-
公开(公告)号:CN113887794A
公开(公告)日:2022-01-04
申请号:CN202111144517.4
申请日:2021-09-28
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网安徽省电力有限公司
摘要: 本发明公开了一种配电网无功优化的方法及装置,所述方法包括以下步骤:将配电网的历史负荷、拓扑数据以及对应的历史无功优化策略输入改进的CNN网络进行特征提取;特征提取后的配电网数据中历史负荷、拓扑数据作为DBN网络的输入,对应的历史无功优化策略作为DBN网络的输出,训练DBN网络,直到达到预设的迭代次数或者网络损耗不变的时候停止训练得到无功优化模型;将实时获取的历史负荷、拓扑数据输入无功优化模型,得出实时的无功优化策略,利用实时的无功优化策略对配电网进行无功优化;本发明的优点在于:配电网无功优化过程的计算时间短以及精度高。
-
公开(公告)号:CN113159361A
公开(公告)日:2021-07-23
申请号:CN202011398686.6
申请日:2020-12-03
申请人: 安徽大学 , 国网安徽省电力有限公司电力科学研究院 , 国网安徽省电力有限公司
摘要: 本发明的一种基于VDM和Stacking模型融合的短期负荷预测方法及系统,采集负荷序列数据,并输入到事先训练好的预测模型,进行负荷预测并输出预测结果;其中,预测模型的训练步骤如下:采用VMD算法将获取到的原始负荷序列分解为不同的固有模态分量IMF;计算每个IMF负荷分量序列的ApEn值;把每一个ApEn值作为一个随机分量,基于Stacking的思想,XGBoost和长短期记忆神经网络来构建模态分量IMF的预测模型;通过将上述预测模型对各模态分量IMF的预测结果叠加得到最终预测结果,再进行加权融合。相比传统方法的结果,本发明方法的结果表明基于多模型融合的Stacking集成学习方法在电力负荷预测中有良好的应用效果。
-
公开(公告)号:CN110222887A
公开(公告)日:2019-09-10
申请号:CN201910454601.2
申请日:2019-05-27
申请人: 国网安徽省电力有限公司 , 国网安徽省电力有限公司电力科学研究院 , 安徽大学
摘要: 本发明公开了基于VMD和DNN的预测方法及在短期负荷预测的应用,属于电力系统短期负荷预测技术领域。包括步骤1:采集负荷数据;步骤2:将采集数据进行归一化处理;步骤3:采用VMD方法对归一化后的原始负荷序列进行分解;步骤4:对步骤3得到的K个分量进行深度神经网络(DNN)训练;步骤5:将分解后的测试样本带入DNN并叠加得到最终的预测结果。本发明对具有波动性和随机性的数据预测准确,能够有效减少数据的计算量,缩短了计算时间,而且预测结果准确,提升负荷预测的准确性对电力系统的经济调度、稳定运行具有重要意义。
-
公开(公告)号:CN110796303B
公开(公告)日:2023-11-07
申请号:CN201911018674.3
申请日:2019-10-24
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G06Q10/04 , G06F18/23 , G06F18/214 , G06Q50/06
摘要: 一种基于EWT和ODBSCAN的短期电力负荷预测方法,可解决单一的预测模型对于具有复杂变化及随机特性的负荷序列,预测难以获得理想的精度的技术问题。本发明提出基于EWT和ODBSCAN的组合预测方法,首先,采用EWT分解负荷,得到不同的固有模态分量;其次,采用合理的方法对各分量进行预测。其中,低频、中频分量采用IRF预测;高频分量具有不确定性,使用ODBSCAN根据气象因素温度和湿度聚类,再根据每类的样本特性选择处理方法。最后,叠加各个分量的预测结果,获取总的预测结果。根据某地市现场实测负荷数据进行实验,预测结果分别与EWT‑IRF、EWT‑RF、EMD‑IRF模型的预测结果进行对比,可以获得更高的预测精度,体现实际负荷的变化规律。
-
公开(公告)号:CN108964120B
公开(公告)日:2021-09-24
申请号:CN201810699373.0
申请日:2018-06-29
申请人: 安徽大学 , 国网安徽省电力有限公司电力科学研究院 , 中国电力科学研究院有限公司 , 国家电网有限公司
摘要: 本发明公开了一种低压分布式光伏接入容量优化控制方法,该方法使用控制器与调容调压变压器提升光伏接入容量的优化控制,该方法在一定程度上解决了台区因光伏消纳能力较差而引发的电压正偏差问题,显著提升了低压台区的低压分布式光伏的接入容量,并降低了低压台区电能质量建设改造的成本,普片适用于含分布式光伏的低压台区。
-
公开(公告)号:CN109873498A
公开(公告)日:2019-06-11
申请号:CN201910212338.6
申请日:2019-03-20
申请人: 安徽大学 , 国网安徽省电力有限公司电力科学研究院 , 中国电力科学研究院有限公司 , 国家电网有限公司
摘要: 本发明公开了一种含分布式光伏的低压配电网电能质量综合监测方法,通过将智能电表、光伏逆变器和电能质量在线监测终端采集到的电能质量运行数据,实现低压台区供电首端、光伏接入点和负荷接入点的全面覆盖,克服了传统电能质量监测装置价格高,监测点难以全面覆盖的缺陷,降低了低压台区电能质量在线监测的成本投入。
-
公开(公告)号:CN114355240A
公开(公告)日:2022-04-15
申请号:CN202111451134.1
申请日:2021-12-01
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G01R31/52 , G06V10/774 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明提供一种配电网接地故障诊断方法及装置,包括:获取配电网的基础拓扑结构故障时的一维零序电流信号,并将一维零序电流信号转换为二维图像;以所述二维图像作为卷积神经网络模型的输入,训练得到基础故障诊断模型;在配电网发生故障时,判断发生故障的拓扑结构是否为基础拓扑结构:若是,则利用基础故障诊断模型对配电网进行故障诊断,输出对应的故障类型;否则,基于基础故障诊断模型,利用迁移学习方法,得到该发生故障的拓扑结构对应的目标故障诊断模型,并利用该目标故障诊断模型对配电网进行故障诊断,输出对应的故障类型。本发明的配电网接地故障诊断方法能够实现不同拓扑结构的故障分类,运用范围广,故障分类快速,准确率高。
-
公开(公告)号:CN112051480A
公开(公告)日:2020-12-08
申请号:CN202010783864.0
申请日:2020-08-06
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G01R31/08
摘要: 本发明的一种基于变分模态分解的神经网络配电网故障诊断方法及系统,首先,采用变分模态分解方法分析了继电保护点零序电流的故障暂态信号特征。然后根据由变分模态分解得到的内禀模态函数(Intrinsic Mode Function,IMF),选取故障特征较多的IMF分量,通过Hilbert‑Huang变换提取故障特征。最后,把提取出的故障特征作为卷积神经网络模型的输入,实现故障定位和故障类型判断。本发明不仅能够实现配电网故障定位,也能实现故障类型判断,且相比其他方法诊断精度很高。通过对CNN模型的选择和模型参数的调整,能显著提高故障诊断精度和降低故障诊断耗时。与其他方法对比,该方法能有效提高故障精度,具有很好的泛化能力。
-
公开(公告)号:CN108199404B
公开(公告)日:2020-06-16
申请号:CN201711403880.7
申请日:2017-12-22
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: H02J3/38
摘要: 本发明针对现有高渗透率大规模分布式能源系统,在集群划分依据、划分方法方面仍旧处于探索阶段,不便于对高渗透率大规模分布式能源系统开展后续电压调节的问题,提供一种高渗透率分布式能源系统的谱聚类集群划分方法。该方法,包括:通过N个节点之间的电气距离,构造权重矩阵和度矩阵,利用权重矩阵和度矩阵计算标准化的拉普拉斯矩阵LLaplacian并进行降为,采用K‑means算法将数据降维后的矩阵L聚为n个亚群落,确定每个亚群落中的一个节点为该亚群落的聚类质心;构造适应度函数,依据适应度函数确定N个节点的最终亚群落划分结果和每个亚群落的聚类质心。本发明可有效的解决高渗透率可再生能源的过电压问题,并具有良好的实时性。
-
公开(公告)号:CN108199404A
公开(公告)日:2018-06-22
申请号:CN201711403880.7
申请日:2017-12-22
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: H02J3/38
摘要: 本发明针对现有高渗透率大规模分布式能源系统,在集群划分依据、划分方法方面仍旧处于探索阶段,不便于对高渗透率大规模分布式能源系统开展后续电压调节的问题,提供一种高渗透率分布式能源系统的谱聚类集群划分方法。该方法,包括:通过N个节点之间的电气距离,构造权重矩阵和度矩阵,利用权重矩阵和度矩阵计算标准化的拉普拉斯矩阵LLaplacian并进行降为,采用K-means算法将数据降为后的矩阵L聚为n个亚群落,确定每个亚群落中的一个节点为该亚群落的聚类质心;构造适应度函数,依据适应度函数确定N个节点的最终亚群落划分结果和每个亚群落的聚类质心。本发明可有效的解决高渗透率可再生能源的过电压问题,并具有良好的实时性。
-
-
-
-
-
-
-
-
-