(公告)日:2023-04-07
申请号:CN202310220890.6
申请日:2023-03-09
申请人: 成都信息工程大学
IPC分类号: G16H50/30 , G06F18/25 , G16B20/10 , G06N3/0464 , G06N3/0455 , G06N3/08
摘要: 本发明公开了一种基于局部增强图卷积网络的癌症预后预测方法,属于医学技术领域,包括以下步骤:S1:获取多组学数据和通路原始数据,并利用多组学数据路和通路原始数据构建无向图;S2:对无向图进行局部增强;S3:利用图卷积网络对局部增强后的无向图进行特征提取和特征融合,得到整体特征映射组合;S4:根据整体特征映射组合,构建比例风险模型,将整体特征映射组合输入至比例风险模型中,确定患者生存风险。本发明通过对癌症相关组学数据构建图神经网络学习,对患者进行预后预测及分析,可以为生物实验提供一定指导,从而有效减少实验时间与节省实验成本。
-
公开(公告)号:CN116884500A
公开(公告)日:2023-10-13
申请号:CN202310861912.7
申请日:2023-07-13
摘要: 本发明公开了一种交互式单细胞ATAC‑seq数据分析系统及方法,本发明以scATAC‑seq特征峰的DNA序列作为数据集,利用基于scATAC‑seq特征峰的DNA序列作为数据集以此完成各个序列特征峰在各细胞中的染色质可及性、单细胞聚类、单细胞ATAC‑seq数据降噪、转录因子活性推断的任务。进一步地,本发明基于LoRA微调、Prefix微调与Adapter微调将预训练大模型适配到各个分析任务中,并以此搭建在线的交互式分析平台,有效降低了微调大型预训练模型的成本,使得生物信息学家可以轻松地进行单细胞ATAC‑seq数据分析,而无需掌握编程知识。
-
公开(公告)号:CN116805513A
公开(公告)日:2023-09-26
申请号:CN202311066361.1
申请日:2023-08-23
IPC分类号: G16B40/00 , G16B5/00 , G06N3/0455
摘要: 本发明公开了一种基于异构图Transformer框架的癌症驱动基因预测与分析方法,涉及生物信息学领域,该方法包括:利用基因与基因的相互作用关系、蛋白质与蛋白质的相互作用关系和基因与蛋白质的对应关系,构建基因与蛋白质的异构网络;构建异构图Transformer模块,并根据异构图Transformer模块和基因与蛋白质的异构网络生成目标节点的嵌入;构建全连接层分类模块,根据全连接层分类模块和目标节点的嵌入生成癌症驱动基因预测结果,并对癌症驱动基因预测结果进行分析。本发明能充分利用不同的生物网络中的实体之间的关联关系,解决了生物网络先验信息未充分利用的问题,进而提升了癌症驱动基因预测的准确性。
-
-
-
-
-
-
-
-
-