-
公开(公告)号:CN107016141B
公开(公告)日:2020-09-15
申请号:CN201610153200.X
申请日:2016-03-17
Applicant: 哈尔滨工业大学
IPC: G06F30/20
Abstract: 本发明公开一种基于变化贡献率的电磁继电器分步容差优化方法,包括以下步骤:S1:确定容差优化的标准;根据关键因素与输出特性之间的关系以及实际加工能力,确定所述关键因素的公差范围;S2:确定所述关键因素的水平数;设计正交试验,计算每组所述正交试验的输出结果;求取各所述关键因素的贡献率;S3:将所述贡献率按照一定容差步长减小容差,获得所述关键因素的新公差范围;再次计算各所述关键因素的贡献率;S4:在步骤S3确定的所述新公差范围内求出对应的新公差范围的输出特性波动范围;S5:重复步骤S3‑S4的工作,直到所述输出特性波动范围满足容差优化标准,或者新公差范围达到加工精度下限,此时所述新公差范围即为分步容差优化的最终结果。
-
公开(公告)号:CN107798186A
公开(公告)日:2018-03-13
申请号:CN201710994397.4
申请日:2017-10-23
Applicant: 哈尔滨工业大学
IPC: G06F17/50
CPC classification number: G06F17/5009 , G06F2217/76
Abstract: 本发明提供一种电磁继电器触簧系统贮存退化表征参数的确定方法,包括如下步骤:建立电磁继电器仿真模型;对触簧系统进行贮存退化试验并建立贮存退化模型;将试验数据采集时刻代入退化模型中,得到对应的触簧系统退化状态;修改触簧系统仿真模型参数,实现触簧系统的贮存退化注入;对注入了不同贮存退化程度的电磁继电器仿真模型进行动态仿真,获取对应外特性的仿真退化数据;分别构建各外特性的贮存退化模型;选取其中有确定退化趋势的外特性;判断选定外特性的仿真退化数据与触簧系统贮存退化状态的线性相关性,确定所选定的输出特性是否为触簧系统贮存退化表征参数。本发明解决了贮存过程中无法直接监测电磁继电器触簧系统退化程度的问题。
-
公开(公告)号:CN107016142A
公开(公告)日:2017-08-04
申请号:CN201610157920.3
申请日:2016-03-18
Applicant: 哈尔滨工业大学
IPC: G06F17/50
CPC classification number: G06F17/5036 , G06F2217/16
Abstract: 本发明目的在于提供一种基于近似模型的电磁继电器快速计算方法,属于继电器产品性能分析技术领域。首先,基于插值思想构建反映电磁继电器输出特性与过程变量的自定义函数作为Kriging模型的基函数;其次,通过拉丁超立方抽样方法建立Kriging模型的误差函数,从而构建基于Kriging方法的电磁系统近似模型;之后,基于变形能法建立反力特性计算近似模型;最后,基于数值方法求解继电器动态特性方程组,完成电磁继电器动态特性的快速计算。本发明提出的电磁继电器快速计算方法兼顾了计算精度及计算速度,可用于电磁继电器结构优化及稳健性设计等分析领域中。
-
公开(公告)号:CN105914104A
公开(公告)日:2016-08-31
申请号:CN201610423179.0
申请日:2016-06-14
Applicant: 哈尔滨工业大学
Abstract: 本发明公开一种双永磁长短轭铁极面单稳态电磁机构,包括线圈、线圈骨架、转轴、衔铁、轭铁、永磁体,其中,所述轭铁包括左轭铁、右轭铁和下轭铁,所述左轭铁和右轭铁相对设置,所述线圈骨架以及所述线圈设置在所述左轭铁和所述右轭铁之间;所述下轭铁设置在所述左轭铁和所述右轭铁之间,并且位于所述线圈上方,所述下轭铁的两端分别通过永磁体与所述左轭铁和所述右轭铁相连;所述衔铁通过所述转轴可枢转地与所述下轭铁相连,位于所述下轭铁的上方,所述衔铁的两端分别具有第一极面和第二极面,用以分别和所述左轭铁以及右轭铁相接触。
-
公开(公告)号:CN109033556A
公开(公告)日:2018-12-18
申请号:CN201810726728.0
申请日:2018-07-04
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明公开了一种结合工艺及可靠性框图的继电器类单机贮存可靠性评估方法,所述方法将从厂家调研的工艺数据注入到所建立的继电器有限元仿真模型中,得到其输出特性初始分布特性;通过分析继电器类单机实际出现的失效模式及失效机理,建立基于失效物理的退化模型,结合继电器初始分布特性及加速贮存退化试验实测数据,得到具有分布特性的继电器输出特性退化模型;将失效阈值带入继电器输出特性退化模型中,得到继电器贮存可靠度数据,并带入所建立的继电器类单机贮存可靠性框图中,实现对继电器类单机贮存可靠度的评估。本发明解决了小子样问题下继电器类单机贮存可靠性评估准确度低的问题。
-
公开(公告)号:CN108984882A
公开(公告)日:2018-12-11
申请号:CN201810726727.6
申请日:2018-07-04
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明公开了一种结合制造工艺及仿真的滚控电子模块贮存可靠性评估方法,所述方法首先通过建立滚控电子模块功能仿真模型,结合厂家调研结果,利用灵敏度分析方法确定影响滚控电子模块输出特性的底层关键元器件;然后结合失效模式及失效机理分析、输出特性参数初始分布及加速贮存退化试验实测数据,得到具有分布特性的底层关键元器件贮存退化数据,并将其注入滚控电子模块功能仿真模型中,得到滚控电子模块输出特性参数的贮存退化数据;最后利用最小二乘方法,得到滚控电子模块分布参数的退化轨迹,结合失效阈值,实现对滚控电子模块的贮存可靠性评估。本发明为滚控电子模块的贮存可靠性评估提供了一种新的思路。
-
公开(公告)号:CN108984881A
公开(公告)日:2018-12-11
申请号:CN201810725454.3
申请日:2018-07-04
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明公开了一种结合制造工艺及仿真的电子类单机贮存可靠性评估方法,所述方法通过EDA仿真模型及多物理场耦合模型对电子类单机进行描述,建立电子类单机功能仿真模型,结合厂家调研结果,利用灵敏度分析方法确定影响电子类单机输出特性参数的关键底层单元,并对其进行失效模式及失效机理分析,结合关键底层单元工艺数据及加速贮存试验中实测的贮存退化数据,建立关键底层单元贮存退化模型,将其带入电子类单机功能仿真模型中得到电子类单机输出特性参数的贮存退化数据,利用最小二乘方法得到电子类单机输出特性参数的贮存退化模型,带入失效阈值,完成电子类单机贮存可靠性评估。本发明为电子类单机的贮存可靠性评估提供了一种新的思路。
-
公开(公告)号:CN107016141A
公开(公告)日:2017-08-04
申请号:CN201610153200.X
申请日:2016-03-17
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明公开一种基于变化贡献率的电磁继电器分步容差优化方法,包括以下步骤:S1:确定容差优化的标准;根据关键因素与输出特性之间的关系以及实际加工能力,确定所述关键因素的公差范围;S2:确定所述关键因素的水平数;设计正交试验,计算每组所述正交试验的输出结果;求取各所述关键因素的贡献率;S3:将所述贡献率按照一定容差步长减小容差,获得所述关键因素的新公差范围;再次计算各所述关键因素的贡献率;S4:在步骤S3确定的所述新公差范围内求出对应的新公差范围的输出特性波动范围;S5:重复步骤S3‑S4的工作,直到所述输出特性波动范围满足容差优化标准,或者新公差范围达到加工精度下限,此时所述新公差范围即为分步容差优化的最终结果。
-
公开(公告)号:CN105866666A
公开(公告)日:2016-08-17
申请号:CN201610178427.X
申请日:2016-03-25
Applicant: 哈尔滨工业大学
IPC: G01R31/327
CPC classification number: G01R31/3278
Abstract: 本发明公开了一种继电器类单机加速贮存试验测试装置,用于对多个继电器类单机进行加速贮存测试,每一继电器类单机均包括多个输入输出端子,其包括:多个恒温恒湿试验箱、智能报警系统、端子切换与控制电路、接触电阻测量电路、时间参数测量电路和上位机系统,其中:上位机系统分别与端子切换与控制电路和时间参数测量电路连接,上位机系统向端子切换与控制电路和时间参数测量电路发送参数设置命令、系统自检命令及开始测试命令;端子切换与控制电路连接在多个继电器类单机与接触电阻测量电路之间,接触电阻测量电路用于测试继电器类单机中每一个输入输出端子处的接触电阻值以及将测得的接触电阻值发送至上位机系统。
-
公开(公告)号:CN108710745B
公开(公告)日:2019-05-24
申请号:CN201810470432.7
申请日:2018-05-16
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明公开了一种结合制造工艺数据的机电产品可靠性评估方法,所述方法首先根据机电产品的组成特点、制造工艺数据以及退化机理确定其输出特性退化模型的函数形式;之后以该机电产品的制造工艺数据为基础,通过有限元仿真及近似建模方法得到退化模型中随机影响系数的k个集合;同时,基于机电产品试验样本的退化数据,通过多次迭代的方式估计出退化模型中固定影响系数的值;随后,根据所得到的k组随机影响系数集合、固定影响系数估计值以及所述机电产品的退化失效阈值,得到该产品的k个退化失效伪寿命;最后,基于得到的退化失效伪寿命,计算并给出该机电产品在各时刻的可靠度。本发明为解决小子样条件下的批次产品可靠性评价问题提供了有效手段。
-
-
-
-
-
-
-
-
-