一种基于孪生网络的针对低分辨率目标的跟踪方法

    公开(公告)号:CN112183675B

    公开(公告)日:2023-09-26

    申请号:CN202011247293.5

    申请日:2020-11-10

    IPC分类号: G06V20/40 G06V10/774 G06N3/04

    摘要: 本发明公开了一种基于孪生网络的针对低分辨率目标的跟踪方法,首先直接对多个低分辨率输入视频帧进行特征提取,并进行多维特征通道融合,接着,为了避免网络中产生零梯度而丢失视频的重要信息,采用参数线性纠正单元作为激活函数,采用更小的滤波器尺寸调整网络结构以进行多层映射;最后,在网络末端添加反卷积层上采样得到重建视频帧。通过对多个标注好的视频帧序列进行预处理构建训练样本,构建跟踪孪生网络,定义损失函数并进行训练,得到训练后跟踪孪生网络;组合重建超分视频帧的精简卷积神经网络和跟踪孪生网络,对图像序列进行跟踪,得到相似度分数矩阵,通过矩阵中最大值计算出目标的位置坐标。本发明提高了在低分辨率环境下的跟踪精度。

    一种基于孪生网络的针对低分辨率目标的跟踪方法

    公开(公告)号:CN112183675A

    公开(公告)日:2021-01-05

    申请号:CN202011247293.5

    申请日:2020-11-10

    IPC分类号: G06K9/62 G06N3/04

    摘要: 本发明公开了一种基于孪生网络的针对低分辨率目标的跟踪方法,首先直接对多个低分辨率输入视频帧进行特征提取,并进行多维特征通道融合,接着,为了避免网络中产生零梯度而丢失视频的重要信息,采用参数线性纠正单元作为激活函数,采用更小的滤波器尺寸调整网络结构以进行多层映射;最后,在网络末端添加反卷积层上采样得到重建视频帧。通过对多个标注好的视频帧序列进行预处理构建训练样本,构建跟踪孪生网络,定义损失函数并进行训练,得到训练后跟踪孪生网络;组合重建超分视频帧的精简卷积神经网络和跟踪孪生网络,对图像序列进行跟踪,得到相似度分数矩阵,通过矩阵中最大值计算出目标的位置坐标。本发明提高了在低分辨率环境下的跟踪精度。