-
公开(公告)号:CN119441743B
公开(公告)日:2025-05-13
申请号:CN202510028699.0
申请日:2025-01-08
IPC: G06F18/10 , G06N3/006 , G06F18/2131
Abstract: 本发明公开了一种变压器声纹信号去噪方法,包括如下步骤:使用声音采集装置采集变压器声纹信号;采用改进山猫优化算法对时变滤波经验模态分解的带宽阈值和B样条阶数进行优化,再使用优化后的时变滤波经验模态分解将采集到的变压器声纹信号分解成本征模态函数;采用滑动窗对本征模态函数进行分段截取,并且将截取后的本征模态函数构建成三阶信号张量;将构建的三阶信号张量输入贝叶斯高斯张量分解模型中进行分解重构,再根据张量构造逆过程将重构后的三阶信号张量还原成一维向量;本发明运用改进后的山猫优化算法优化时变滤波经验模态分解的参数,避免了分解时的混叠现象。
-
公开(公告)号:CN116682458B
公开(公告)日:2025-05-13
申请号:CN202310687573.5
申请日:2023-06-12
Applicant: 南昌工程学院
Inventor: 李斌 , 王宗耀 , 何言 , 康兵 , 许志浩 , 丁贵立 , 刘文轩 , 章彧涵 , 高家通 , 蒋善旗 , 戴永熙 , 杨梓萌 , 徐一舟 , 李雨彤 , 何登旋 , 单惠敏
IPC: G10L25/51 , G10L25/30 , G10L21/0208
Abstract: 本发明公开一种基于能量算子改进小波包的GIS局放声纹检测方法,选取小波包基函数对GIS声纹信号进行小波包分解、降噪,采用改进Teager能量算子小波包系数进行瞬时能量计算,得到瞬时能量序列,结合滑动窗口函数进行背景阈值判断,将能量异常点进行记录;而后结合峭度熵、模糊熵、瞬时能量以及能量异常点构建联合特征,使用RBF神经网络算法进行故障判定。本发明快速准确的发现GIS运行隐患。
-
公开(公告)号:CN118998005B
公开(公告)日:2025-03-07
申请号:CN202411484598.6
申请日:2024-10-23
Applicant: 南昌工程学院
IPC: F03D17/00 , G06N3/006 , G06N7/08 , G06F18/2411
Abstract: 本发明公开了一种基于声纹信号的风机叶片故障诊断方法,包括如下步骤:对风机叶片声纹信号进行采集,并进行滤波处理;通过完全集成经验模态分解方法将滤波处理后的声纹信号分解为多个本征模态函数;将本征模态函数转换为二维镜像雪花图,并进行归一化处理;通过改进红嘴蓝鹊优化算法对支持向量机内部惩罚参数以及核参数进行优化,得到IRBMO‑SVM模型;将归一化处理后的二维镜像雪花图输入IRBMO‑SVM模型中进行故障诊断;本发明采用改进红嘴蓝鹊优化算法优化支持向量机,提高了支持向量机计算效率,进而提高了对风机叶片的故障诊断精度。
-
公开(公告)号:CN119378555A
公开(公告)日:2025-01-28
申请号:CN202411961988.8
申请日:2024-12-30
Applicant: 南昌工程学院 , 南昌左宸科技有限公司
IPC: G06F40/295 , G06F40/242 , G06F40/126 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开了基于可动态组合多头注意力的电力领域命名实体识别方法,包括如下步骤:构建LERoBERTa‑DCMHA模型,将采集的电力文本字词序列输入模型中,得到电力文本字词序列的字特征向量;根据词典组合与电力文本字词序列,进行电力词汇词向量训练,得到电力文本字词序列的词特征向量;将字特征向量与词特征向量进行特征融合,获得电力文本字词序列的特征向量;对电力文本字词序列的特征向量进行双向特征编码,得到输出状态序列;对输出状态序列进行标注概率排序,获得最终的实体识别结果;本发明通过添加可动态组合多头注意力和卷积池化层TextCNN至预训练语言模型中,提高了模型命名实体识别的性能和准确度。
-
公开(公告)号:CN117708696B
公开(公告)日:2024-11-12
申请号:CN202311632988.9
申请日:2023-11-29
Applicant: 国网湖北省电力有限公司超高压公司 , 国网湖北省电力有限公司电力科学研究院 , 南昌工程学院
Inventor: 罗浪 , 邓华璞 , 杜军 , 杨丰帆 , 张子熙 , 武晓蕊 , 赵泽予 , 李佳 , 吴荻玮 , 高牧风 , 何琦 , 潘晓璐 , 贺佳慧 , 童歆 , 张露 , 李旭东 , 袁军 , 侯成 , 吕嘉威 , 许志浩 , 康兵 , 丁贵立 , 王宗耀
IPC: G06F18/2415 , G06F18/243 , G06F18/2431 , G06F18/213 , G06N7/01
Abstract: 本发明属于变压器故障诊断技术领域,涉及一种基于LGEO‑gcForest的油浸式变压器故障诊断方法,根据变压器的油中溶解气体数据样本,计算油中溶解气体的非编码比值,将非编码比值标准化,并划分训练集和测试集;将gcForest模型的多粒度扫描窗口大小和级联森林允许的最大级联数作为寻优参数,并以gcForest模型的故障诊断准确率作为适应度;使用金鹰优化算法对gcForest模型进行优化,返回最优参数;根据返回的最优参数构建LGEO‑gcForest故障诊断模型,用于获取变压器故障诊断结果。本发明通过优化gcForest模型的关键参数,可以提高变压器故障诊断的准确性。
-
公开(公告)号:CN118656731A
公开(公告)日:2024-09-17
申请号:CN202411066900.6
申请日:2024-08-06
Applicant: 南昌工程学院
IPC: G06F18/2415 , G06N3/047 , G06N3/006 , G01R31/12
Abstract: 本发明公开了一种基于神经网络的变压器局部放电检测方法,包括:S1:采集变压器历史运行时局部放电的信号数据,根据风险类型对信号数据分别进行标记,以此构建数据集,对数据集进行预处理获取特征数据集;S2:构建概率神经网络模型,导入S1中的特征数据集至概率神经网络模型进行训练,在训练过程中,通过苦鱼算法优化概率神经网络模型的平滑因子,获取最优的平滑因子;S3:采集变压器实时运行时局部放电的信号数据并进行预处理,将其导入训练后的概率神经网络模型进行检测,输出变压器实时的局部放电的风险类型。本发明采用改良的苦鱼算法优化概率神经网络的方法,极大地提高了检测的准确性。
-
公开(公告)号:CN118378759B
公开(公告)日:2024-09-13
申请号:CN202410806199.0
申请日:2024-06-21
Applicant: 南昌工程学院
Abstract: 本发明公开了一种基于逆向云场景聚类的风电功率区间预测方法及系统,该方法通过获取风电功率的相关气象影响因子数据、风电功率预测数据以及与实际值的误差序列;对相关气象影响因子数据进行融合降维并进行聚类;基于风电功率预测数据使用自适应带宽核密度估计构建功率预测区间;根据三维云向量特征的聚类结果对每种类型赋予不同的修正权重并使用改进的MODBO算法对修正权重进行优化;使用优化后的修正权重通过自适应带宽核密度估计重新构建误差修正后的功率预测区间。本发明可提高区间预测的质量,解决当前区间预测方案无法兼顾多种风电功率预测误差的复杂场景,且覆盖率不足,区间宽度过大的问题。
-
公开(公告)号:CN115436464B
公开(公告)日:2024-09-10
申请号:CN202211070900.4
申请日:2022-08-31
Applicant: 南昌工程学院
Abstract: 本发明公开了基于漏磁检测的耐张线夹压接凹槽位置检测装置及方法,该装置包括倒U型磁化器、聚磁结构、磁敏传感器,倒U型磁化器由磁轭、永磁体、磁极组成,整体组成一个开环磁轭,倒U型磁化器整体呈现倒U型结构,开环磁轭内镶嵌永磁体,且末端的磁极有一切角,两个磁极紧贴并垂直于耐张线夹的铝层表面,聚磁结构由两块聚磁片对称分布构成,位于耐张线夹检测面上端,倒U型磁化器两个磁极中间位置;磁敏传感器置于两块聚磁片中间位置。本发明仅需操作人员手持检测装置沿轴线移动扫过耐张线夹表面,通过检测装置识别出漏磁场信号,根据漏磁场信号反演出耐张线夹压接凹槽的开端位置和整个凹槽宽度,定位了耐张线夹压接凹槽位置。
-
公开(公告)号:CN118471254A
公开(公告)日:2024-08-09
申请号:CN202410918593.3
申请日:2024-07-10
Applicant: 南昌工程学院
IPC: G10L25/30 , G10L25/51 , G10L25/24 , G10L21/0272 , G10L21/0208 , G06N3/0475 , G06N3/094 , G01H17/00
Abstract: 本发明公开了一种变压器声纹信号样本扩充方法,使用声音采集装置采集变压器声纹信号,并通过LMS自适应滤波方法对采集到的变压器声纹信号进行滤波处理,分离出变压器运行声音和外界环境干扰噪声,得到滤波后的变压器声纹信号,构成变压器声纹信号数据集;对滤波后的变压器声纹信号进行MFCC特征提取,得到MFCC参数;使用改进瞪羚优化算法优化MFCC参数,得到最优MFCC参数;构建生成对抗网络;将构建好的生成对抗网络模型用于变压器声纹信号样本的生成。本发明具有较好的泛化性,可用于变压器声纹信号样本扩充。
-
公开(公告)号:CN118378759A
公开(公告)日:2024-07-23
申请号:CN202410806199.0
申请日:2024-06-21
Applicant: 南昌工程学院
Abstract: 本发明公开了一种基于逆向云场景聚类的风电功率区间预测方法及系统,该方法通过获取风电功率的相关气象影响因子数据、风电功率预测数据以及与实际值的误差序列;对相关气象影响因子数据进行融合降维并进行聚类;基于风电功率预测数据使用自适应带宽核密度估计构建功率预测区间;根据三维云向量特征的聚类结果对每种类型赋予不同的修正权重并使用改进的MODBO算法对修正权重进行优化;使用优化后的修正权重通过自适应带宽核密度估计重新构建误差修正后的功率预测区间。本发明可提高区间预测的质量,解决当前区间预测方案无法兼顾多种风电功率预测误差的复杂场景,且覆盖率不足,区间宽度过大的问题。
-
-
-
-
-
-
-
-
-