基于状态观测的四轮独立转向电动汽车转向控制方法

    公开(公告)号:CN115649279B

    公开(公告)日:2024-09-17

    申请号:CN202211205919.5

    申请日:2022-09-30

    Abstract: 基于状态观测的四轮独立转向电动汽车转向控制方法涉及汽车四轮独立转向系统控制领域,该方法利用八自由度四输入车辆动力学理想模型确定四个车轮理想的横摆角速度,利用八自由度四输入车辆动力学模型确定四个车轮实时的横摆角速度和质心侧偏角,利用基于多智能体的理想状态分布式估计模块确定四个车轮理想的横摆角速度和质心侧偏角估计值,利用基于状态观测器的四轮独立转向汽车转向分布式控制模块求解出汽车的四个车轮转角,利用CarSim汽车模型实现汽车的横摆稳定性控制,并输出汽车的实时运动状态信息。本发明有效权衡了计算效率和车辆稳定性能,提高了部分理想状态未知情况下四轮独立转向车辆转向控制的稳定性。

    四轮线控转向系统的分布式主动容错控制方法

    公开(公告)号:CN117698838A

    公开(公告)日:2024-03-15

    申请号:CN202311679022.0

    申请日:2023-12-08

    Abstract: 四轮线控转向系统的分布式主动容错控制方法涉及汽车四轮线控转向系统控制领域,其通过参考模型确定四个车轮理想的汽车横摆角速度和质心侧偏角;通过四轮横摆角速度和质心侧偏角计算模块确定四个车轮实时的横摆角速度和质心侧偏角;通过四个转向智能体信息交换拓扑结构模块确定四个车轮的加权邻接矩阵、度矩阵和拉普拉斯矩阵;通过四轮线控转向系统的分布式主动容错控制模块求解出执行器故障已知/未知情况下的汽车四个车轮转角;通过CarSim汽车模型实现汽车的横摆稳定性控制,并输出汽车的实时运动状态信息。本发明有效权衡了计算效率和车辆稳定性能,提高了执行器增益变化故障、恒偏差故障和卡死故障情况下四轮线控转向系统的安全性和稳定性。

    基于Q学习遗传算法的智能电动汽车路径跟踪控制方法

    公开(公告)号:CN118928401A

    公开(公告)日:2024-11-12

    申请号:CN202410971315.4

    申请日:2024-07-19

    Abstract: 基于Q学习遗传算法的智能电动汽车路径跟踪控制方法涉及智能电动汽车路径跟踪控制领域,其首先根据车辆的动力学运动机理建立路径跟踪模型;然后考虑四个车轮的滑转状态、轨迹跟踪误差及横摆稳定性,重新定义路径跟踪系统的输出,通过输入输出线性化将路径跟踪系统分解输入输出子系统和零动态子系统;对输入输出子系统提出自适应广义滑模控制方法,使输入输出子系统的状态快速跟随其理想值;通过稳定性分析获取零动态子系统稳定的条件,并在此基础上提出基于Q学习遗传算法优化的控制器参数设计方法,以实现智能电动汽车路径跟踪控制系统在平衡点附近的渐近稳定。本发明有效提高了智能电动汽车的路径跟踪能力,保证其在极限工况下的动力学稳定性。

    基于状态观测的四轮独立转向电动汽车转向控制方法

    公开(公告)号:CN115649279A

    公开(公告)日:2023-01-31

    申请号:CN202211205919.5

    申请日:2022-09-30

    Abstract: 基于状态观测的四轮独立转向电动汽车转向控制方法涉及汽车四轮独立转向系统控制领域,该方法利用八自由度四输入车辆动力学理想模型确定四个车轮理想的横摆角速度,利用八自由度四输入车辆动力学模型确定四个车轮实时的横摆角速度和质心侧偏角,利用基于多智能体的理想状态分布式估计模块确定四个车轮理想的横摆角速度和质心侧偏角估计值,利用基于状态观测器的四轮独立转向汽车转向分布式控制模块求解出汽车的四个车轮转角,利用CarSim汽车模型实现汽车的横摆稳定性控制,并输出汽车的实时运动状态信息。本发明有效权衡了计算效率和车辆稳定性能,提高了部分理想状态未知情况下四轮独立转向车辆转向控制的稳定性。

    基于协进化遗传算法的智能电动汽车路径跟踪控制方法

    公开(公告)号:CN118915745A

    公开(公告)日:2024-11-08

    申请号:CN202410971311.6

    申请日:2024-07-19

    Abstract: 基于协进化遗传算法的智能电动汽车路径跟踪控制方法涉及智能电动汽车路径跟踪控制领域。本发明首先根据车辆的动力学运动机理建立路径跟踪系统的数学模型;然后,考虑四个车轮的滑转状态、轨迹跟踪误差及横摆稳定性,重新定义路径跟踪系统的输出,通过输入输出线性化将路径跟踪系统分解输入输出子系统和零动态子系统。针对输入输出子系统,权衡系统性能和计算效率,提出基于多智能体的自适应滑模控制策略,使输入输出子系统的状态快速跟随其理想值;针对零动态子系统,提出基于协进化遗传算法优化的控制器参数设计方法,使零动态子系统在平衡点附近渐近稳定。本发明提高了智能电动汽车的路径跟踪能力,保证了其在极限工况下的动力学稳定性。

    基于参数优化可重构模块化柔性机械臂轨迹跟踪控制方法

    公开(公告)号:CN109551479B

    公开(公告)日:2021-09-14

    申请号:CN201811450310.8

    申请日:2018-11-30

    Abstract: 基于参数优化可重构模块化柔性机械臂轨迹跟踪控制方法涉及可重构模块化柔性机械臂控制领域,其建立单关节智能体柔性机械臂系统模型,利用重新定义输出的思想,将关节电机转角和柔性模态变量的线性组合作为柔性机械臂系统的输出,通过输入输出线性化,将单关节柔性机械臂系统分解为输入输出子系统和零动态子系统两部分。本发明采用自适应动态终端滑模控制使得输入输出子系统有限时间跟踪期望的参考轨迹,通过采用NSGA‑II算法对设计参数λ0i,λ1i进行多目标优化设计,使柔性机械臂系统的零动态子系统在平衡点附近渐进稳定,从而保证整个柔性机械臂系统对期望轨迹的跟踪要求;本发明对系统的非线性不确定性具有更好的鲁棒性。

    基于多智能体的多电机耦合系统间接张力控制方法

    公开(公告)号:CN109534063A

    公开(公告)日:2019-03-29

    申请号:CN201811450318.4

    申请日:2018-11-30

    Abstract: 基于多智能体的多电机耦合系统间接张力控制方法涉及汽车安全气囊生产线多电机耦合系统控制领域,其根据汽车安全气囊生产线的工作机理建立了四个电机智能体协同工作的数学模型,作为间接张力控制策略设计的基础;根据汽车安全气囊生产线多电机耦合系统张力恒定的目标,建立了四个电机理想角速度之间的函数关系,取消张力传感器,间接实现张力的恒定。本发明有效降低气囊材料不均造成的卷轴周期性扰动,解决了系统中存在的多变量、强耦合、非线性、参数时变造成的张力控制品质变差问题,使系统快速达到期望的性能指标,提高了系统对干扰等不确定项的灵活性和鲁棒性,不仅节省了成本,而且提高了气囊产品生产质量。

    基于卷径自适应估计的多电机耦合系统间接张力控制方法

    公开(公告)号:CN109534064B

    公开(公告)日:2021-08-20

    申请号:CN201811450322.0

    申请日:2018-11-30

    Abstract: 基于卷径自适应估计的多电机耦合系统间接张力控制方法涉及汽车安全气囊生产线多电机耦合系统控制领域,该方法根据汽车安全气囊生产线的工作机理建立了四个电机智能体协同工作的数学模型,根据汽车安全气囊生产线多电机耦合系统张力恒定的目标,建立了四个电机理想角速度之间的函数关系,取消张力传感器,间接实现张力的恒定。本发明有效降低气囊材料不均造成的卷轴周期性扰动,使系统快速达到期望的性能指标,在目前已有技术人员提出的卷径计算方法的基础上,提出卷径的自适应估计方法,减少了因卷径计算的偏差而引起的张力波动,有效保持卷绕过程中张力的恒定,提高了系统的灵活性和鲁棒性,不仅节省了成本,而且提高了气囊产品质量。

    基于多智能体的ASR自适应非奇异终端滑模控制方法

    公开(公告)号:CN111665726A

    公开(公告)日:2020-09-15

    申请号:CN202010607908.4

    申请日:2020-06-30

    Abstract: 基于多智能体的ASR自适应非奇异终端滑模控制方法涉及ASR控制领域,该方法基于图论将ASR分解为四个单车轮智能体子系统以降低模型维数,将ASR控制器设计转化为单轮智能体子系统控制器设计,并提出一种单轮智能体自适应非奇异终端滑模控制器,采用自适应估计机制来选择控制器切换项增益,并且通过控制参数的选择可调整实际滑移率达到理想滑移率值的时间。本发明实现了在不同的路面附着条件下,车轮的实际滑移率在有限的时间内达到理想的滑移率值,有效地避免了车轮打滑的问题,提高系统的安全性和驱动能力。

Patent Agency Ranking