摘要:
L'invention concerne un dispositif pour positionner un trièdre fonctionnel (T1) d'un capteur stellaire (10) dans un trièdre de référence (T3) lié à une structure (11) d'un engin spatial sur laquelle est monté le capteur stellaire (10), le dispositif comprenant : • une interface de fixation (21) destinée à connecter le dispositif (20) au capteur stellaire (10), • un ensemble de repères géométriques (22) configurés pour permettre, au moyen d'un instrument de mesure optique (13) lié à la structure (11), de positionner un repère (T2) lié au dispositif (20) dans le repère de référence (T3) lié à la structure (11), • un simulateur optique (23) comprenant un ensemble de repères optiques (23a) destinés à être mesurés par le capteur stellaire (10), permettant de positionner le trièdre fonctionnel (T1) du capteur stellaire dans le trièdre (T2) lié au dispositif (20), les mesures de position du trièdre fonctionnel (T1) dans le trièdre (T2) lié au dispositif (20), et de position du trièdre (T2) lié au dispositif dans le trièdre de référence (T3), permettant de positionner par calcul le trièdre fonctionnel (T1) dans le trièdre de référence (T3).
摘要:
A method for determining absolute orientation of a platform is disclosed. In one embodiment, a first sky polarization data set for a first time Ti is measured using a sky polarization sensor disposed on a platform. A second sky polarization data set is obtained at a second time Tj. A difference in orientation between the first sky polarization data set and the second sky polarization data set is determined using an orientation determiner. The difference in orientation is provided as at least one orientation parameter for the platform at time Tj. The at least one orientation parameter is used to provide a direction relative to a reference point on the platform.
摘要:
A system and method of determining a position of an electronic device is presented herein. An image is displayed having at least one celestial object and a celestial object indicator for selecting a celestial object. The celestial object indicator is overlaid on the at least one celestial object. Data indicating a relative angle of the device with respect to the Earth in at least two dimensions is received at the processor. The time when the celestial object indicator is overlaid on the at least one celestial object is determined. The position of the electronic device is determined by comparing the location of the celestial object in the image data and relative angle information at the time of the indication to a database at least partially stored on the electronic device in response to an indication that the celestial object indicator is overlaid on the at least one celestial object.
摘要:
A system and method of determining a position of an electronic device is presented herein. An image is displayed having at least one celestial object and a celestial object indicator for selecting a celestial object. The celestial object indicator is overlaid on the at least one celestial object. Data indicating a relative angle of the device with respect to the Earth in at least two dimensions is received at the processor. The time when the celestial object indicator is overlaid on the at least one celestial object is determined. The position of the electronic device is determined by comparing the location of the celestial object in the image data and relative angle information at the time of the indication to a database at least partially stored on the electronic device in response to an indication that the celestial object indicator is overlaid on the at least one celestial object.
摘要:
A pellet-shaped article inspection unit is structured for use with a conveyer mechanism having a plurality of carrier bars, each carrier bar being structured to convey a plurality of pellet-shaped articles along a predetermined path. The article inspection unit includes a first camera unit positioned adjacent a first side of the conveyer mechanism. The first camera unit is configured to sense a first predetermined characteristic, e.g., laser holes, of the plurality of pellet-shaped articles. A removal mechanism, downstream from the first camera unit, is structured to remove or maintain at least a selected one of the plurality of pellet-shaped articles from at least a selected one of the plurality of carrier bars depending on whether the first predetermined characteristic is sensed by the first camera unit. A laser unit may be provided to create unique holes in the pellet-shaped articles, e.g., those by a larger exposed surface to improve time-release characteristics of the pellet-shaped articles.
摘要:
A position determining system that includes a spherical inertial sensor assembly, at least one position determining device and a processor is provided. The spherical inertial sensor assembly has a surface with a reference pattern. Each position determining device includes a focal plane configured to record images of the reference pattern and star images. The processor is configured to determine the angular position of the spherical inertial sensor assembly via recorded images of the reference pattern and correlate the determined angular position based on the star images.
摘要:
A system and method for navigation utilizes sources of modulated celestial radiation. A spacecraft, satellite, or other vehicle (12) has one or more modulated radiation sensors (22a-22x) mounted thereto for detecting a modulated signal (14) generated by one or more pulsars or other celestial objects (16). A timer (24) measures the pulse time of arrival at a respective pulse sensor (22a22x) by comparing the pulse signal (14) with a known pulse profile, and a processor (30) calculates a timing difference between the measured pulse time of arrival at sensor (22a-22x) with a calculated pulse time of arrival at a selected reference point (100). The positions and pulse profile characteristics of the pulsars (16) are stored in a digital memory (34) and combining the calculated time difference with the known positions of pulsars (16), the navigational parameters, such as position, velocity, and attitude, for spacecraft (12) with ,respect to the selected localized reference point (100) can be calculated.
摘要:
An attitude angle sensor correcting apparatus for an artificial satellite of the present invention includes a satellite attitude estimator. The satellite attitude estimator reads geographical image data out of an image data memory, produces a GCP (Ground Control Point) position included in the image data by stereo image measurement, and then estimates the instantaneous satellite attitude angle on the basis of a relation between the measured GCP position and a true GCP position. An attitude angle sensor data corrector corrects measured attitude angle data with estimated satellite attitude data output from the satellite attitude estimator and corresponding in time to the measured attitude angle data. The attitude angle sensor data corrector outputs an estimated satellite attitude signal.
摘要:
A method for use on a satellite that automatically inhibits scanning of an Earth sensor to handle sensor intrusions by the sun, moon, or other celestial bodies. In implementing the method, a predicted state vector for the satellite, derived from an orbit propagator, is generated. An attitude profile for the satellite is generated. Then, the satellite state (predicted state vector) and attitude profile are processed to determine Earth, sun, and moon vectors in a satellite body frame of reference at any instant. The Earth, sun, and moon vector are compared to the Earth sensor field of view and sensor field of view limit boxes to determine if scan inhibiting or Earth sensor switching should occur. The affected Earth sensor is inhibited or switched if an intrusion of the sun and/or moon into the field of view of the Earth sensor is predicted.