一种特种车发射架起竖调直的自适应控制方法

    公开(公告)号:CN108426486B

    公开(公告)日:2020-03-20

    申请号:CN201810209183.6

    申请日:2018-03-14

    IPC分类号: F41F3/04

    摘要: 本发明公开了一种特种车发射架起竖调直的自适应控制方法,包括如下步骤:步骤1,进行发射架起竖;步骤2,获取起竖角度;步骤3,判断起竖角度是否达到第一预设角度:如果是,则执行步骤4;如果否,则返回步骤2;步骤4,进行发射架调直;步骤5,获取调直角度;步骤6,判断调直角度是否达到第二预设角度:如果是,则执行步骤7;如果否,则返回步骤5;步骤7,判断调直角度是否在调直精度范围内:如果是,则结束;如果否,则执行步骤8;步骤8,更新第二预设角度;步骤9,回拉发射架,返回步骤2。本发明能够自动适应不同环境温度下的液压油特性和不同特种车机械特性,保证调直控制结果满足精度要求。

    一种特种车发射架起竖调直的自适应控制方法

    公开(公告)号:CN108426486A

    公开(公告)日:2018-08-21

    申请号:CN201810209183.6

    申请日:2018-03-14

    IPC分类号: F41F3/04

    摘要: 本发明公开了一种特种车发射架起竖调直的自适应控制方法,包括如下步骤:步骤1,进行发射架起竖;步骤2,获取起竖角度;步骤3,判断起竖角度是否达到第一预设角度:如果是,则执行步骤4;如果否,则返回步骤2;步骤4,进行发射架调直;步骤5,获取调直角度;步骤6,判断调直角度是否达到第二预设角度:如果是,则执行步骤7;如果否,则返回步骤5;步骤7,判断调直角度是否在调直精度范围内:如果是,则结束;如果否,则执行步骤8;步骤8,更新第二预设角度;步骤9,回拉发射架,返回步骤2。本发明能够自动适应不同环境温度下的液压油特性和不同特种车机械特性,保证调直控制结果满足精度要求。

    一种双模式自动保护动力源可切换调温控制方法

    公开(公告)号:CN105912050B

    公开(公告)日:2017-12-01

    申请号:CN201610227787.4

    申请日:2016-04-13

    IPC分类号: G05D23/20

    摘要: 为了确保发射车调温系统满足不同模式和机动环境下调温需求,本发明提供了一种双模式自动保护动力源可切换调温控制方法,包括:(1)获得温度信息并配置温度目标值;(2)根据温度传感器的配置初始化调温控制策略;(3)根据供电方式改变调温控制策略;(4)根据发动机转速自动切换压缩机动力源。本发明这种双模式自动保护动力源可切换调温控制方法实现了自动适应不同车型的调温需求,通过自动识别不同舱室温度传感器的配置情况,温控组合启动不同的调温策略。采用供配方式的多样性和自动保护功能,提高了调温系统的可靠性。在制冷过程中自动切换压缩机动力源,使得底盘发动机转动时电机停止工作,避免了电力的浪费。

    一种双模式自动保护动力源可切换调温控制方法

    公开(公告)号:CN105912050A

    公开(公告)日:2016-08-31

    申请号:CN201610227787.4

    申请日:2016-04-13

    IPC分类号: G05D23/20

    CPC分类号: G05D23/20

    摘要: 为了确保发射车调温系统满足不同模式和机动环境下调温需求,本发明提供了一种双模式自动保护动力源可切换调温控制方法,包括:(1)获得温度信息并配置温度目标值;(2)根据温度传感器的配置初始化调温控制策略;(3)根据供电方式改变调温控制策略;(4)根据发送机转速自动切换压缩机动力源。本发明这种双模式自动保护动力源可切换调温控制方法实现了自动适应不同车型的调温需求,通过自动识别不同舱室温度传感器的配置情况,温控组合启动不同的调温策略。采用供配方式的多样性和自动保护功能,提高了调温系统的可靠性。在制冷过程中自动切换压缩机动力源,使得底盘发送机转动时电机停止工作,避免了电力的浪费。

    一种用于飞行器的智能温控表

    公开(公告)号:CN105528000A

    公开(公告)日:2016-04-27

    申请号:CN201610009718.6

    申请日:2016-01-07

    IPC分类号: G05D23/30

    CPC分类号: G05D23/30

    摘要: 本发明公开了一种用于飞行器的智能温控表包括:误差校正模块、信号采集模块、信号放大模块、主控模块、数据存储模块、显示模块和状态指示模块;误差校正模块,利用飞行器模拟实验时输出的实际温度电压信号进行拟合得到误差校正函数;信号采集模块,实时采集飞行器传感器输出的温度模拟电压信号;信号放大模块,将接收到的温度电压信号进行放大;主控模块,读取并利用存储模块中的误差校正函数对信号放大模块发送的温度电压信号进行校正,得到温度值,并对该温度值进行判决;状态指示模块,将主控模块发送的高温报警信号、停止加温控制信号、持续加温控制信号和间隔加温控制信号进行显示;显示模块,将主控模块发送的温度值进行显示。