-
公开(公告)号:CN116122891B
公开(公告)日:2024-06-25
申请号:CN202310198275.X
申请日:2023-03-01
申请人: 中国矿业大学(北京)
摘要: 本发明公开了一种瓦斯抽采钻孔二次智能封孔提高抽采效果的装置及方法,首先构筑注浆空间并调试智能分析控制箱参数,通过智能分析控制箱控制注浆泵向注浆空间注浆,完成封孔段智能封孔,并在抽采期间通过压力传感器及瓦斯浓度传感器实时监测浆液压力与瓦斯抽采浓度,待监测到后期漏气通道产生导致瓦斯抽采浓度下降后,控制注氮泵向膨胀囊袋注氮,通过膨胀囊袋膨胀压缩注浆空间,使浆液挤压进入新生发育裂隙,封堵后期漏风通道,完成智能补压作业。该方法成本低廉、结构合理,实现了无人条件下全过程智能封孔及补压,为解决当前因抽采钻孔后期漏气通道难以封堵导致瓦斯抽采浓度下降等问题提供了强有力的支撑,大大提高了瓦斯抽采效果。
-
公开(公告)号:CN118116480A
公开(公告)日:2024-05-31
申请号:CN202410259337.8
申请日:2024-03-07
申请人: 中国矿业大学(北京)
摘要: 本发明提供了煤体纳米孔隙结构中气体吸附解吸过程的分子模拟方法。该方法包括:基于晶体充填法,构建煤体致密固体基质下形态各异的纳米级单个孔隙模型;获取孔隙模型的结构参数和形态分布特征;采用蒙特卡洛‑结构优化‑分子动力学耦合方法,模拟煤体纳米孔隙模型中气体吸附过程,得到目标压力和温度下能量最低的平衡态吸附构型;对构型内部气体分子的赋存形式进行定量化表征;在平衡态吸附构型上增加外部气相空间,形成解吸模拟的初始构型,进而开展气体分子宏观解吸过程模拟。本发明实现了煤体真实纳米孔隙结构的构建,在分子尺度上还原了煤层气在煤体纳米孔隙结构中的吸附解吸过程,对煤层气产能预测以及煤与瓦斯突出防治具有重要指导意义。
-
公开(公告)号:CN117345173B
公开(公告)日:2024-05-10
申请号:CN202311561643.9
申请日:2023-11-22
申请人: 中国矿业大学(北京)
摘要: 本发明公开了一种高抽巷瓦斯分段抽采方法,具体步骤为:首先将固定有可变径弹性囊袋的抽采管放置在高抽巷中,每个可变径弹性囊袋的前端连接有控制器,当瓦斯浓度监测仪检测到瓦斯浓度达到预设启动值或应力传感器检测到巷道煤岩壁面出现较大应力变化时,控制器弹射开关启动,可变径弹性囊袋扩张,完成对高抽巷开采扰动区和非扰动区的分段,进而实现对开采扰动区瓦斯的精准高效抽采。本发明实现了根据巷道瓦斯浓度和巷道围岩应力实时变化情况下的高抽巷合理分段瓦斯抽采,解决了高瓦斯煤层高抽巷抽采中由于无效抽采空间大使得抽采负压要求高、瓦斯抽采效果差的问题,本发明有效提高了高抽巷瓦斯抽采效果,为高瓦斯煤层安全高效生产提供重要保障。
-
公开(公告)号:CN111995502B
公开(公告)日:2024-04-12
申请号:CN202010672282.5
申请日:2020-07-14
申请人: 中国矿业大学(北京)
摘要: 本发明涉及“一种合成全氟丁基甲醚的方法”,属于有机化学合成领域。一种合成全氟丁基甲醚的方法,其特征在于:第一步:四氯化碳(分子式CCl4)与五氯丙烯(分子式CCl3CH=CCl2)在调聚催化剂作用下生成九氯丁烷(分子式CCl3CH(CCl3)CCl3)。第二步:九氯丁烷在催化剂的作用下气相催化脱氯化氢生成全氯丁烯(CCl3C=(CCl2)CCl3)。第三步:全氯丁烯与无水氟化氢(AHF)在催化剂的作用下生成六氟二氯丁烯(CF3C=(CCl2)CF3)。第四步:六氟二氯丁烯与与甲醇(CH3OH)和氢氧化钾进行调聚生成六氟一氯异丁烯基甲基醚(CH3O(Cl)C=C(CF3)2)。第五步:六氟一氯异丁烯基甲基醚与氯气和无水氟化氢在催化剂的作用下气相催化合成全氟丁基甲醚(CH3O(F2)C‑C(CF3)2)。#imgabs0#本发明原料廉价、来源便利;催化剂稳定性好、使用寿命长;产物分离提纯简单;易于工业化生产。
-
公开(公告)号:CN117705638A
公开(公告)日:2024-03-15
申请号:CN202311701471.0
申请日:2023-12-12
申请人: 中国矿业大学(北京)
摘要: 本发明公开了一种准确获取煤中瓦斯解吸规律的实验装置及应用方法。所述准确获取煤中瓦斯解吸规律的实验装置,包括注气系统、真空脱气系统、等温吸附系统和瓦斯解吸量测试系统。通过注气系统、真空脱气系统、等温吸附系统和瓦斯解吸量测试系统的高效配合,有效地解决了因人为判断误差导致的解吸量测不准的问题,可获得煤中瓦斯解吸量的准确值,对于研究煤中瓦斯解吸规律具有重要意义。
-
公开(公告)号:CN117607388A
公开(公告)日:2024-02-27
申请号:CN202311629471.4
申请日:2023-12-01
申请人: 中国矿业大学(北京)
IPC分类号: G01N33/22
摘要: 本发明公开了一种定量表征煤体裂隙率和孔隙率的方法,包括:利用密度分析仪测试获得煤的视密度;基于压汞实验、低压氮气吸附实验和二氧化碳吸附实验获得煤中孔、裂隙结构参数;利用分形理论处理压汞实验数据,建立煤中裂隙和孔隙尺度的判定准则,计算获得煤中裂隙体积和孔隙体积;将煤的视密度分别与其裂隙体积和孔隙体积结合,计算获得煤的裂隙率和孔隙率。本发明通过研究煤中孔、裂隙结构特征,构建了煤体裂隙率和孔隙率的表征方法,实现了煤中裂隙和孔隙结构特征的定量化表征。
-
公开(公告)号:CN115749689B
公开(公告)日:2024-01-30
申请号:CN202211060205.X
申请日:2022-08-30
申请人: 中国矿业大学(北京)
摘要: 本发明提供一种瓦斯抽采管网智能决策调控系统及方法,涉及瓦斯抽采技术领域,其目的是解决瓦斯抽采过程中,抽采负压不可控,以及对抽采系统盲目调控的问题,该发明包括瓦斯抽采管网系统流动解算模型以及瓦斯抽采智能决策与调控模型,以管网瓦斯纯量最大为目标,阀门开度作为决策变量,建立瓦斯抽采智能决策与调控模型,利用该决策模型以及瓦斯抽采管网系统流动解算模型对瓦斯调控方案进行计算,最终提出最优的瓦斯抽采调控方案,并实现在地面对控制阀门开度的远程智能控制,从而大幅度提高瓦斯抽采系统的安全性和高效性。
-
公开(公告)号:CN117418863A
公开(公告)日:2024-01-19
申请号:CN202311561918.9
申请日:2023-11-22
申请人: 中国矿业大学(北京)
IPC分类号: E21D11/10 , B05B3/10 , B05B9/04 , B05B15/628 , B05B15/625 , B05B15/68 , B05B12/08 , B05B12/12 , B05B12/02 , G06V10/25 , G01B11/22
摘要: 本发明公开了一种巷道裂隙分区识别与喷浆封堵方法及装置,该方法包括:获取巷道壁面裂隙发育情况的图像采集仪首先通过红外发射器向巷道壁面投射随机性三维红外点阵图案,由RGB相机获取巷道壁面裂隙图像,并基于定量分析方法获取不同分区裂隙的分形维数值,区域定位喷液控制面板接收到反馈的图像信息后,依托内置的感知轨迹规划系统和喷液运动控制系统实现对喷浆机定区域喷浆位置调节与喷浆作业。本发明实现自动对目标巷道壁面裂隙参数信息采集以及根据图像采集信息对喷浆机喷浆位置的自动调节,大大降低了人工作业强度,同时分区域识别喷淋,能够有效提高巷道新生裂隙的封堵效果,从根本上解决漏风引起的瓦斯浓度超限和煤自燃风险增加问题。
-
公开(公告)号:CN117390564A
公开(公告)日:2024-01-12
申请号:CN202311469974.X
申请日:2023-11-07
申请人: 中国矿业大学(北京)
IPC分类号: G06F18/2433 , G06F18/10 , G06F18/214 , G06F18/21 , G06N3/04 , G06N3/0464 , G06N3/0985 , G06N3/006 , G06Q50/26
摘要: 本发明涉及煤矿动力灾害预测技术领域,具体为一种基于ICSA‑CNN的煤岩瓦斯复合动力灾害预测方法。首先,采集煤岩瓦斯复合动力灾害的影响指标数据,运用孤立森林法iForest对异常数据进行识别并剔除;选用RF作为链式多重插补法MICE的估计器对缺失数据进行插补;然后,搭建卷积神经网络CNN的初始模型框架,运用Tent混沌映射改进乌鸦搜索算法CSA得到ICSA,进而对模型的超参数进行优化,从而提高预测精度;最后,训练模型,建立基于ICSA‑CNN的煤岩瓦斯复合动力灾害预测模型,并运用测试集对模型精确度进行验证。本发明结合了ICSA优越的寻优能力与CNN强大的特征学习能力,能够实现对煤岩瓦斯复合动力灾害的精确预测。
-
公开(公告)号:CN117248957A
公开(公告)日:2023-12-19
申请号:CN202311461944.4
申请日:2023-11-06
申请人: 中国矿业大学(北京)
摘要: 本发明公开了一种使用自膨胀式支架实现护孔的装置,包括以下步骤:S1、装置运输;S2、导向定位装置检测;S3、球形气囊膨胀;S4、自膨胀式支架和自动内支撑装置的扩张;S5、球形气囊和引导管的回收;S6、瓦斯抽采;S7、自膨胀式支架和自动内支撑装置的回收。本发明的有益效果是:应用本发明装置,既可以对弯曲程度大的钻孔进行护孔处理,又可以把护孔管下入孔洞深处,通过自膨胀式支架在孔内展开成一圆柱形金属网,可以对钻孔起到非常好的支护效果,有效的防止了堵孔、塌孔现象的发生,相比于下筛管和下套管的护孔方法,由于实现了全过程护孔,更好地保证了煤层气抽采的效率。再加上可以回收多次使用,最大程度的节省了护孔成本。
-
-
-
-
-
-
-
-
-