-
公开(公告)号:CN112946683A
公开(公告)日:2021-06-11
申请号:CN202110041091.3
申请日:2021-01-13
申请人: 北京理工大学 , 北京空间飞行器总体设计部
IPC分类号: G01S17/89
摘要: 本发明提供了一种单线激光雷达的地图构建方法,首先控制飞行器按照指定的自转速度和前进速度进行螺旋前进运动;然后根据实时定位方法确定飞行器在空间中的位置,并实时解算飞行器的姿态以确定激光雷达的扫描方向;根据激光雷达反馈的距离信息实时更新三维点云数据;更新三维地图数据。本发明通过组合空间飞行器的自转和平移构成螺旋前进的运动方式,实现单线激光的扫描操作。不需要为单线激光雷达提供额外的扫描装置,简化了结构,节省了飞行器的内部空间。
-
公开(公告)号:CN112815177A
公开(公告)日:2021-05-18
申请号:CN202110040741.2
申请日:2021-01-13
申请人: 北京理工大学 , 北京空间飞行器总体设计部
IPC分类号: F16L55/32 , F16L55/40 , B62D57/028 , F16L101/30
摘要: 本发明提供了一种可适应复杂管道的机器人结构,本发明的机器人结构分三部分,前后两部分是结构相同、镜像布置的支撑驱动模块;中间部分是动力控制模块。模块铰接处设有铰接转动驱动机构,能自由控制动力控制模块和支撑驱动模块的铰接角度;动力控制模块两端设有中心旋转驱动机构,可驱动支撑驱动模块绕中心轴线旋转。本发明主要解决的技术问题是管道机器人在管道内径发生变化、S型管道、T型管道、Y型管道、管道连接处及管道限流环处时能够顺利通过的结构形式,发明了一种新的机器人结构,从而适应管道内各种情况,提高管道机器人的通过性和适应性。
-
公开(公告)号:CN112901902A
公开(公告)日:2021-06-04
申请号:CN202110041081.X
申请日:2021-01-13
申请人: 北京理工大学 , 北京空间飞行器总体设计部
IPC分类号: F16L55/40 , F16L55/32 , F16L101/30
摘要: 本发明提供了一种可适应多种管道情况的机器人机构,包括依次连接的第一支撑驱动模块、动力控制模块,以及第二支撑驱动模块;所述第一支撑驱动模块与所述第二支撑驱动模块的结构相同,两者呈镜像布置;所述第一支撑驱动模块通过第一铰接机构与所述动力控制模块连接,所述第二支撑驱动模块通过第二铰接机构与所述动力控制模块连接。本发明不仅可以适应更小内径管道,且可以通过比如S型管道、T型管道、Y型管道、管道限流环、管道变径段、方形管道等复杂管道情况,尤其是方形管道是三组支脚结构形式所无法实现的,针对长锥管道其通过性也有了保障。
-
公开(公告)号:CN115488919A
公开(公告)日:2022-12-20
申请号:CN202211047458.3
申请日:2022-08-29
申请人: 北京空间飞行器总体设计部
发明人: 白美 , 王友渔 , 梁常春 , 朱超 , 刘鑫 , 张文明 , 胡成威 , 高升 , 唐自新 , 高翔宇 , 谢宗武 , 刘业超 , 李大明 , 罗文成 , 杨宏 , 王翔 , 周佐新 , 林益明
摘要: 一种空间用级联式组合双机械臂及级联方法,两个独立的多自由度机械臂以及双臂组合转接件;所述两个独立的多自由度机械臂体积不同,分别记为大臂和小臂;所述的双臂组合转接件包括大臂端和小臂端,用于为所述大臂和小臂级联提供机、电、热接口;级联后,大臂给小臂供电;在小臂运动时,大臂处于待机制动状态并作为小臂的浮动基座,大臂运动时,小臂处于待机制动状态;所述的大臂用于空间大范围转移,小臂用于小范围移动调姿和末端操作。
-
公开(公告)号:CN115446828A
公开(公告)日:2022-12-09
申请号:CN202210950469.6
申请日:2022-08-09
申请人: 北京空间飞行器总体设计部
发明人: 牛嘉祥 , 胡玉茜 , 吴志红 , 张思博 , 余晟 , 周波 , 顾明 , 梁常春 , 潘冬 , 朱剑冰 , 王友渔 , 胡成威 , 高升 , 熊明华 , 唐自新 , 王耀兵 , 李大明 , 罗文成 , 杨宏 , 王翔 , 周佐新 , 林益明
IPC分类号: B25J9/16
摘要: 本发明涉及基于空间机械臂的大型舱段自主捕获或转位方法,属于空间站舱段飞行操作设计领域;确定需要采集的数据;建立空间站上各模块与目标大型舱段之间的通信网络;通过数管控制器采集目标大型舱段位置信息及捕获或转位状态信息数据,并将目标大型舱段位置信息及捕获或转位状态信息数据发送至机械臂控制器;通过数管控制器采集捕获或转位过程执行状态信息,经测控模块下行至地面,用于监测;机械臂控制器采集空间机械臂位置信息及捕获或转位状态信息;实现对大型舱段的自主捕获或转位,或对大型舱段的模拟捕获或转位;本发明通过控制方案及信息流方案,实现高实时性、自主控制、可复用的多舱段自主捕获及转位方法。
-
公开(公告)号:CN113343530B
公开(公告)日:2022-05-06
申请号:CN202110657166.0
申请日:2021-06-11
申请人: 清华大学 , 北京空间飞行器总体设计部
IPC分类号: G06F30/23 , G06F30/15 , G06F119/04 , G06F119/08 , G06F119/14
摘要: 本发明公开了一种控制空间站壳体结构疲劳损伤断裂的设计方法和装置,涉及飞行器结构损伤容限设计领域,所述方法包括:对结构件在生命周期的各个阶段进行有限元模拟,以前一阶段的有限元模拟输出作为后一阶段的有限元模拟输入;最后计算疲劳裂纹扩展,得到结构件在生命周期结束时的第一裂纹扩展曲线;对结构件进行第一次优化,重复前述步骤,得到第一次优化后的结构件在生命周期结束时的第二裂纹扩展曲线;再次进行第二次优化,重复前述步骤,得到第二次优化后的结构件在生命周期结束时的第三裂纹扩展曲线,以及得到优化的肋板的布置形式。本发明实现在尽量减少空间站结构舱总体重量的同时,保证空间站结构舱的使用寿命,具有极高的实用性。
-
公开(公告)号:CN113343530A
公开(公告)日:2021-09-03
申请号:CN202110657166.0
申请日:2021-06-11
申请人: 清华大学 , 北京空间飞行器总体设计部
IPC分类号: G06F30/23 , G06F30/15 , G06F119/04 , G06F119/08 , G06F119/14
摘要: 本发明公开了一种控制空间站壳体结构疲劳损伤断裂的设计方法和装置,涉及飞行器结构损伤容限设计领域,所述方法包括:对结构件在生命周期的各个阶段进行有限元模拟,以前一阶段的有限元模拟输出作为后一阶段的有限元模拟输入;最后计算疲劳裂纹扩展,得到结构件在生命周期结束时的第一裂纹扩展曲线;对结构件进行第一次优化,重复前述步骤,得到第一次优化后的结构件在生命周期结束时的第二裂纹扩展曲线;再次进行第二次优化,重复前述步骤,得到第二次优化后的结构件在生命周期结束时的第三裂纹扩展曲线,以及得到优化的肋板的布置形式。本发明实现在尽量减少空间站结构舱总体重量的同时,保证空间站结构舱的使用寿命,具有极高的实用性。
-
公开(公告)号:CN117648753A
公开(公告)日:2024-03-05
申请号:CN202311529713.2
申请日:2023-11-16
申请人: 北京空间飞行器总体设计部
IPC分类号: G06F30/15 , G06F30/20 , G06F119/14
摘要: 一种大型可变体变构型航天器动力学模型重构方法,包括以下步骤:建立子结构动力学方程;根据系统几何连接拓扑关系,建立反映各子结构之间界面协调连接关系的坐标变换矩阵;根据建立的子结构之间界面协调连接关系坐标变换矩阵,装配各个子结构,建立系统集成动力学方程。该方法解决了大型组合式空间结构的动态建模问题,所给出的数学模型能够反映出子结构构型动态变化带来的时变特点,保证了系统频率、振型及刚柔耦合特性对系统构型变化的适应性。
-
公开(公告)号:CN117634017A
公开(公告)日:2024-03-01
申请号:CN202311440337.X
申请日:2023-11-01
申请人: 北京空间飞行器总体设计部
IPC分类号: G06F30/15 , G06F30/20 , G06F17/12 , G06F17/16 , G06F119/14
摘要: 一种考虑柔性连接的航天器刚柔混杂系统动力学建模分析方法,首先根据带柔性连接系统的拓扑关系,进行柔性连接的简化描述与运动学建模;然后在此基础上,提出柔性连接的质量阵与刚度阵形式;进一步建立带柔性连接的部件动力学模型,并进行模型降阶;最后建立带柔性连接的航天器刚柔混杂动力学模型。该方法建立了考虑柔性连接的柔性部件动力学方程,并进一步给出了考虑柔性连接后的柔性耦合情况;能够真实反映柔性连接与柔性部件间的变刚度特性;支撑面向控制系统设计的变构型航天器系统动力学分析。
-
公开(公告)号:CN115383788A
公开(公告)日:2022-11-25
申请号:CN202211056986.5
申请日:2022-08-29
申请人: 北京空间飞行器总体设计部
发明人: 王友渔 , 胡成威 , 高升 , 唐自新 , 熊明华 , 梁常春 , 李德伦 , 张文明 , 陈磊 , 曾磊 , 陈明 , 张晓东 , 李大明 , 刘宾 , 王耀兵 , 罗文成 , 杨宏 , 王翔 , 周佐新 , 林益明
摘要: 一种空间高可靠爬行机械臂系统,机械臂本体七个关节为肩回转关节、肩偏航关节以及肩俯仰关节、一个肘部关节以及腕回转关节、腕偏航关节以及腕俯仰关节,两个末端执行器包括肩部末端执行器以及腕部末端执行器。机械臂处于长期在轨存储状态时,通过肩部末端执行器捕获固定基座适配器进行舱体供电,在需要爬行到舱体其他位置时,肩部末端执行器与基座适配器对紧、腕部末端执行器与目标适配器解锁的第一模式和肩部末端执行器与基座适配器解锁、腕部末端执行器与目标适配器对紧的第二模式交替执行,实现机械臂系统在轨大范围爬行移动操作。本发明实现了机械臂移动操作功能,扩展了机械臂操作范围,且具有较高的操作灵活性和故障安全性。
-
-
-
-
-
-
-
-
-