一种风机桨叶缺陷检测方法、系统、电子设备及存储介质

    公开(公告)号:CN116797594A

    公开(公告)日:2023-09-22

    申请号:CN202310834753.1

    申请日:2023-07-10

    摘要: 本发明公开一种风机桨叶缺陷检测方法、系统、电子设备及存储介质,涉及图像分割技术领域,所述方法包括:获取待检风机桨叶的图像;将待检风机桨叶的图像输入至风机桨叶缺陷检测模型中,得到待检风机桨叶的缺陷类型;风机桨叶缺陷检测模型是利用训练数据集对改进UNet网络进行训练得到的,训练数据集包括多张训练用风机桨叶的图像和对应的缺陷类型,改进UNet网络包括编码网络、卷积块注意网络和解码网络,编码网络为ResNet34网络,本发明将UNet网络中的编码网络替换为ResNet34网络,提高了风机桨叶缺陷的检测精度。

    一种驾照日期数字识别方法及装置

    公开(公告)号:CN116030484A

    公开(公告)日:2023-04-28

    申请号:CN202310017922.2

    申请日:2023-01-06

    摘要: 本发明公开了一种驾照日期数字识别方法及装置,涉及字符和模式识别技术领域;方法包括获得驾照日期部分的待处理图像,输入基于先验知识的双CNN的识别网络获得每一位置的数字,识别网络包括依次连接的均值滤波器、第一CNN结构、第二CNN结构、第一全连接层、第二全连接层和输出层,两个CNN结构相同,两个全连接层相同,CNN结构包括依次连接的卷积层、最大池化层、卷积层和最大池化层,输出层添加有先验知识,先验知识包括年份的前三位为194至202中的任意一项、月份不超过12和日期不超过31;装置包括识别模块,其通过带有先验知识的双CNN的神经网络进行识别,实现驾照日期识别效率高、效果好。