-
公开(公告)号:CN109826652B
公开(公告)日:2023-10-13
申请号:CN201910102684.9
申请日:2019-02-01
Applicant: 上海工程技术大学 , 上海隧道工程有限公司 , 同济大学
Abstract: 本发明涉及一种盾构同步注浆中浆液损失量的模拟试验装置,包括:环状的透明箱体;与透明箱体连接的水循环系统,用于模拟实际的承压水环境,包括流量计;置于透明箱体的内侧面的隔离体,开设有透水孔;置于隔离体内并与透明箱体连接的模拟管片,与隔离体之间形成有模拟通道;设于模拟通道内且可移动的透明封闭塞体,开设有贯通的注浆孔,通过透明封闭塞体的移动而在模拟通道内形成位于模拟管片外侧的注浆间隙,进而通过注浆孔向注浆间隙内注入模拟浆液,以模拟盾构施工中的同步注浆过程。本发明能够提供不同的承压水环境条件,模拟同步注浆的全过程,且可推算出浆液损失量与承压水压力直接的关系,提高了所获得的浆液损失量的精准度。
-
公开(公告)号:CN109826652A
公开(公告)日:2019-05-31
申请号:CN201910102684.9
申请日:2019-02-01
Applicant: 上海工程技术大学 , 上海隧道工程有限公司 , 同济大学
Abstract: 本发明涉及一种盾构同步注浆中浆液损失量的模拟试验装置,包括:环状的透明箱体;与透明箱体连接的水循环系统,用于模拟实际的承压水环境,包括流量计;置于透明箱体的内侧面的隔离体,开设有透水孔;置于隔离体内并与透明箱体连接的模拟管片,与隔离体之间形成有模拟通道;设于模拟通道内且可移动的透明封闭塞体,开设有贯通的注浆孔,通过透明封闭塞体的移动而在模拟通道内形成位于模拟管片外侧的注浆间隙,进而通过注浆孔向注浆间隙内注入模拟浆液,以模拟盾构施工中的同步注浆过程。本发明能够提供不同的承压水环境条件,模拟同步注浆的全过程,且可推算出浆液损失量与承压水压力直接的关系,提高了所获得的浆液损失量的精准度。
-
公开(公告)号:CN109667589A
公开(公告)日:2019-04-23
申请号:CN201910102700.4
申请日:2019-02-01
Applicant: 上海隧道工程有限公司 , 上海工程技术大学 , 同济大学
Abstract: 本发明涉及一种超深地层盾构同步注浆全截面可视化模拟试验装置及方法,该装置包括:透明的试验箱体,内装有模型土;与试验箱体连接的水循环系统,用以模拟实际的承压水环境;与试验箱体连接的且透明的模拟管片;与试验箱体连接的且透明的隔离体,置于模拟管片和试验箱体之间,通过开设的透水孔而与模型土相连通,隔离体和模拟管片之间形成有模拟通道;设于模拟通道内且可移动的透明封闭塞体,开设有贯通的注浆孔,通过透明封闭塞体的移动而在模拟通道内形成注浆间隙,进而通过注浆孔注入模拟浆液,以模拟盾构施工中的同步注浆过程。本发明可直观地观测同步注浆浆液固化过程中浆液渗流速度的变化规律,及其在高水压环境中的扩散模式和填充效果。
-
公开(公告)号:CN109781603B
公开(公告)日:2021-05-04
申请号:CN201910102698.0
申请日:2019-02-01
Applicant: 上海工程技术大学 , 上海隧道工程有限公司 , 同济大学
Abstract: 本发明公开了超深地层盾构同步注浆渗透扩散模拟核磁实验系统及方法,系统包括:试验装置,内部具有浆液仓和水土仓,水土仓半包覆于浆液仓,浆液仓和水土仓之间的界面为部分透水不透砂;浆液仓和水土仓的两端用端盖封堵;活塞,外周面完全贴合于浆液仓的内周壁;供水管路,分别连接于浆液仓和水土仓的进水口处的端盖;出水管路,连接于水土仓的出水口处的端盖;核磁共振成像分析仪,具有供容置试验装置的检测空间。本发明通过核磁共振分析技术,可获取浆液渗透扩散过程中的图像数据、弛豫时间数据,结合检测的注浆压力和承压水压力数据,综合分析超深覆土高承压水下的深层盾构同步注浆过程中的浆液在地层中的渗透扩散模式,为实际施工提供指导。
-
公开(公告)号:CN109667589B
公开(公告)日:2020-06-05
申请号:CN201910102700.4
申请日:2019-02-01
Applicant: 上海隧道工程有限公司 , 上海工程技术大学 , 同济大学
Abstract: 本发明涉及一种超深地层盾构同步注浆全截面可视化模拟试验装置及方法,该装置包括:透明的试验箱体,内装有模型土;与试验箱体连接的水循环系统,用以模拟实际的承压水环境;与试验箱体连接的且透明的模拟管片;与试验箱体连接的且透明的隔离体,置于模拟管片和试验箱体之间,通过开设的透水孔而与模型土相连通,隔离体和模拟管片之间形成有模拟通道;设于模拟通道内且可移动的透明封闭塞体,开设有贯通的注浆孔,通过透明封闭塞体的移动而在模拟通道内形成注浆间隙,进而通过注浆孔注入模拟浆液,以模拟盾构施工中的同步注浆过程。本发明可直观地观测同步注浆浆液固化过程中浆液渗流速度的变化规律,及其在高水压环境中的扩散模式和填充效果。
-
公开(公告)号:CN109781603A
公开(公告)日:2019-05-21
申请号:CN201910102698.0
申请日:2019-02-01
Applicant: 上海工程技术大学 , 上海隧道工程有限公司 , 同济大学
Abstract: 本发明公开了超深地层盾构同步注浆渗透扩散模拟核磁实验系统及方法,系统包括:试验装置,内部具有浆液仓和水土仓,水土仓半包覆于浆液仓,浆液仓和水土仓之间的界面为部分透水不透砂;浆液仓和水土仓的两端用端盖封堵;活塞,外周面完全贴合于浆液仓的内周壁;供水管路,分别连接于浆液仓和水土仓的进水口处的端盖;出水管路,连接于水土仓的出水口处的端盖;核磁共振成像分析仪,具有供容置试验装置的检测空间。本发明通过核磁共振分析技术,可获取浆液渗透扩散过程中的图像数据、弛豫时间数据,结合检测的注浆压力和承压水压力数据,综合分析超深覆土高承压水下的深层盾构同步注浆过程中的浆液在地层中的渗透扩散模式,为实际施工提供指导。
-
公开(公告)号:CN209742911U
公开(公告)日:2019-12-06
申请号:CN201920180896.4
申请日:2019-02-01
Applicant: 上海工程技术大学 , 上海隧道工程有限公司 , 同济大学
Abstract: 本实用新型涉及一种盾构同步注浆中浆液损失量的模拟试验装置,包括:环状的透明箱体;与透明箱体连接的水循环系统,用于模拟实际的承压水环境,包括流量计;置于透明箱体的内侧面的隔离体,开设有透水孔;置于隔离体内并与透明箱体连接的模拟管片,与隔离体之间形成有模拟通道;设于模拟通道内且可移动的透明封闭塞体,开设有贯通的注浆孔,通过透明封闭塞体的移动而在模拟通道内形成位于模拟管片外侧的注浆间隙,进而通过注浆孔向注浆间隙内注入模拟浆液,以模拟盾构施工中的同步注浆过程。本实用新型能够提供不同的承压水环境条件,模拟同步注浆的全过程,且可推算出浆液损失量与承压水压力直接的关系,提高了所获得的浆液损失量的精准度。(ESM)同样的发明创造已同日申请发明专利
-
公开(公告)号:CN110608047A
公开(公告)日:2019-12-24
申请号:CN201910817867.9
申请日:2019-08-30
Applicant: 同济大学建筑设计研究院(集团)有限公司 , 上海隧道工程有限公司
Abstract: 本发明涉及一种下穿地铁支护结构及其制造方法,包括工作井,工作井沿现有地铁站两侧往地下竖向延伸;支撑架,支撑架设置于现有地铁站下方并连通工作井,支撑架构成下穿地铁的通道,包括管幕墙;连接件,连接件连接支撑架、工作井和现有地铁站,用于防止现有地铁站变形。本申请所提供的技术方案,管幕支护刚度大,对上部车站承托能力强,能够有效控制上部车站的变形,减小新建结构与现有车站竖向净距,节约造价;其次,采用管幕墙与冻结管结合的方式,管幕作为支护结构,冻结帷幕与管幕锁口一起形成两道止水帷幕,保证止水的同时减小冻结体量,较好的控制冻胀融沉对现有地铁站的变形影响。
-
公开(公告)号:CN112964225A
公开(公告)日:2021-06-15
申请号:CN202110158067.8
申请日:2021-02-04
Applicant: 上海隧道工程有限公司 , 同济大学
IPC: G01C5/04
Abstract: 本发明涉及一种具有调平功能的沉降检测系统及其调平方法,用于检测隧道的沉降量,该沉降检测系统包括:供安装于隧道的底面的架体;间隔安装于架体的顶部且竖直设置的若干加载件,该加载件的长度可调;安装于加载件的顶部的静力水准仪,且若干静力水准仪相互连通,以检测静力水准仪对应位置的沉降量;以及与加载件控制连接且与静力水准仪通讯连接的驱动件,通过驱动件根据静力水准仪的读数调节加载件的长度,使得若干静力水准仪的读数相同,从而若干静力水准仪位于同一水平面。本发明有效的解决了传统检测系统难以调至水平的问题,能够保证检测结果的精度,且调平简单,效率高。
-
公开(公告)号:CN117189188A
公开(公告)日:2023-12-08
申请号:CN202311389209.7
申请日:2023-10-25
Applicant: 上海隧道工程有限公司 , 上海城建隧道装备有限公司 , 上海申通地铁集团有限公司 , 同济大学
Inventor: 朱叶艇 , 王泽源 , 毕湘利 , 王秀志 , 吴文斐 , 朱雁飞 , 张闵庆 , 张子新 , 黄昕 , 翟一欣 , 盛炤霖 , 朱真学 , 顾旭莹 , 秦元 , 陈培新 , 庄欠伟 , 杨正
IPC: E21D11/40
Abstract: 本发明涉及一种拼装机的精确运动控制方法和控制系统,包括如下步骤:S1:获取拼装机的目标位姿,对目标位姿进行逆解,得到移动至目标位姿所需的运动量,根据运动量控制拼装机移动至目标位姿;S2:通过获取拼装机的实际运动量,对实际运动量进行正解,得出拼装机的实时位姿;S3:比较所得到的实时位姿与目标位姿,若两者一致则完成运动控制,若两者不一致则依据目标位姿与实时位姿进行逆解以得到调整运动量并控制拼装机执行,直至目标位姿与实时位姿相一致,通过数学建模的方法简化拼装运动机理,基于模块化的方法固化运动学解析工作,对拼装机逆解以控制拼装机的目标运动,再对拼装机正解以获取拼装机的实际位姿,实现了拼装机的精确运动控制。
-
-
-
-
-
-
-
-
-