表面具石墨烯涂层的材料及其涂层的制备方法以及耐磨件

    公开(公告)号:CN115341191B

    公开(公告)日:2024-01-30

    申请号:CN202211114045.2

    申请日:2022-09-14

    IPC分类号: C23C16/02 C23C16/26 C23C16/44

    摘要: 本发明涉及涂层的制备技术领域,公开了表面具石墨烯涂层的材料及其涂层的制备方法以及耐磨件。涂层的制备方法,包括:在金属基材表面形成一层含催化剂层;利用热丝化学气相沉积法向反应腔室内通入有机气体和氢气,利用热丝产生的热源分解有机气体,在氢气的辅助下使反应腔室中裂解的碳原子吸附到含催化剂层表面形成自润滑石墨烯涂层。表面具石墨烯涂层的材料,采用上述的制备方法在金属基材表面形成自润滑石墨烯涂层。耐磨件,采用上述的材料制备而成,或采用上述制备方法在基材表面制得石墨烯涂层而得到。本申请提供的涂层的制备方法,能制得润滑性能好的石墨烯涂层,该方法实用性广。

    一种刀具多层涂层及其制备方法和应用

    公开(公告)号:CN116516284A

    公开(公告)日:2023-08-01

    申请号:CN202310601830.9

    申请日:2023-05-25

    IPC分类号: C23C14/02 C23C14/06 C23C14/35

    摘要: 本发明公开了一种刀具多层涂层及其制备方法和应用,属于表面处理技术领域。本发明的刀具多层涂层包括沉积的结合层、支撑层和功能表层;功能表层由耐磨层和高硬度自润滑层交替叠加而成;耐磨层为TiCN层,高硬度自润滑层为DLC层;结合层为Me层;支撑层为MeC层;Me为Cr、Ti或W中的任意一种。该涂层材料在PCB微钻刀具环境下具有高硬度、耐磨损、长寿命协同的一体化多功能集成特点。采用磁控溅射和等离子体增强化学气相沉积(PECVD技术复合制备,可将该涂层材料作为PCB微钻刀具的表面防护,可大幅度提高PCB微钻刀具的使用寿命,具有良好的工业化应用前景。

    去除涂层的溶剂、去除涂层的方法及应用

    公开(公告)号:CN115537824A

    公开(公告)日:2022-12-30

    申请号:CN202211229701.3

    申请日:2022-10-09

    IPC分类号: C23G1/10 C23G1/06 C23G1/20

    摘要: 本发明公开了一种去除涂层的溶剂、去除涂层的方法及应用,涉及表面处理技术领域。该溶剂包括体积分数为30~50%的盐酸、质量百分数为1~2wt%的硫酸铜和质量百分数为1~2wt.%的缓蚀剂。其中盐酸为主要的腐蚀溶剂,硫酸铜可以进一步提高盐酸的腐蚀能力,从而通过涂层表面存在的缺陷,如厚度不均匀、或出现凹陷缺口等,将涂层刻蚀成疏松的结构。在酸洗液中加入缓蚀剂避免试样基体被盐酸腐蚀该溶剂既可以去除试样表面的致密高温防护涂层,同时还可以有效缓解酸洗对基体表面组织和形貌的影响。此外,去除涂层的方法中对酸洗后的试样进行喷砂处理,利用喷砂的机械力切削作用,再次将残余涂层去除干净,使得试样表面的涂层去除更彻底。

    金属极板表面防护涂层及其制备方法、应用、金属极板

    公开(公告)号:CN115312798A

    公开(公告)日:2022-11-08

    申请号:CN202211130472.X

    申请日:2022-09-16

    IPC分类号: H01M8/0202 H01M8/0228

    摘要: 本发明公开了一种金属极板表面防护涂层及其制备方法、应用、金属极板,涉及燃料电池制造技术领域。包括在金属极板表面依次涂覆的连接层和非晶碳层,非晶碳层包括多层交替设置的导电层和耐腐蚀层,导电层中碳原子的sp2杂化键含量≥70%;耐腐蚀层中碳原子的sp3杂化键含量≥70%。本发明提供的涂层中导电层碳原子的sp2杂化键含量高,涂层导电性好;耐腐蚀层中碳原子的sp3杂化键含量高,抗腐蚀性能强。通过设置多层交替结构可以显著提高金属极板的耐腐蚀性,同时采用相同的原料控制其杂化方式制备出兼具导电性好和抗腐蚀性佳的电极涂层材料,促进了金属极板在质子交换膜燃料电池中的应用,从而提升电池性能和寿命。

    纳米陶瓷涂层EBSD表征试样及其制备方法、检测方法

    公开(公告)号:CN114235867A

    公开(公告)日:2022-03-25

    申请号:CN202111568677.1

    申请日:2021-12-21

    IPC分类号: G01N23/2005 G01N23/203

    摘要: 本发明公开了一种纳米陶瓷涂层EBSD表征试样及其制备方法、检测方法。通过采用导电薄膜对纳米陶瓷涂层试样的表面整体包覆,并在纳米陶瓷涂层试样外部设置导电抽头,再对包覆了导电薄膜的纳米陶瓷涂层试样进行镶嵌、研磨和抛光得到纳米陶瓷涂层EBSD表征试样。该纳米陶瓷涂层EBSD表征试样通过导电薄膜将采集时的电荷积累导走,在EBSD扫描时直接采集纳米陶瓷涂层信号,完成纳米陶瓷涂层的EBSD微观晶体结构表征。有效规避传统制样方法在EBSD检测表面层喷碳,因碳膜厚度无法精确控制导致EBSD无法采集的问题。

    一种航空发动机叶片及其制备方法

    公开(公告)号:CN113862618A

    公开(公告)日:2021-12-31

    申请号:CN202111077146.2

    申请日:2021-09-14

    IPC分类号: C23C14/32 C23C14/16 C23C14/02

    摘要: 本发明公开了一种航空发动机叶片及其制备方法,该航空发动机叶片包括镍基高温合金叶片基体、涂覆于叶片基体表面的MCrAlY高温防护涂层。航空发动机叶片的制备方法是在镍基高温合金叶片基体上利用靶后方强永磁配合靶四周脉冲电磁的复合磁场电弧技术形成MCrAlY高温防护涂层。高温防护涂层具有致密、细腻、结合良好,抗高温氧化和抗热腐蚀性能优良的防护功能。有效解决了镍基高温合金叶片抗高温氧化和抗热腐蚀性能不足的问题,显著提升镍基高温合金叶片服役能力和使用寿命。其制备工艺材料利用率高,生产成本低,利于工业化生产。