摘要:
The subject invention concerns chimeric AGP subunit proteins and polynucleotides that encode the chimeric proteins. The subject invention provides for mutant AGP enzymes comprising a chimeric subunit of the invention that are less sensitive to inorganic phosphate than wild type AGP enzymes. In one embodiment, the AGP subunit is a small subunit of a plant AGP enzyme. The subject invention also concerns plants comprising a polynucleotide encoding a chimeric AGP subunit protein of the invention. The subject invention also concerns methods for producing a plant comprising a polynucleotide of the present invention. Plants produced according to the invention comprise AGP enzymes that are less sensitive to inorganic phosphate than wild type AGP enzyme.
摘要:
A method of irradiating a target region containing at least one fullerene comprising molecule promotes the heating or combustion of the target region. The heating method can be employed in a variety of applications including: selective targeting and destruction of cancer cells, detonation of explosives, ignition of a combustible mixture, photolithographic processes, and writing of optical storage media.
摘要:
Methods are disclosed for treating or preventing ophthalmic conditions related to a toxic visual cycle product. Compounds and compositions useful in these methods, either alone or in combination with other therapeutic agents, are also described, along with methods of screening for new agents useful in said the therapeutic and prophylactic methods of the invention.
摘要:
Systems and methods for diagnosing and/or treating diseases as well as monitoring disease treatment. For diagnosis, the present invention uses nanoparticle-based assemblies, which comprise a nanoparticle; a surrogate marker; and a means for detecting a specific chemical entity. In certain embodiments, nanoparticle-based assemblies include a payload for simultaneous diagnosis and treatment of disease. In further embodiments, a therapeutic drug and therapeutic drug marker are administered to a patient to monitor disease treatment. Bodily fluid samples are analyzed using sensor technology to detect the presence of surrogate and/or therapeutic drug markers to provide an efficient and accurate means for diagnosing a disease and/or monitoring disease treatment.
摘要:
A method of bonding an antimicrobial cationic polyelectrolyte to the surface of a substrate is described, wherein the antimicrobial thus attached to the substrate provides the substrate with antimicrobial properties, and at least a portion of the bonded antimicrobial is substantially non- leachable during normal conditions of use and storage. A method of manufacturing an antimicrobial material is described which comprises exposure of the substrate to a solution of antimicrobial cationic polyelectrolyte, followed by drying the exposed substrate thoroughly to impart a non-leaching property to at least a portion of the antimicrobial cationic polyelectrolytes.
摘要:
The invention features compositions and methods comprising at least one compound selected from a proteasomal inhibitor, an autophagy inhibitor, a lysosomal inhibitor, an inhibitor of protein transport from the ER to the Golgi, an Hsp90 chaperone inhibitor, a heat shock response activator, a glycosidase inhibitor or histone deacetylase inhibitor that are useful for treating or preventing a protein conformation disease in a subject by correcting misfolded proteins in vivo. The compositions and methods can further comprise an 11-cis-retinal or 9-cis-retinal compound. Examples of protein conformation disorders and/or diseases may include retinitis pigmentosa, age-related macular degeneration, glaucoma, corneal dystrophies, retinoschises, Stargardt's disease, autosomal dominant druzen, Best's macular dystrophy, αl -antitrypsin deficiency, cystic fibrosis, Huntington's disease, Parkinson's disease, Alzheimer's disease, nephrogenic diabetes insipidus, cancer and/or Jacob-Creutzfeld disease.
摘要:
The invention generally provides methods for recruiting stem cells to an ocular tissue. The methods involve inducing heat shock in the ocular tissue using a subthreshold laser and/or an agent. In some embodiments, the heat shock is induced following the administration of an agent that mobilizes HSCs.