-
公开(公告)号:CN112750082B
公开(公告)日:2023-05-16
申请号:CN202110081811.9
申请日:2021-01-21
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
IPC分类号: G06T3/40 , G06V40/16 , G06V10/774 , G06V10/80 , G06V10/77
摘要: 本发明公开了一种基于融合注意力机制的人脸超分辨率方法及系统,属于人脸图像超分辨率领域,该方法包括:将高分辨率人脸图像下采样至目标低分辨率人脸图像后,进行分块操作,分出相互重叠的图像块后,使用浅层特征提取器提取浅层特征;融合像素、通道和空间三重注意力模块的特征,增强重建的人脸面部结构细节;构建融合注意力网络作为深层特征提取器,将浅层的面部特征输入融合注意力网络获得深层特征,融合注意力网络包含若干融合注意力组,各融合注意力组包括若干融合注意力块;将深层特征图进行上采样,将上采样后的人脸特征图重建成目标的高分辨率人脸图像。本发明优于其他最新的人脸图像超分辨率算法,能生成更高质量的人脸高分辨率图像。
-
公开(公告)号:CN118443028A
公开(公告)日:2024-08-06
申请号:CN202410625022.0
申请日:2024-05-20
申请人: 武汉工程大学 , 武汉市烽视威科技有限公司 , 武汉烽火技术服务有限公司
摘要: 本申请提供一种巡检机器人导航方法、装置、电子设备及存储介质,涉及机器人导航技术领域。方法包括:通过部署在巡检机器人上的感知设备进行数据采集,以获取不同感知设备对周边环境感知得到的环境感知数据,并根据环境感知数据构建巡检地图;对环境感知数据进行预处理,得到每种感知设备对应的里程计数据;根据各个里程计数据对巡检机器人进行状态评估,得到巡检机器人的第一位姿状态;获取不同环境感知数据转换为里程计数据时产生的预设误差,并根据预设误差对第一位姿状态进行优化,确定第二位姿状态;从位置信息中获取目标路径,并控制巡检机器人沿目标路径移动。如此,可以改善传统的机房巡检方式存在效率低、易出错的问题。
-
公开(公告)号:CN112750082A
公开(公告)日:2021-05-04
申请号:CN202110081811.9
申请日:2021-01-21
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
摘要: 本发明公开了一种基于融合注意力机制的人脸超分辨率方法及系统,属于人脸图像超分辨率领域,该方法包括:将高分辨率人脸图像下采样至目标低分辨率人脸图像后,进行分块操作,分出相互重叠的图像块后,使用浅层特征提取器提取浅层特征;融合像素、通道和空间三重注意力模块的特征,增强重建的人脸面部结构细节;构建融合注意力网络作为深层特征提取器,将浅层的面部特征输入融合注意力网络获得深层特征,融合注意力网络包含若干融合注意力组,各融合注意力组包括若干融合注意力块;将深层特征图进行上采样,将上采样后的人脸特征图重建成目标的高分辨率人脸图像。本发明优于其他最新的人脸图像超分辨率算法,能生成更高质量的人脸高分辨率图像。
-
公开(公告)号:CN111105354A
公开(公告)日:2020-05-05
申请号:CN201911349902.5
申请日:2019-12-24
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
摘要: 本发明公开了一种基于多源深度残差网络的深度图像超分辨率方法及装置,属于深度图像超分辨率领域。由于彩色图像拥有丰富的纹理信息,本发明利用纹理信息丰富的彩色图像引导深度图像进行重建。因为残差信息代表图像的高频信息,因此本发明首先将高分辨率图像下采样至目标低分辨率图像,并且在双分支网络中分别提取输入的低分辨率彩色图像和深度图像的残差信息,然后将提取到的彩色图像和深度图像的残差信息在融合网络中进行融合,最后利用融合后的残差信息和输入的低分辨率深度图像对高分辨率深度图像进行重建。通过本发明提升了网络的重建性能,使得重建后的深度图像有较高质量的纹理信息。
-
公开(公告)号:CN110930309A
公开(公告)日:2020-03-27
申请号:CN201911140189.3
申请日:2019-11-20
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
发明人: 卢涛 , 王宇 , 张彦铎 , 姚全锋 , 杨泳 , 吴昊 , 石子慧 , 石仝彤 , 陈冲 , 许若波 , 周强 , 郝晓慧 , 魏博识 , 郎秀娟 , 吴志豪 , 王彬 , 陈中婷 , 王布凡 , 刘奥琦 , 陈润斌
摘要: 本发明公开了一种基于多视图纹理学习的人脸超分辨率方法及装置,属于人脸图像超分辨率领域,该方法包括:首先将高分辨率人脸图像对下采样至目标低分辨率人脸图像对,将目标低分辨率人脸图像对进行分块操作,分出相互重叠的图像块后,使用残差池化模块网络提取脸部纹理多尺度特征。然后,将提取的脸部多尺度特征发送到纹理注意力模块,以通过计算注意图来融合补偿纹理信息,收集最相似的特征,以更有效的提高SR性能。最后,通过特征融合来更新目标视图图像的特征图以产生高分辨率结果。本发明所提出的网络优于其他最新的人脸图像超分辨率算法,能生成更高质量的人脸图像。
-
公开(公告)号:CN110580680A
公开(公告)日:2019-12-17
申请号:CN201910849721.2
申请日:2019-09-09
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
IPC分类号: G06T3/40
摘要: 本发明公开了一种基于组合学习的人脸超分辨率方法及装置,属于人脸图像超分辨率领域,该方法包括:对下采样得到的低分辨率人脸图像进行组件分割;将低分辨率人脸图像和分割后的人脸组件图像块进行分块操作,分出相互重叠的图像块;将图像块输入各组件生成对抗网络产生高分辨率组件图像块,由上采样后的低分辨率人脸背景图像生成高分辨率人脸背景图像;通过融合网络提取高分辨率图像块特征及人脸背景图像组件特征;将两种特征进行融合后,重建得到目标人脸组件图像块;通过人脸组件在人脸图像中的坐标点,将目标人脸组件图像块对应合并至高分辨率人脸背景图像中,形成高分辨率人脸图像。本发明可以提高网络的重建性能,产生更高质量的人脸图像。
-
公开(公告)号:CN118521518A
公开(公告)日:2024-08-20
申请号:CN202410583424.9
申请日:2024-05-11
申请人: 武汉工程大学 , 湖北文理学院 , 武汉市烽视威科技有限公司 , 武汉烽火技术服务有限公司
摘要: 本发明涉及一种基于空域增强的上采样方法、系统及计算设备。方法包括:实时获取机房巡检机器人的至少一帧巡检特征图;提高所述巡检特征图的通道数至第一预设倍数以获得通道特征图,并对所述通道特征图进行通道特征重组和卷积处理,获得第一待融合特征图;对所述巡检特征图上采样第二预设倍数以获得上采样特征图,并对所述上采样特征图进行维度调序、池化和拼接操作,获得第二待融合特征图;将所述第一待融合特征图和所述第二待融合特征图进行融合,获得目标特征图。该方法能够提高目标特征图中空域信息表达的能力,以使上采样后所获得的目标特征图中所丢失的信息较少,从而提高机房巡检机器人的巡检精度。
-
公开(公告)号:CN113657225B
公开(公告)日:2023-09-26
申请号:CN202110898055.9
申请日:2021-08-05
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
IPC分类号: G06V10/82 , G06V10/80 , G06V10/52 , G06V10/764 , G06N3/0464 , G06N3/045 , G06N3/09
摘要: 本发明提供一种目标检测方法,包括步骤:提取图像特征生成特征图;将特征图上采样,获得放大特征图;将放大特征图连接到类别预测头、宽高预测头和中心点偏移量预测头;在类别预测头中加入类别注意力网络,挖掘类内和类间的相距较远但语义相关的目标之间的有效信息;通过对真实目标框编码产生监督信息监督各预测头的训练;由各预测头输出的结果在待检测图像中框选识别对象并标记分类结果。本发明结合对目标类别作进一步判断的类别注意力和对边框回归的尺度自适应编码,使得网络在能关联类内和类间的特征,挖掘类内和类间的相距较远但语义相关的目标之间的有效信息的同时,还能根据检测目标的尺度变换进行更精准的框选,提升检测的准度和框选精度。
-
公开(公告)号:CN110580680B
公开(公告)日:2022-07-05
申请号:CN201910849721.2
申请日:2019-09-09
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
IPC分类号: G06T3/40
摘要: 本发明公开了一种基于组合学习的人脸超分辨率方法及装置,属于人脸图像超分辨率领域,该方法包括:对下采样得到的低分辨率人脸图像进行组件分割;将低分辨率人脸图像和分割后的人脸组件图像块进行分块操作,分出相互重叠的图像块;将图像块输入各组件生成对抗网络产生高分辨率组件图像块,由上采样后的低分辨率人脸背景图像生成高分辨率人脸背景图像;通过融合网络提取高分辨率图像块特征及人脸背景图像组件特征;将两种特征进行融合后,重建得到目标人脸组件图像块;通过人脸组件在人脸图像中的坐标点,将目标人脸组件图像块对应合并至高分辨率人脸背景图像中,形成高分辨率人脸图像。本发明可以提高网络的重建性能,产生更高质量的人脸图像。
-
公开(公告)号:CN113657225A
公开(公告)日:2021-11-16
申请号:CN202110898055.9
申请日:2021-08-05
申请人: 武汉工程大学 , 武汉烽火技术服务有限公司
摘要: 本发明提供一种目标检测方法,包括步骤:提取图像特征生成特征图;将特征图上采样,获得放大特征图;将放大特征图连接到类别预测头、宽高预测头和中心点偏移量预测头;在类别预测头中加入类别注意力网络,挖掘类内和类间的相距较远但语义相关的目标之间的有效信息;通过对真实目标框编码产生监督信息监督各预测头的训练;由各预测头输出的结果在待检测图像中框选识别对象并标记分类结果。本发明结合对目标类别作进一步判断的类别注意力和对边框回归的尺度自适应编码,使得网络在能关联类内和类间的特征,挖掘类内和类间的相距较远但语义相关的目标之间的有效信息的同时,还能根据检测目标的尺度变换进行更精准的框选,提升检测的准度和框选精度。
-
-
-
-
-
-
-
-
-