-
公开(公告)号:CN110705416A
公开(公告)日:2020-01-17
申请号:CN201910905515.9
申请日:2019-09-24
申请人: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
摘要: 本发明涉及汽车安全驾驶预警设备领域,尤其涉及一种基于驾驶员面部图像建模的安全驾驶预警方法及系统,方法包括:获取驾驶员的历史面部图像及与历史面部图像对应的汽车振动传感器的振动样本数据;并按预设规则对历史面部图像添加预警类别标签,获得安全预警面部图像库作为预设卷积神经网络的输入,训练生成安全预警分类模型;将实时面部图像作为训练后的安全预警分类模型的输入,并获得安全预警分类模型输出的待检测驾驶员的实时面部图像对应的预警类别;根据预警类别,对应执行报警任务。本发明提供的技术方案无需人工选定特征,能够避免传统图像处理算法中特征提取不完备性的问题,具有更高的预测精度,减少误报率和漏报率。
-
公开(公告)号:CN109949930A
公开(公告)日:2019-06-28
申请号:CN201910221551.3
申请日:2019-03-22
申请人: 武汉工程大学 , 湖北商贸学院 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
发明人: 陈灯 , 魏巍 , 张彦铎 , 李晓林 , 鞠剑平 , 唐剑影 , 李迅 , 于宝成 , 彭煜祺 , 刘子涵 , 王司恺 , 王逸文 , 周华兵 , 刘玮 , 徐文霞 , 鲁统伟 , 闵峰 , 卢涛 , 朱锐
摘要: 本发明公开了一种基于贝叶斯网络的动物疫情诊断方法及系统,其中方法包括以下步骤:S1、构造动物疫情诊断贝叶斯网络;S2、采集动物体征和环境数据,包括动物性别、年龄、体温、单日运动步数,动物所处的环境温度、湿度以及动物疫情人工诊断历史记录;S3、对采集的动物体征和环境数据进行离散化;S4、利用离散化的数据对动物疫情诊断贝叶斯网络进行训练;S5、根据经过训练的动物疫情诊断贝叶斯网络计算动物疫情发生的概率;S6、当动物疫情发生概率超过指定阈值时进行预警。本发明可根据动物的体征数据和环境数据进行疫情的远程、自动、精确诊断并预警,可有效预防大规模动物疫情的产生,最大限度的保障肉类食品安全。
-
公开(公告)号:CN110705416B
公开(公告)日:2022-03-01
申请号:CN201910905515.9
申请日:2019-09-24
申请人: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
IPC分类号: G06V20/59 , G06V10/764 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明涉及汽车安全驾驶预警设备领域,尤其涉及一种基于驾驶员面部图像建模的安全驾驶预警方法及系统,方法包括:获取驾驶员的历史面部图像及与历史面部图像对应的汽车振动传感器的振动样本数据;并按预设规则对历史面部图像添加预警类别标签,获得安全预警面部图像库作为预设卷积神经网络的输入,训练生成安全预警分类模型;将实时面部图像作为训练后的安全预警分类模型的输入,并获得安全预警分类模型输出的待检测驾驶员的实时面部图像对应的预警类别;根据预警类别,对应执行报警任务。本发明提供的技术方案无需人工选定特征,能够避免传统图像处理算法中特征提取不完备性的问题,具有更高的预测精度,减少误报率和漏报率。
-
公开(公告)号:CN112949438B
公开(公告)日:2022-09-30
申请号:CN202110195714.2
申请日:2021-02-19
申请人: 武汉工程大学 , 武汉引行科技有限公司
IPC分类号: G06V20/68 , G06V10/44 , G06V10/56 , G06V10/774 , G06V10/764 , G06T7/00 , G06T7/62 , G06T7/90
摘要: 本发明是涉及农业与人工智能领域,尤其是一种基于贝叶斯网络的水果视觉分类方法及系统。本发明通过获取待分类水果的待分类水果数据,并进行预处理得到多个待分类水果视觉特征值;分别对每个所述待分类水果视觉特征值进行离散化处理后,输入至预先训练好的水果分类贝叶斯网络模型进行处理,得到所述待分类水果在多个等级分类下的等级分类概率;根据多个所述等级分类概率对所述待分类水果进行等级分类。本发明实现了水果的精确分类,有效地降低在水果分拣中所花费的人力物力。通过构建复杂的水果分类的贝叶斯网络模型可实现水果的精确分类,实现降低人力物力,达到水果的快速分类。
-
公开(公告)号:CN115017511A
公开(公告)日:2022-09-06
申请号:CN202210469716.0
申请日:2022-04-28
申请人: 武汉工程大学 , 武汉引行科技有限公司
摘要: 本发明提供一种源代码漏洞检测方法、装置以及存储介质,属于代码检测技术领域,方法包括:S1:分别对各个原始源代码数据的数据预处理得到预处理后源代码数据;S2:按照预设比例对多个预处理后源代码数据的划分得到训练集,验证集和测试集;S3:对训练集的代码图编码得到多个代码图数据;S4:根据多个代码图数据、验证集和测试集对训练模型的模型分析得到检测模型;S5:通过检测模型对待检测源代码数据的检测分析得到检测结果。本发明实现了函数级的自动代码漏洞检测,能在源代码中快速、高效地完成代码漏洞检测任务,解决了代码静态分析工具进行漏洞检测上存在的误报率高、漏报率高的技术问题。
-
公开(公告)号:CN114926898A
公开(公告)日:2022-08-19
申请号:CN202210494498.6
申请日:2022-05-07
申请人: 武汉工程大学 , 武汉引行科技有限公司
IPC分类号: G06V40/20 , G06V10/75 , G06T7/136 , G06T7/194 , G06V10/762 , G06V10/764 , G06V10/44 , G06N3/04 , G06N3/08
摘要: 本发明公开了一种手势识别模型训练及手势识别方法、装置、设备及介质,涉及计算机视觉技术领域,手势识别模型训练方法包括:拍摄手部配戴有红色系手套的多张手势图像,对每张手势图像依次进行从RGB色彩空间转换成YCrCb空间、图像前景背景划分、二值化处理,得到手势分割图像;构建卷积神经网络结构,利用多张手势分割图像对卷积神经网络结构进行训练,得到手势识别模型。手势识别方法为:将待识别的图片或视频输入手势识别模型中,利用手势识别模型对待识别的图片或视频进行手势识别。本发明对图像中的手势分割效果好,通过本发明进行手势识别的识别准确率可明显提高。
-
公开(公告)号:CN115330997A
公开(公告)日:2022-11-11
申请号:CN202210742355.2
申请日:2022-06-27
申请人: 武汉工程大学 , 武汉引行科技有限公司
IPC分类号: G06V10/25 , G06N3/04 , G06N3/08 , G06V10/774 , G06V10/82
摘要: 本发明提供一种基于YOLOv4神经网络的控制箱装配缺陷检测方法、装置及存储介质,包括如下步骤:构建多个类别零部件的样本训练集和样本测试集,基于YOLOv4神经网络构建初始卷积神经网络检测模型,并通过样本训练集进行训练,通过样本测试集测试卷积神经网络检测模型;对正确装配控制箱内多个类别零部件进行图像拍摄,并从零部件图像得到标准参数;对待检测控制箱内多个类别零部件进行图像拍摄,得到待检测零部件图像;将待检测零部件图像输入最终的卷积神经网络检测模型,输出待检测零部件图像的检测参数,通过标准参数校验检测参数,得到待检测控制箱是否存在装配缺陷的检测结果。本发明能够在复杂环境下快速、高效地完成控制箱装配缺陷检测任务。
-
公开(公告)号:CN115239643A
公开(公告)日:2022-10-25
申请号:CN202210781655.1
申请日:2022-07-04
申请人: 武汉工程大学 , 武汉引行科技有限公司
摘要: 本发明提供一种基于G‑YOLO神经网络的工业零件检测方法、装置及存储介质,通过拍摄设备对工业零件进行拍摄,并制作工业零件初始数据集,构建样本训练集和样本测试集,基于G‑YOLO神经网络构建初始G‑YOLO工业零件检测模型,并通过预处理后的样本训练集和样本测试集分别对初始G‑YOLO工业零件检测模型进行模型训练和性能测试,得到G‑YOLO工业零件检测模型,G‑YOLO工业零件检测模型泛化能力强,可以满足多种工业零件的检测,解决了现有方法对于工业零件在复杂环境下检测速度慢的问题,极大提高检测速度,满足工业环境下的零件实时检测需求。
-
公开(公告)号:CN111709991A
公开(公告)日:2020-09-25
申请号:CN202010467531.7
申请日:2020-05-28
申请人: 武汉工程大学 , 武汉引行科技有限公司
摘要: 本发明涉及一种铁路工机具的检测方法、系统、装置和存储介质,方法包括获取多个工机具图像,根据所有工机具图像制作数据集;构建深度卷积神经网络,利用数据集和深度卷积神经网络构建反射图像提取网络,根据深度卷积神经网络和反射图像提取网络得到特征检测网络,根据深度卷积神经网络、反射图像提取网络和特征检测网络得到初始检测网络模型;利用数据集对初始检测网络模型进行训练,得到目标检测网络模型;根据目标检测网络模型对待检测工机具图像进行检测,得到检测结果。本发明可有效解决背景复杂、光照不均以及目标尺度差异大、形态复杂和存在遮挡等问题,对铁路工机具进行快速而准确地目标检测,实现铁路工机具的自动清点。
-
公开(公告)号:CN111709991B
公开(公告)日:2023-11-07
申请号:CN202010467531.7
申请日:2020-05-28
申请人: 武汉工程大学 , 武汉引行科技有限公司
IPC分类号: G06T7/70 , G06N3/0464 , G06N3/08
摘要: 本发明涉及一种铁路工机具的检测方法、系统、装置和存储介质,方法包括获取多个工机具图像,根据所有工机具图像制作数据集;构建深度卷积神经网络,利用数据集和深度卷积神经网络构建反射图像提取网络,根据深度卷积神经网络和反射图像提取网络得到特征检测网络,根据深度卷积神经网络、反射图像提取网络和特征检测网络得到初始检测网络模型;利用数据集对初始检测网络模型进行训练,得到目标检测网络模型;根据目标检测网络模型对待检测工机具图像进行检测,得到检测结果。本发明可有效解决背景复杂、光照不均以及目标尺度差异大、形态复杂和存在遮挡等问题,对铁路工机具进行快速而准确地目标检测,实现铁路工机具的自动清点。
-
-
-
-
-
-
-
-
-