-
公开(公告)号:CN106227223A
公开(公告)日:2016-12-14
申请号:CN201610854334.4
申请日:2016-09-27
Applicant: 哈尔滨工程大学
IPC: G05D1/06
CPC classification number: G05D1/0692
Abstract: 本发明属于水下无人航行器的轨迹跟踪和动态滑模控制技术领域,具体涉及一种基于动态滑模控制的UUV轨迹跟踪方法。建立UUV水平面模型;通过坐标转换获得误差变量,并对误差变量求导得到误差变量的导数;构造李雅普诺夫函数并且定义虚拟速度控制变量将姿态跟踪转化为虚拟速度控制;稳定虚拟速度控制变量,利用滑模控制方法对系统参数不精确及外界时变扰动进行自适应估计,建立滑模动态函数;选取动态滑模控制律,实现UUV的轨迹跟踪。本专利通过反步法和自适应动态滑模控制技术的组合,解决了UUV平面轨迹跟踪控制问题在系统中可能存在建模不确定性、未知环境扰动的问题、系统的参数不确定性。
-
公开(公告)号:CN105843224A
公开(公告)日:2016-08-10
申请号:CN201610179617.3
申请日:2016-03-25
Applicant: 哈尔滨工程大学
IPC: G05D1/02
CPC classification number: G05D1/0206
Abstract: 基于神经动态模型反步法的AUV水平面路径跟踪控制方法,涉及欠驱动AUV的水平面路径跟踪控制技术领域。本发明是为了提高AUV路径跟踪控制的精度。本发明引进了神经动态模型理论,该模型具有输入输出平滑的特性。将反步法设计过程中出现的虚拟控制量流经神经动态模型,从而避免了对虚拟控制量的复杂求导运算,较传统的反步法设计而言避免了可能出现的“参数爆炸”现象,大大提高了系统的控制精度。
-
公开(公告)号:CN105807769A
公开(公告)日:2016-07-27
申请号:CN201610133445.6
申请日:2016-03-09
Applicant: 哈尔滨工程大学
IPC: G05D1/02
CPC classification number: G05D1/02
Abstract: 无人水下航行器IVFH避碰方法,涉及一种无人水下航行器的避碰方法。本发明提出一种无人水下航行器二维IVFH避碰方法,使无人水下航行器在航行过程中通过处理传感器数据获得障碍物位置信息后,能够着眼于安全性和快速性,使无人水下航行器具有一定的类人智能,综合障碍物距离、目标点距离、自由栅格百分比和已知视域百分比等因素,决策出合理的避碰动作,即:确定航向、航速指令,以规避障碍物,避免危险。本发明适用于无人水下航行器的避碰场合。
-
公开(公告)号:CN103968830B
公开(公告)日:2015-12-02
申请号:CN201410201315.2
申请日:2014-05-14
Applicant: 哈尔滨工程大学
IPC: G01C21/00
Abstract: 本发明涉及一种适用于解决在恶劣环境下UUV感知母船位置问题的UUV近水面跟踪母船航行时的多途导引装置及方法。本发明包括GPS定位装置、船用激光测距仪、多波束前视声呐和同步定位声呐,GPS定位装置包括分别安装在UUV和母船上的GPS天线,用于接收来自GPS卫星的定位信息;船用激光测距仪安装于母船,通过激光束测量UUV与母船的相对距离和方向;多波束前视声呐安装于UUV,通过声波测量母船与UUV的相对距离和方向;同步定位声呐包括安装于母船的发射基阵、接收基阵和安装于UUV的应答器。本发明增强了系统的冗余能力和定位精度,提高了系统数据传输的可靠性。
-
公开(公告)号:CN103929635B
公开(公告)日:2015-12-02
申请号:CN201410172333.2
申请日:2014-04-25
Applicant: 哈尔滨工程大学
IPC: H04N13/00
Abstract: 本发明公开了一种能够补偿UUV纵横摇引起的水下作业目标在双目摄像机中的位置和姿态偏差的一种UUV纵横摇时的双目视觉图像补偿方法。包括以下几个步骤:实时采集左、右摄像机信息获得水下作业目标的原始图像;实时采集UUV罗经信息获得UUV纵横摇产生的横倾角和纵倾角;补偿水下作业目标在双目摄像机中的视觉图像因UUV纵横摇产生的偏差;对水下作业目标原始图像进行放射变换,实现UUV纵横摇时水下作业目标在左、右摄像机中视觉图像的补偿。本发明使双目摄像机对水下作业目标的位置和姿态测定更加准确,且图像补偿的精确度高、实时性好,有利于提高UUV对水下目标的定位精度和自主作业成功率。
-
公开(公告)号:CN103217175B
公开(公告)日:2015-09-30
申请号:CN201310122150.5
申请日:2013-04-10
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及的是一种自适应容积卡尔曼滤波方法,特别是涉及一种带渐消记忆时变噪声统计估值器的自适应容积卡尔曼滤波方法。本发明包括下列步骤:(1)设定初始参数;(2)时间更新;(3)量测更新;(4)构造渐消记忆时变噪声统计估值器;(5)实时估计和修正噪声。相比于标准容积卡尔曼滤波方法,该方法不要求精确已知噪声的先验统计特性,具有应对噪声变化的自适应能力,且噪声统计估值器递推公式简单,更容易实现,且对噪声统计的估计是无偏的。
-
公开(公告)号:CN103901776A
公开(公告)日:2014-07-02
申请号:CN201410136080.3
申请日:2014-04-04
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及一种工业机械手抗干扰鲁棒自适应PID控制方法,其特征在于:鲁棒自适应PID控制器包括PID控制项、自适应控制项、鲁棒控制项,PID控制项与鲁棒控制项的输入均为机械手的位置与速度误差,自适应控制项的输入为机械手不确定动力学参数的估计值,PID控制项、自适应控制项、鲁棒控制项的输出经过累加器叠加,实现鲁棒自适应PID控制。
-
公开(公告)号:CN101887579B
公开(公告)日:2012-02-01
申请号:CN201010209306.X
申请日:2010-06-25
Applicant: 哈尔滨工程大学
IPC: G06T5/00
Abstract: 本发明提供的是一种基于散射模型的水下图像复原方法。水下退化图像的复原过程被看做从退化像素灰度集到原始(退化前)像素灰度集的映射,而映射函数由水下光线传播模型推演而来,即基于散射模型的分段映射函数。主要内容包括:(1)采用线性拟合法和平均法对所考虑水域的水下光线传播散射模型进行标定;(2)从退化前后图像的直方图之间的联系总结出上述映射的全面约束条件;(3)根据约束条件确定模型中的d值、构建出分段映射函数。这样就可以利用生成的分段映射函数进行图像复原。本发明可以提高水下图像对比度,突出图像纹理细节,从而提高图像质量。为水下视觉的推广打下基础。
-
公开(公告)号:CN102279599A
公开(公告)日:2011-12-14
申请号:CN201110195490.1
申请日:2011-07-13
Applicant: 哈尔滨工程大学
IPC: G05D1/00
Abstract: 本发明提供的是一种面向海洋观测作业的UUV航速双工控制装置及方法。包括任务控制模块、量级航速控制通道、精确航速控制通道、运动控制模块和感知模块;任务控制模块分别与量级航速控制通道、精确航速控制通道、运动控制模块和感知模块相互连接;量级航速控制通道和精确航速控制通道均与运动控制模块连接。感知模块采集UUV的状态、位姿信息及海流剖面信息经处理后发送给任务控制模块,运动控制模块与任务控制模块进行实时信息交互。任务控制模块根据当前工况选用不同通道将与UUV当前航速指令相对应的数字化控制量发送到运动控制模块,进而完成整个航速控制过程。本发明可应用于各种无人UUV的缆控调试以及多工况自主作业时的航速控制。
-
公开(公告)号:CN102213594A
公开(公告)日:2011-10-12
申请号:CN201110062965.X
申请日:2011-03-16
Applicant: 哈尔滨工程大学
IPC: G01C13/00
Abstract: 本发明提供的是一种无人潜航器海流观测数据融合方法。1、海流剖面数据获取,UUV在水下一定深度航行时,获取UUV上部或下部一定水层厚度的海流剖面;2、海流剖面数据滤波,对获取的海流剖面原始数据进行滤波,消除野值,并对测量的随机误差进行平滑修正;3、海流剖面数据时间配准,将异步数据归算为相同时刻下的同步数据;4、UUV位置信息的推算,UUV从一个已知的坐标位置开始,根据UUV在该点的航向、航速和航行时间,推算下一时刻的坐标位置;5、海流剖面数据融合,将位置信息的推算所得的经纬度位置信息转换成ASCII码,插入到ADCP数据包的相应位置。本发明可以得到在大地坐标系下,准确、完整的海流剖面信息。
-
-
-
-
-
-
-
-
-