-
公开(公告)号:CN110490236A
公开(公告)日:2019-11-22
申请号:CN201910690299.0
申请日:2019-07-29
申请人: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
摘要: 本发明涉及一种基于神经网络的自动图像标注方法、系统、装置和介质,利用预先训练好的卷积神经网络模型提取实验数据集的图像特征;根据图像特征,在训练集中计算得到待标注图像的邻域图像集和对应的第一标签域;构建第一标签域与训练集对应的第二标签域之间的标签语义关联模型,根据标签语义关联模型,在第二标签域中计算得到与每个第一标签相关联的第三标签域;计算待标注图像与每个邻域图像之间的相似度,根据所有相似度得到每个第一标签成为目标标签的第一概率,并根据所有第一概率和标签语义关联模型得到每个第三标签成为目标标签的第二概率;根据所有相似度、所有第一概率和所有第二概率,得到目标标签,并根据目标标签完成标注。
-
公开(公告)号:CN110490236B
公开(公告)日:2021-08-24
申请号:CN201910690299.0
申请日:2019-07-29
申请人: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
摘要: 本发明涉及一种基于神经网络的自动图像标注方法、系统、装置和介质,利用预先训练好的卷积神经网络模型提取实验数据集的图像特征;根据图像特征,在训练集中计算得到待标注图像的邻域图像集和对应的第一标签域;构建第一标签域与训练集对应的第二标签域之间的标签语义关联模型,根据标签语义关联模型,在第二标签域中计算得到与每个第一标签相关联的第三标签域;计算待标注图像与每个邻域图像之间的相似度,根据所有相似度得到每个第一标签成为目标标签的第一概率,并根据所有第一概率和标签语义关联模型得到每个第三标签成为目标标签的第二概率;根据所有相似度、所有第一概率和所有第二概率,得到目标标签,并根据目标标签完成标注。
-
公开(公告)号:CN110705416B
公开(公告)日:2022-03-01
申请号:CN201910905515.9
申请日:2019-09-24
申请人: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
IPC分类号: G06V20/59 , G06V10/764 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明涉及汽车安全驾驶预警设备领域,尤其涉及一种基于驾驶员面部图像建模的安全驾驶预警方法及系统,方法包括:获取驾驶员的历史面部图像及与历史面部图像对应的汽车振动传感器的振动样本数据;并按预设规则对历史面部图像添加预警类别标签,获得安全预警面部图像库作为预设卷积神经网络的输入,训练生成安全预警分类模型;将实时面部图像作为训练后的安全预警分类模型的输入,并获得安全预警分类模型输出的待检测驾驶员的实时面部图像对应的预警类别;根据预警类别,对应执行报警任务。本发明提供的技术方案无需人工选定特征,能够避免传统图像处理算法中特征提取不完备性的问题,具有更高的预测精度,减少误报率和漏报率。
-
公开(公告)号:CN110705416A
公开(公告)日:2020-01-17
申请号:CN201910905515.9
申请日:2019-09-24
申请人: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
摘要: 本发明涉及汽车安全驾驶预警设备领域,尤其涉及一种基于驾驶员面部图像建模的安全驾驶预警方法及系统,方法包括:获取驾驶员的历史面部图像及与历史面部图像对应的汽车振动传感器的振动样本数据;并按预设规则对历史面部图像添加预警类别标签,获得安全预警面部图像库作为预设卷积神经网络的输入,训练生成安全预警分类模型;将实时面部图像作为训练后的安全预警分类模型的输入,并获得安全预警分类模型输出的待检测驾驶员的实时面部图像对应的预警类别;根据预警类别,对应执行报警任务。本发明提供的技术方案无需人工选定特征,能够避免传统图像处理算法中特征提取不完备性的问题,具有更高的预测精度,减少误报率和漏报率。
-
公开(公告)号:CN109949930A
公开(公告)日:2019-06-28
申请号:CN201910221551.3
申请日:2019-03-22
申请人: 武汉工程大学 , 湖北商贸学院 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
发明人: 陈灯 , 魏巍 , 张彦铎 , 李晓林 , 鞠剑平 , 唐剑影 , 李迅 , 于宝成 , 彭煜祺 , 刘子涵 , 王司恺 , 王逸文 , 周华兵 , 刘玮 , 徐文霞 , 鲁统伟 , 闵峰 , 卢涛 , 朱锐
摘要: 本发明公开了一种基于贝叶斯网络的动物疫情诊断方法及系统,其中方法包括以下步骤:S1、构造动物疫情诊断贝叶斯网络;S2、采集动物体征和环境数据,包括动物性别、年龄、体温、单日运动步数,动物所处的环境温度、湿度以及动物疫情人工诊断历史记录;S3、对采集的动物体征和环境数据进行离散化;S4、利用离散化的数据对动物疫情诊断贝叶斯网络进行训练;S5、根据经过训练的动物疫情诊断贝叶斯网络计算动物疫情发生的概率;S6、当动物疫情发生概率超过指定阈值时进行预警。本发明可根据动物的体征数据和环境数据进行疫情的远程、自动、精确诊断并预警,可有效预防大规模动物疫情的产生,最大限度的保障肉类食品安全。
-
公开(公告)号:CN114494098A
公开(公告)日:2022-05-13
申请号:CN202210338505.3
申请日:2022-04-01
申请人: 武汉工程大学 , 武汉引行科技有限公司
摘要: 本发明提供一种锂电池X射线图像增强方法、装置以及存储介质,属于图像处理技术领域,方法包括:通过X光机对待测锂电池进行图像采集得到锂电池X射线图像;对锂电池X射线图像的图像反射分量分析得到X射线反射图像;根据梯度因子对X射线反射图像的加权融合计算得到X射线融合图像;对X射线融合图像的对比度调整得到X射线调整图像。本发明有利于减弱光照伪影现象,避免了X射线图像这类低照度图像的亮度过度增强以及增强不足的问题,能够较好的提高锂电池X射线图像的对比度和清晰度,具有良好的图像增强效果,增强后的锂电池图像,电极得到增强,而噪声得到抑制,可显著提高锂电池电极缺陷检测的精度。
-
公开(公告)号:CN112949438A
公开(公告)日:2021-06-11
申请号:CN202110195714.2
申请日:2021-02-19
申请人: 武汉工程大学 , 武汉引行科技有限公司
摘要: 本发明是涉及农业与人工智能领域,尤其是一种基于贝叶斯网络的水果视觉分类方法及系统。本发明通过获取待分类水果的待分类水果数据,并进行预处理得到多个待分类水果视觉特征值;分别对每个所述待分类水果视觉特征值进行离散化处理后,输入至预先训练好的水果分类贝叶斯网络模型进行处理,得到所述待分类水果在多个等级分类下的等级分类概率;根据多个所述等级分类概率对所述待分类水果进行等级分类。本发明实现了水果的精确分类,有效地降低在水果分拣中所花费的人力物力。通过构建复杂的水果分类的贝叶斯网络模型可实现水果的精确分类,实现降低人力物力,达到水果的快速分类。
-
公开(公告)号:CN112949438B
公开(公告)日:2022-09-30
申请号:CN202110195714.2
申请日:2021-02-19
申请人: 武汉工程大学 , 武汉引行科技有限公司
IPC分类号: G06V20/68 , G06V10/44 , G06V10/56 , G06V10/774 , G06V10/764 , G06T7/00 , G06T7/62 , G06T7/90
摘要: 本发明是涉及农业与人工智能领域,尤其是一种基于贝叶斯网络的水果视觉分类方法及系统。本发明通过获取待分类水果的待分类水果数据,并进行预处理得到多个待分类水果视觉特征值;分别对每个所述待分类水果视觉特征值进行离散化处理后,输入至预先训练好的水果分类贝叶斯网络模型进行处理,得到所述待分类水果在多个等级分类下的等级分类概率;根据多个所述等级分类概率对所述待分类水果进行等级分类。本发明实现了水果的精确分类,有效地降低在水果分拣中所花费的人力物力。通过构建复杂的水果分类的贝叶斯网络模型可实现水果的精确分类,实现降低人力物力,达到水果的快速分类。
-
公开(公告)号:CN115017511A
公开(公告)日:2022-09-06
申请号:CN202210469716.0
申请日:2022-04-28
申请人: 武汉工程大学 , 武汉引行科技有限公司
摘要: 本发明提供一种源代码漏洞检测方法、装置以及存储介质,属于代码检测技术领域,方法包括:S1:分别对各个原始源代码数据的数据预处理得到预处理后源代码数据;S2:按照预设比例对多个预处理后源代码数据的划分得到训练集,验证集和测试集;S3:对训练集的代码图编码得到多个代码图数据;S4:根据多个代码图数据、验证集和测试集对训练模型的模型分析得到检测模型;S5:通过检测模型对待检测源代码数据的检测分析得到检测结果。本发明实现了函数级的自动代码漏洞检测,能在源代码中快速、高效地完成代码漏洞检测任务,解决了代码静态分析工具进行漏洞检测上存在的误报率高、漏报率高的技术问题。
-
公开(公告)号:CN114926898A
公开(公告)日:2022-08-19
申请号:CN202210494498.6
申请日:2022-05-07
申请人: 武汉工程大学 , 武汉引行科技有限公司
IPC分类号: G06V40/20 , G06V10/75 , G06T7/136 , G06T7/194 , G06V10/762 , G06V10/764 , G06V10/44 , G06N3/04 , G06N3/08
摘要: 本发明公开了一种手势识别模型训练及手势识别方法、装置、设备及介质,涉及计算机视觉技术领域,手势识别模型训练方法包括:拍摄手部配戴有红色系手套的多张手势图像,对每张手势图像依次进行从RGB色彩空间转换成YCrCb空间、图像前景背景划分、二值化处理,得到手势分割图像;构建卷积神经网络结构,利用多张手势分割图像对卷积神经网络结构进行训练,得到手势识别模型。手势识别方法为:将待识别的图片或视频输入手势识别模型中,利用手势识别模型对待识别的图片或视频进行手势识别。本发明对图像中的手势分割效果好,通过本发明进行手势识别的识别准确率可明显提高。
-
-
-
-
-
-
-
-
-