-
公开(公告)号:CN111783367B
公开(公告)日:2022-05-17
申请号:CN202010663871.7
申请日:2020-07-10
申请人: 中南大学
IPC分类号: G06F30/28 , G01M9/08 , G01M17/08 , G06F119/14
摘要: 一种基于远场‑路堤风速关系的列车气动力预测方法,包括以下步骤:1a)获取在同一远场风速uw的情况下,不同路堤高度的路堤上方风速u4m;1b)获取不同路堤高度下,路堤上方风速u4m与远场风速uw的比值Wr;1c)探究得出比值Wr的3次方与测算出的实际气动力系数拟合,实际测算出的气动力系数包括基于迎风侧轨道和背风侧轨道得出的侧向力系数cy、升力系数cz、侧滚力矩系数cm;1d)得到气动力系数与Wr3的比值,建立该比值与侧滑角的函数关系1e)得到不同路堤高度不同侧滑角范围内的列车头车侧向力Fy、升力Fz、侧滚力矩Mx的预测模型。本申请的技术方案,能够化简列车气动力预测工作量,提高列车气动力预测的精度和效率。
-
公开(公告)号:CN113512960A
公开(公告)日:2021-10-19
申请号:CN202110571693.X
申请日:2021-05-25
申请人: 中南大学
摘要: 本发明公开了一种模拟列车相对运动的挡风墙及含有该挡风墙的实验台,包括挡风墙主体、所述挡风墙主体一侧开设有开口槽,所述开口槽内安设有用于模拟与列车相对运动的移动机构,所述移动机构包括安装于开口槽内与列车同速且反向的移动体、用于将动力传递的传动件及安设于挡风墙主体外用于给移动体移动提供动力的动力件。本发明将传统的固定不动的挡风墙模型更改为靠近列车模型的侧面可以与列车发生相对运动,使实验数据更接近实车试验。同时,利用传动轴和支撑杆可以伸缩的特性,更改挡风墙模型在实验台上方的高度,以模拟现实列车运行的各种情况,实验结果更具备普适性。
-
公开(公告)号:CN111783367A
公开(公告)日:2020-10-16
申请号:CN202010663871.7
申请日:2020-07-10
申请人: 中南大学
IPC分类号: G06F30/28 , G01M9/08 , G01M17/08 , G06F119/14
摘要: 一种基于远场-路堤风速关系的列车气动力预测方法,包括以下步骤:1a)获取在同一远场风速uw的情况下,不同路堤高度的路堤上方风速u4m;1b)获取不同路堤高度下,路堤上方风速u4m与远场风速uw的比值Wr;1c)探究得出比值Wr的3次方与测算出的实际气动力系数拟合,实际测算出的气动力系数包括基于迎风侧轨道和背风侧轨道得出的侧向力系数cy、升力系数cz、侧滚力矩系数cm;1d)得到气动力系数与Wr3的比值,建立该比值与侧滑角的函数关系1e)得到不同路堤高度不同侧滑角范围内的列车头车侧向力Fy、升力Fz、侧滚力矩Mx的预测模型。本申请的技术方案,能够化简列车气动力预测工作量,提高列车气动力预测的精度和效率。
-
公开(公告)号:CN114048650B
公开(公告)日:2024-08-09
申请号:CN202111323231.2
申请日:2021-11-04
申请人: 中南大学
IPC分类号: G06F30/23 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
摘要: 本发明公开了一种模拟铁路接触网的异物运动轨迹的计算方法及计算机系统,该计算方法包括:将铁路接触网所在的地形环境和异物样式结合实际情况建模,其中计算域中异物周围地形环境的空气流场区域做为背景区域,包裹着异物体的小部分空气体的异物流场区域做为重叠区域;将二者进行耦合以及空间离散;采用基于剪切应力运输湍流模型的延迟分离涡模拟方法对流场的结果进行求解;结合动态流体固体相互作用模型,对空气流场区域和异物流场区域之间动态相互作用进行仿真;得到并记录异物的运动轨迹以及运动过程中的相关参数。本发明准确直观地模拟了典型异物在大风条件下的运动过程,对改善铁路异物侵限和接触网运行安全具有工程指导意义。
-
公开(公告)号:CN115438724A
公开(公告)日:2022-12-06
申请号:CN202211000413.0
申请日:2022-08-19
申请人: 中南大学
摘要: 本发明涉及列车动态密封指数计算技术领域,公开了一种列车动态密封指数串并行计算方法、系统及存储介质,该方法将预估动态密封指数分布序列分割为N个子区间块,每个子区间块内各预估动态密封指数序列元素的计算任务块彼此独立,并将N个任务块分别分配给N个线程执行计算得到各预估动态密封指数所对应的计算内压序列,并进一步得到各计算内压序列与车厢实测内压数据序列的相似度匹配结果;这样,实现了计算过程的可多线程并行化进行,并且操作者可根据运行环境线程实际情况自由指定计算过程的串并行方式选择以及并行计算的线程数,极大程度地提高了对列车车厢动态密封指数进行计算的效率,实现了对动态密封指数的高精度大批量计算。
-
公开(公告)号:CN116639156A
公开(公告)日:2023-08-25
申请号:CN202310288350.1
申请日:2023-03-23
申请人: 中南大学
IPC分类号: B61D27/00
摘要: 本发明涉及高速铁路隧道内列车气动效应控制技术领域,具体涉及一种高速列车过隧道时车厢内部气压的调控方法及系统。该高速列车过隧道时车厢内部气压的调控方法包括:从高速列车控制系统获取所述列车即将进入隧道的时间t;比较所述t和t0的大小:当t>t0时,控制所述车厢通风系统保持正常模式;当t≤t0时,控制所述车厢通风系统切换为降压模式,直到列车驶入隧道,控制所述车厢通风系统切换为正常模式;所述t0为预计的车厢通风系统运行在降压模式的时长,所述降压模式是车厢通风系统持续向外排风,以人耳能接受的速率使车厢内部气压下降的工作模式。
-
公开(公告)号:CN113512960B
公开(公告)日:2024-08-20
申请号:CN202110571693.X
申请日:2021-05-25
申请人: 中南大学
摘要: 本发明公开了一种模拟列车相对运动的挡风墙及含有该挡风墙的实验台,包括挡风墙主体、所述挡风墙主体一侧开设有开口槽,所述开口槽内安设有用于模拟与列车相对运动的移动机构,所述移动机构包括安装于开口槽内与列车同速且反向的移动体、用于将动力传递的传动件及安设于挡风墙主体外用于给移动体移动提供动力的动力件。本发明将传统的固定不动的挡风墙模型更改为靠近列车模型的侧面可以与列车发生相对运动,使实验数据更接近实车试验。同时,利用传动轴和支撑杆可以伸缩的特性,更改挡风墙模型在实验台上方的高度,以模拟现实列车运行的各种情况,实验结果更具备普适性。
-
公开(公告)号:CN114633770B
公开(公告)日:2023-11-28
申请号:CN202210314447.0
申请日:2022-03-28
申请人: 中南大学
IPC分类号: B61C17/00
摘要: 本发明公开了使用主动吹气提升大风环境运行安全的列车及其控制方法,所述列车包括:设置在列车各节车辆的车体表面,用于在大风环境下沿车体表面向外喷射气流,以提升各节车辆的抗风气动性能的吹气单元,所述吹气单元的位置根据各节车辆的车型及其所处的风环境特征确定。本发明中的使用主动吹气提升大风环境运行安全的列车及其控制方法,通过设置在列车表(56)对比文件洪琪琛;杨明智;刘冬雪.车底设备对城际列车气动特性影响研究.铁道科学与工程学报.2018,(11),第233-241页.吴超;杜礼明.瞬态风场下带风屏障的高架桥上高速列车气动特性.大连交通大学学报.2017,(第02期),第23-28页.张佳文;郭文华;熊安平;项超群;王嘉奇.风障对桥上高速列车气动特性影响的风洞试验.中南大学学报(自然科学版).2015,(第10期),第336-345.田红旗.风环境下的列车空气阻力特性研究.中国铁道科学.2008,(第05期),第110-114页.
-
公开(公告)号:CN116890886A
公开(公告)日:2023-10-17
申请号:CN202310858237.2
申请日:2023-07-13
申请人: 中南大学
IPC分类号: B61D17/02
摘要: 本发明提供了一种提升大风环境下列车运行安全的涡控制方法,当列车遭遇横风时,通过列车顶面位于背风侧的涡流发生器,在横风下产生小尺度的流向涡,流向涡向下游背风侧发展,被吸入列车背风侧的大尺度拖曳涡,降低拖曳涡的强度,提升列车背风侧压力,减小列车横向力和倾覆力矩。本发明从对运行列车近体区流场进行涡结构干扰的主动干预思路出发,通过列车顶面的涡流发生器实现对大风环境下运行列车安全的主动控制,突破了风环境下运行列车安全的传统被动式控制措施研究思维,为列车运行安全的主动控制提供了新的研究思路,也为以后采用类似涡流发生器控制方法的列车运行安全主动控制技术的研究提供了有价值的参考依据。
-
公开(公告)号:CN115455662A
公开(公告)日:2022-12-09
申请号:CN202211000409.4
申请日:2022-08-19
申请人: 中南大学
IPC分类号: G06F30/20 , G06F30/15 , G06K9/62 , G06F119/14
摘要: 本发明涉及列车动态密封指数计算技术领域,尤其涉及一种列车动态密封指数计算方法、系统及存储介质,该方法采用三分搜索算法思路在预估动态密封指数分布区间内搜索寻找最优列车动态密封指数。这样,由于采用具有对数阶时间复杂度的三分搜索算法替代现有计算方法中的具有线性阶时间复杂度的遍历搜索方法,使得对列车动态密封指数的计算耗时明显减少、减少效率显著提高,并且得助于对数阶时间复杂度的三分搜索算法的计算耗时随着搜索区间尺度规模的增大变化不明显的特征,实现了高计算效率与高计算精度的共存。
-
-
-
-
-
-
-
-
-