基于光伏场景的协同多无功设备的电力系统电压控制方法

    公开(公告)号:CN109378824B

    公开(公告)日:2021-05-07

    申请号:CN201811403435.5

    申请日:2018-11-23

    IPC分类号: H02J3/16

    摘要: 本发明涉及一种基于光伏场景的协同多无功设备的电力系统电压控制方法,属于电力系统电压控制技术领域。首先根据历史运行数据,生成初始场景,并进而获得典型场景和极端场景;然后基于生成的典型场景和极端场景,建立优化模型,得到慢速无功设备的计划设定值;最后基于实时光伏电站输出有功功率,建立优化模型,得到快速无功设备的实时控制设定值。本方法中的典型场景可准确反映光伏发电波动情况,极端场景可保证电力系统电压在恶劣情况下的鲁棒安全。本方法提前计划慢速无功设备,而快速无功设备则根据实时光伏发电和慢速无功设备计划结果进行优化控制,从而实现了时间常数各异的多无功设备的协同,保证了电力系统的电压安全。

    自治-协调的电力系统两级分布式静态电压稳定判断方法

    公开(公告)号:CN109524960A

    公开(公告)日:2019-03-26

    申请号:CN201811403322.5

    申请日:2018-11-23

    IPC分类号: H02J3/00

    摘要: 本发明涉及一种自治-协调的电力系统两级分布式静态电压稳定判断方法,属于电力系统安全和控制技术领域。首先根据相量量测单元量测出的信息,对电力系统进行戴维南等值;然后系统级辨识出负荷转移系数,求出电压崩溃点时刻及对应等值参数信息,下发至本地级;最后本地级求解出静态电压稳定裕度值,进行电压稳定判断。本发明方法充分利用相量量测单元实时量测出的状态信息,将电力系统简化为戴维南等值模型,在电力系统级计算电压崩溃点时刻的等值模型参数下发给本地级,在本地级结合本地状态快速计算出极限传输功率,从而充分协同本地级和系统级,合理分配计算任务,实现快速准确的两级分布式静态电压稳定判断。

    自治-协调的电力系统两级分布式静态电压稳定判断方法

    公开(公告)号:CN109524960B

    公开(公告)日:2021-10-15

    申请号:CN201811403322.5

    申请日:2018-11-23

    IPC分类号: H02J3/00

    摘要: 本发明涉及一种自治‑协调的电力系统两级分布式静态电压稳定判断方法,属于电力系统安全和控制技术领域。首先根据相量量测单元量测出的信息,对电力系统进行戴维南等值;然后系统级辨识出负荷转移系数,求出电压崩溃点时刻及对应等值参数信息,下发至本地级;最后本地级求解出静态电压稳定裕度值,进行电压稳定判断。本发明方法充分利用相量量测单元实时量测出的状态信息,将电力系统简化为戴维南等值模型,在电力系统级计算电压崩溃点时刻的等值模型参数下发给本地级,在本地级结合本地状态快速计算出极限传输功率,从而充分协同本地级和系统级,合理分配计算任务,实现快速准确的两级分布式静态电压稳定判断。

    综合能源系统模型及其构建方法
    7.
    发明公开

    公开(公告)号:CN114169665A

    公开(公告)日:2022-03-11

    申请号:CN202111135316.8

    申请日:2021-09-27

    IPC分类号: G06Q10/06 G06Q50/06

    摘要: 本发明提供综合能源系统模型及其构建方法,方法:构建单质能流层及构建多能耦合层,建立单质能流层和多能耦合层的关联关系,得到综合能源系统,可适用多种运行场景:按需灵活扩展多种耦合形式,方便不同控制系统灵活生成各自设备的信息模型,以及交互后快速集成模型,有利于综合能源系统不同应用的开发实现,方便增加新设备类型。若忽略多能耦合层,模型简化为若干相互独立的单质能流系统,满足冷、热、气各自的控制系统和应用。若进一步忽略单能流传输设备,模型简化为传统电力系统标准化模型。若忽略单质能流层,只保留多能耦合层及与之相关源荷设备,模型简化为普通能量路由器模型,可用于某些小型园区/楼宇/分布式能源站等场景。

    基于光伏场景的协同多无功设备的电力系统电压控制方法

    公开(公告)号:CN109378824A

    公开(公告)日:2019-02-22

    申请号:CN201811403435.5

    申请日:2018-11-23

    IPC分类号: H02J3/16

    摘要: 本发明涉及一种基于光伏场景的协同多无功设备的电力系统电压控制方法,属于电力系统电压控制技术领域。首先根据历史运行数据,生成初始场景,并进而获得典型场景和极端场景;然后基于生成的典型场景和极端场景,建立优化模型,得到慢速无功设备的计划设定值;最后基于实时光伏电站输出有功功率,建立优化模型,得到快速无功设备的实时控制设定值。本方法中的典型场景可准确反映光伏发电波动情况,极端场景可保证电力系统电压在恶劣情况下的鲁棒安全。本方法提前计划慢速无功设备,而快速无功设备则根据实时光伏发电和慢速无功设备计划结果进行优化控制,从而实现了时间常数各异的多无功设备的协同,保证了电力系统的电压安全。