-
公开(公告)号:CN117632041A
公开(公告)日:2024-03-01
申请号:CN202410102237.4
申请日:2024-01-25
Applicant: 国家计算机网络与信息安全管理中心天津分中心 , 国家计算机网络与信息安全管理中心 , 南开大学
Inventor: 贾云刚 , 刘健 , 刘铭 , 许光全 , 闫莉莉 , 李鹏霄 , 光炫 , 贺欣 , 朱佳伟 , 李晓华 , 赵志云 , 井雅琪 , 吕东 , 马宏远 , 张震 , 段东圣 , 高一骄 , 刘秀龙 , 孙捷 , 孙海亮
IPC: G06F3/06 , G06F11/10 , H04L67/1097
Abstract: 本发明提供一种基于再生码的分布式存储方法、装置和电子设备,属于分布式存储技术领域。该方法包括:获取待存储的原始数据,确定原始数据对应的原始数据向量;确定分布式存储系统中各系统节点的编码矩阵以及分布式存储系统中各校验节点的编码矩阵;基于各系统节点的编码矩阵和原始数据向量分别确定各系统节点存储的第一再生码数据向量;基于各校验节点的编码矩阵和原始数据向量分别确定各校验节点存储的第二再生码数据向量。将第一再生码数据向量发送至对应的系统节点进行存储,将第二再生码数据向量发送至对应的校验节点进行存储。本方案通过以向量为单位进行存储,通信过程中是对每个单位向量整体进行编解码,节约了计算资源。
-
公开(公告)号:CN118568487A
公开(公告)日:2024-08-30
申请号:CN202410548464.X
申请日:2024-05-06
Applicant: 国家计算机网络与信息安全管理中心 , 国家计算机网络与信息安全管理中心天津分中心 , 中国科学院自动化研究所
IPC: G06F18/214 , G06F18/25 , G06F18/2431 , G06N3/042
Abstract: 本申请实施例提供一种多模态轻量级动态知识增强方法、装置及存储介质,所述方法包括:基于图像小样本集的向量表征和文本小样本集的向量表征,以多模态视觉码书的形式构建图像小样本知识库和文本小样本知识库;基于单模态搜索的方式从所述图像小样本知识库或所述文本小样本知识库中确定待融合表征的跨模态表征,融合所述待融合表征和所述跨模态表征,得到知识增强后的融合表征。本申请实施例提供的多模态轻量级动态知识增强方法、装置及存储介质,在现有大规模预训练多模态模型的强大表征学习基础上,融合罕见且细粒度的跨模态表征信息,以此提高原始表征的质量,并显著提升对特定信息的检索效率。
-
公开(公告)号:CN118709688A
公开(公告)日:2024-09-27
申请号:CN202410746400.0
申请日:2024-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F40/295 , G06F40/242 , G06N5/04 , G06N3/0455 , G06N3/0499 , G06N3/082
Abstract: 本发明公开一种基于问答机制的文本变体词识别方法、装置及设备,属于文本信息识别领域。所述方法包括:构建变体词库,并通过汉字的字形和拼音的分别编码对所述变体词库进行数据增强;在数据增强后的变体词库上训练一变体词推理模型,所述变体词推理模型的网络结构包括:一语言表征模型和两个独立的全连接层;将问答模板与文本内容相连接后输入所述变体词推理模型,得到文本内容中变体词的起始位置概率和结束位置概率;基于变体词的起始位置概率和结束位置概率确定变体词的确切边界,得到文本内容中变体词的识别结果。本发明不仅能够提高变体词识别的准确性,还能够有效地降低模型的维护成本,增强其在实际应用中的适应性和鲁棒性。
-
公开(公告)号:CN118708728A
公开(公告)日:2024-09-27
申请号:CN202410746389.8
申请日:2024-06-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/36 , G06F16/33 , G06N5/04 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于难度序列推理的篇章级事件论元抽取方法及系统,属于文本信息抽取领域。本发明根据文档上下文选择对应的提示学习模板,对上下文和提示学习模板进行编码,得到上下文表示和提示表示,该提示表示包含论元角色的向量表示;根据每个论元角色的向量表示计算每个论元角色的预测困难分数,根据预测困难份数对论元角色进行排序,得到预测的推理路径;按照预测的推理路径的顺序进行信息推理,得到每个论元角色的推理概率分布;根据得到的每个论元角色的推理概率分布,预测每个论元角色的位置并抽取论元。本发明能够利用简单论元的信息来帮助抽取困难的论元。
-
公开(公告)号:CN114943073B
公开(公告)日:2024-09-10
申请号:CN202210380497.9
申请日:2022-04-12
Applicant: 国家计算机网络与信息安全管理中心 , 北京赋乐科技有限公司
IPC: G06F21/46 , G06F21/60 , G06F18/214 , G06F18/20 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06N3/126 , G06N7/01
Abstract: 本公开的实施例提供了加密流量的通用对称加密协议脱壳方法、装置、设备和计算机可读存储介质。所述方法包括获取加密协议的流量;基于预设的密码字典,通过马尔科夫‑GEP模型生成新的密码字典;基于加密协议密码字符组合规律,对所述新的密码字典中的密码进行规约;基于规约后的新的密码字典和传统的解密脱壳方法,构建对称加密协议脱壳模型;将所述加密协议的流量,输入至所述对称加密协议脱壳模型,完成脱壳。提高了脱壳准确度,使得脱壳更加高效。
-
公开(公告)号:CN118349883A
公开(公告)日:2024-07-16
申请号:CN202410345245.1
申请日:2024-03-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/241 , G06F18/214 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06F21/60
Abstract: 本申请提供一种重要数据的识别方法、装置和电子设备,涉及数据处理技术领域和人工智能技术领域。该方法包括:在识别重要数据时,可以先获取待识别数据集,待识别数据集中包括多个数据和各数据的重要度指标;针对各数据,将数据和数据的重要度指标输入至预设的重要数据识别模型中,得到数据对应的重要度得分;再基于各数据对应的重要度得分,从多个数据中识别重要数据,这样基于重要数据识别模型识别重要数据,与现有技术中基于预设重要度规则识别重要数据相比,不仅可以有效地提高重要数据的识别效率,而且提高了识别结果的准确度。
-
公开(公告)号:CN117312864A
公开(公告)日:2023-12-29
申请号:CN202311618449.X
申请日:2023-11-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/10 , G06F18/25 , G06F40/284 , G06N3/08 , G06N3/0455 , G06N3/0475
Abstract: 本发明提供一种基于多模态信息的变形词生成模型的训练方法及装置,涉及语言生成技术领域,方法包括:获取变形词语料库,变形词语料库包括的不同初始样本由多模态信息组成;对变形词语料库中不同初始样本的不同类型的语料信息,采用对应类型的预处理方式分别进行预处理,生成大规模语料库;大规模语料库中每个语料样本包括多个语料信息的权重及特征向量,不同的语料信息的权重用于表征不同的语料信息在对应样本中不同的贡献程度;基于大规模语料库中预设数量的语料样本包括的多个语料信息的权重及特征向量,对初始模型进行训练,得到基于多模态信息的变形词生成模型。本发明能够提高变形词生成的精度和准确率。
-
公开(公告)号:CN116578942B
公开(公告)日:2023-12-22
申请号:CN202310853781.8
申请日:2023-07-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2433 , G06F17/18 , G06F18/214 , G06Q10/10
Abstract: 本申请实施例涉及一种榜单异常的处理方法及装置,所述方法包括:获取目标榜单信息,并按照设定的检测方法对目标榜单信息进行异常检测,得到对应的异常检测结果;将异常检测结果对应的异常样本信息输入到预先训练好的预估模型中进行评估处理,输出异常样本信息对应的在榜时长;根据在榜时长确定反馈调节策略;基于反馈调节策略执行对异常在榜信息的处理。通过创建榜单异常的检测工具,检测出每个榜单信息中存在的异常样本信息,通过设定的反馈调节策略对异常样本信息进行处理,达到治理异常榜单信息的目的;由此,可以实现利用机器审核结合人工审核,形成一套实时报警、反馈、调节的热榜治理机制,维护热榜的公平和稳定的技术效果。
-
公开(公告)号:CN116795980A
公开(公告)日:2023-09-22
申请号:CN202310440756.7
申请日:2023-04-21
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G06F16/35 , G06F40/289 , G06F40/30 , G06N3/0455 , G06N3/047 , G06N3/048 , G06N3/0985
Abstract: 本发明公开了一种融合细粒度要素知识的短文本分类方法,该方法包括:通过梳理标注短文本数据完成数据标注,其中,所述数据标注为标注全量标注数据类别和数据中存在要素信息;针对标注后的短文本数据,采用关键要素提取文本分类联合训练算法,借助BERT+CRF提取短文本数据中的要素信息;进而融合细粒度信息,结合标签编码器Label Encoder来学习各个标签label的表示,得到一个符合实际的标签分布。本发明针对上述问题提出一种融合细粒度要素知识的短文本分类的解决方法,从而提升短文本分类的效果,进而促使更为精准分析短文本数据,自动找到有关垃圾信息,提高工作效率。
-
公开(公告)号:CN116561512A
公开(公告)日:2023-08-08
申请号:CN202310431305.7
申请日:2023-04-20
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/10 , G06F18/27 , G06F18/22 , G06F18/214 , G06F16/9035 , G06F16/951 , G06F16/9537 , G06F16/9538 , G06F16/9535 , G06F16/9038
Abstract: 本发明提出了一种基于COX回归的多平台虚假信息识别方法及装置,方法包括:获取各自表征一主题的多组数据信息;基于数据信息与预先标记的数据信息的比对情况进行筛选;对当前数据信息进行排序以及填充处理;基于COX回归算法,利用当前数据信息,构建COX回归识别模型,并确认每一主题对应的数据信息中,各个维度信息对数据信息危险程度的影响情况;利用当前构建的COX回归识别模型,对再次获取的表征一主题的数据信息进行识别处理。本发明可基于同一主题的虚假信息识别,并且可以根据影响主题信息的多种因素,在不同的周期内,识别不同维度数据的影响因素权重。
-
-
-
-
-
-
-
-
-