-
公开(公告)号:CN110866134B
公开(公告)日:2022-08-05
申请号:CN201911089272.2
申请日:2019-11-08
Applicant: 吉林大学
IPC: G06F16/535 , G06F16/58 , G06N3/04 , G06N3/08 , G06F16/55
Abstract: 本发明公开了一种面向图像检索的分布一致性保持度量学习方法,所述方法通过一种新颖的样本挖掘和类内难样本挖掘方法,选择有代表性的样本,在提高收敛速度的同时获取更丰富的信息;类内容易样本和难样本的比例为选取的难样本赋予动态权重,以学习类内数据结构特征,对于负样本,根据其周围样本的分布情况设置不同的权重进行学习以保持其相似结构的一致性,从而更准确地提取图像特征。本发明充分考虑了正样本和负样本的分布情况对实验的影响,可以根据模型的训练效果对正样本和负样本的数量及选择进行调整。
-
公开(公告)号:CN110866134A
公开(公告)日:2020-03-06
申请号:CN201911089272.2
申请日:2019-11-08
Applicant: 吉林大学
IPC: G06F16/535 , G06F16/58 , G06N3/04 , G06N3/08 , G06F16/55
Abstract: 本发明公开了一种面向图像检索的分布一致性保持度量学习方法,所述方法通过一种新颖的样本挖掘和类内难样本挖掘方法,选择有代表性的样本,在提高收敛速度的同时获取更丰富的信息;类内容易样本和难样本的比例为选取的难样本赋予动态权重,以学习类内数据结构特征,对于负样本,根据其周围样本的分布情况设置不同的权重进行学习以保持其相似结构的一致性,从而更准确地提取图像特征。本发明充分考虑了正样本和负样本的分布情况对实验的影响,可以根据模型的训练效果对正样本和负样本的数量及选择进行调整。
-
公开(公告)号:CN110349673A
公开(公告)日:2019-10-18
申请号:CN201910570304.4
申请日:2019-06-27
Applicant: 吉林大学
Abstract: 本发明公开了一种基于高斯混合分布的群体体质评估方法,所述方法包括如下步骤:步骤1:将未标记的体育测试数据随机分成若干段作为测试数据与训练数据;步骤2:对步骤1中的各段测试数据与训练数据进行预处理操作;步骤3:使用非监督学习算法提取各组特征数据;步骤4:拟合步骤3得到的各组特征数据,判断混合分布的个数;步骤5:利用EM算法计算各混合分布的权重、均值;步骤6:建立三级评价模型,将步骤4与步骤5的观察和计算结果代入三级评价模型和群体体质评估量化公式中,得出等级和评分结果。本发明完全独立于个体体质评价结果,不需要依靠个体评价的结果,即得出群体体质评估结果。
-
公开(公告)号:CN112464983A
公开(公告)日:2021-03-09
申请号:CN202011167832.4
申请日:2020-10-28
Applicant: 吉林大学
Abstract: 本发明涉及一种用于苹果树叶病害图像分类的小样本学习方法,以常见的特征相似的苹果锈病、黑星病以及混合病害为研究对象,基于小样本,使用卷积神经网络学习输入图像在特征空间的非线性映射,获得每个图像的特征向量。根据特征向量求出中心点、所有的点距离中心点的平均距离及几个簇的半径。然后根据点到簇中心的距离与半径的关系,找出离群候选集,接着算出离群候选集中因子的局部可达密度,并根据密度值确认的离群因子,并进行剔除。最后将剩下特征点作为支持集,并求取嵌入空间中支持集的平均值,根据查找最近的类原型,即可对嵌入式查询点进行分类,在提高分类准确度和鲁棒性的前提下降低成本。
-
公开(公告)号:CN110188225B
公开(公告)日:2022-05-31
申请号:CN201910272569.6
申请日:2019-04-04
Applicant: 吉林大学
IPC: G06F16/583 , G06F16/55 , G06K9/62
Abstract: 本发明公开了一种基于排序学习和多元损失的图像检索方法,该方法的核心思想是在选取对于查询图片的负样本组的同时求得其在于查询图像的相似度排序中的序号,将排序序号与特征结合求得损失函数并更新网络,从而准确提取图像特征。本发明将排序学习的理论引入到图像检索中,根据负样本与查询图片的欧式距离调整网络参数,能够更全面的学习图像特征从而进行更准确的检索。本发明充分考虑了负样本对实验的影响,可以根据模型的训练效果对负样本的数量进行调整。
-
公开(公告)号:CN110750672A
公开(公告)日:2020-02-04
申请号:CN201910882849.9
申请日:2019-09-18
Applicant: 吉林大学
IPC: G06F16/583 , G06F16/51 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于深度度量学习和结构分布学习损失的图像检索方法,所述方法通过学习相似样本与查询图片的距离来保持内部的相似性结构以及根据负样本周围样本的分布情况设置权重并进行学习以保持其结构分布的一致性,从而准确提取图像特征。本发明将结构保持和结构分布熵理论引入到图像检索中,根据正样本与查询图片的欧式距离以及负样本周围样本的分布情况调整网络参数,能够更全面的学习图像特征从而进行更准确的检索。本发明充分考虑了正样本和负样本的分布情况对实验的影响,可以根据模型的训练效果对正样本和负样本的数量进行调整。
-
公开(公告)号:CN110188225A
公开(公告)日:2019-08-30
申请号:CN201910272569.6
申请日:2019-04-04
Applicant: 吉林大学
IPC: G06F16/583 , G06F16/55 , G06K9/62
Abstract: 本发明公开了一种基于排序学习和多元损失的图像检索方法,该方法的核心思想是在选取对于查询图片的负样本组的同时求得其在于查询图像的相似度排序中的序号,将排序序号与特征结合求得损失函数并更新网络,从而准确提取图像特征。本发明将排序学习的理论引入到图像检索中,根据负样本与查询图片的欧式距离调整网络参数,能够更全面的学习图像特征从而进行更准确的检索。本发明充分考虑了负样本对实验的影响,可以根据模型的训练效果对负样本的数量进行调整。
-
公开(公告)号:CN110750672B
公开(公告)日:2023-06-16
申请号:CN201910882849.9
申请日:2019-09-18
Applicant: 吉林大学
IPC: G06F16/583 , G06F16/51 , G06F18/2413 , G06F18/213 , G06F18/214 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于深度度量学习和结构分布学习损失的图像检索方法,所述方法通过学习相似样本与查询图片的距离来保持内部的相似性结构以及根据负样本周围样本的分布情况设置权重并进行学习以保持其结构分布的一致性,从而准确提取图像特征。本发明将结构保持和结构分布熵理论引入到图像检索中,根据正样本与查询图片的欧式距离以及负样本周围样本的分布情况调整网络参数,能够更全面的学习图像特征从而进行更准确的检索。本发明充分考虑了正样本和负样本的分布情况对实验的影响,可以根据模型的训练效果对正样本和负样本的数量进行调整。
-
公开(公告)号:CN110751248B
公开(公告)日:2021-05-11
申请号:CN201911033349.4
申请日:2019-10-28
Applicant: 吉林大学
Abstract: 本发明公开了一种基于双向分段查询的RFID防碰撞方法,所述方法为了解决树型RFID防碰撞算法中查询时隙过多,系统吞吐率高以及数据传输量大的问题,提出双向查询以及分段点的设计。根据阅读器的查询命令状态响应部分ID,完全消除了空闲时隙,减少了查询时隙,极大地节省了系统开销。不仅减少了总时隙数,通信复杂度也大大减小。系统吞吐率在查询树算法的基础上提升了近一倍,显著优于现有的RFID防碰撞算法。系统消耗的能量也较少,搭建与维护的开销较低,是树型RFID防碰撞算法的一种高效变体,具有广泛的理论与实用价值。
-
公开(公告)号:CN110851645B
公开(公告)日:2022-09-13
申请号:CN201911089274.1
申请日:2019-11-08
Applicant: 吉林大学
IPC: G06F16/583 , G06V10/40 , G06V10/774
Abstract: 本发明公开了一种基于深度度量学习下相似性保持的图像检索方法,所述方法通过对具有代表性信息的样本对进行选择以及学习相似样本与查询图片的距离来保持内部的相似性结构,并根据正负样本对周围样本的分布情况设置不同的权重进行学习以保持其相似结构的一致性,从而更准确地提取图像特征。本发明将结构保持和正负样本挖掘理论引入到图像检索中,根据正样本与查询图片的欧式距离以及负样本周围样本的分布情况调整网络参数,能够更全面的学习图像特征从而进行更准确的检索。本发明充分考虑了正样本和负样本的分布情况对实验的影响,可以根据模型的训练效果对正样本和负样本的数量及选择进行调整。
-
-
-
-
-
-
-
-
-