Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
An illumination system (1) comprises a plurality of lamps (11, 12, 13) for generating light (R, G, B) with mutually different colors; in an embodiment, the lamps are fluorescent lamps. A sensing system (50) comprising a color sensor (51) provides a sensor output signal (Ss) that indicates the color of the light received by the color sensor. The sensing system comprises a light guide arrangement (60) interposed between the lamps and the sensor, which is arranged in a service room (74) shielded from ambient light. Each light guide captures light from one lamp only, and the sensor receives a mixture of the captured lights. The color sensor and light guide are used in a feedback system that corrects for tolerances, lamp aging, ambient temperature etc.
Abstract:
The invention concerns measurements in which light interacts with matter giving rise to changes in light intensity, and preferred embodiment spectrophotometer devices of the invention provide for ultrasensitive measurements through a reflection interaction with matter. The level of light source noise in these measurements can be reduced in accordance with the invention. Preferred embodiments of the invention use sealed housings (112, 600, 700) lacking an internal light source, and reflection based sample and reference cells. In some embodiments a substantially solid thermally conductive housing (600, 700) is used. Other features of preferred embodiments include particular reflection based sample and reference cells. A total internal reflection embodiment includes, for example, a prism (302, 322, 622a, 623 a) including an interaction surface, a detector, a lens that focuses a beam output from the prism onto the detector, and a closed interaction volume having an inlet and an outlet for delivering gas or liquid to the interaction surface. In a specular reflection embodiment, a reflective surface (402, 422) is used instead of a prism. In a diffuse reflection embodiment a matte surface (502, 522) is used instead of a prism and the matte surface produces scattering. Aspects of the invention include identification of noise-contributing components in spectrophotometry and the select set of preferred features in a given embodiment, and noise levels very near the shot noise limit may be realized with application of preferred embodiment devices.
Abstract:
In a spectrometer, preferably in a spectrometric microscope, input light is provided from a light source to a specimen via a source objective element (e.g., a Schwarzchild objective), and the aperture of the light source is matched to the aperture of the source objective element to maximize light throughput to the specimen. The light from the specimen is then collected at a collector objective element and delivered to a camera element, which in turn provides the light to a photosensitive detector. The apertures of the camera element and the collector objective element are also matched to maximize light throughput from the specimen to the detector. As a result, light loss from vignetting effects is reduced, improving the intensity and uniformity of illumination and the sensitivity and accuracy of spectral measurements.
Abstract:
This invention relates to a control system for controlling the light output of a LED luminaire comprising a single color LED group consisting of at least one LED. The control system comprises a spectral filter and a photodetector, which thus receives spectrally filtered light from the LED group. The photodetector generates a response signal which is applied to a control device. The control device controls the light output of said LED group at least partially on the basis of the response signal. The control system further includes an incidence angle limiting device arranged to limit the angle of incidence of the LED light received by said filter.
Abstract:
Systems, methodologies, media, and other embodiments associated with color measuring are described. One exemplary system embodiment includes a spectrophotometer (100), one or more light sources (110) for illuminating an interior of the spectrophotometer (100), and a digital camera (105) configured at a port (125) of the spectrophotometer and being configured to measure light components from a sample (115). In the present invention, segmentation logic is provided for the spectrophotometer that is configured to employ computational image segmentation to characterize specular reflection from a sample and to characterize a selected patch or portion from the test sample, such as a selected color in a multicolor pattern. In accordance with the present invention, the spectrophotometer (100) and the included digital camera (105) may be color-characterized in situ.
Abstract:
Systems and methods are disclosed for positioning or storing an electro-optical instrument (e.g., spectrophotometer) within a printing device to facilitate calibration or maintenance of the instrument. In various embodiments, the electro-optical instrument may be pivoted or moved to an inclined position to facilitate calibration of the instrument relative to one or more calibration references. The electro-optical instrument may also be moved or inclined along a travel path in the printing device to a position or positions adjacent to various calibration references.
Abstract:
A tristimulus colorimeter on a single semiconductor chip having at least three detectors, each detector being coated by colorant filters, each filter having at least one layer and at least one filter having a double layer is provided. The colorimeter determines CIE tristimulus values of an incident light from inputs to the filters and detectors. Colorimeters having integral dye filters may be constructed on a single silicon chip embodying all the detectors and electronics, coated over each detector by a deposited filter layer. Colorants may be directly deposited on the detectors, rather than using a plastic substrate for a filter.
Abstract:
A method and system for effecting an appearance model correction for a display unit, e.g., a CRT, using a polynomial-based algorithm is described. The correction may be effected in real time and is based on gamma values associated with the display. Strong correlations with the CIECAM02 specification are achieved according to the present disclosure. The correction functionality may be implemented using a colorimeter that includes a plurality of sensors/filter systems with non overlappng spectral responses, adequate for providing data capable of translation into standard coordinates system such as, CIE XYZ, CIE L* a* b*, or CIE Luv, as well as non-standard operable coordinate systems. The field of view of the colorimeter is chosen to closely track the response of the human eye using an optical path configured to select and limit the field of view in a manner that is insensitive to placement of the colorimeter on the source image. The optical path from the source image to the sensor is configured to select preferred light rays while rejecting undesirable light rays to maximize the signal/noise ratio. A rearward facing sensor channel is included to simultaneously measure ambient light impinging on the source image and feedback means to provide status and/or change of information.
Abstract:
Ein Detektor, insbesondere zur spektralen Detektion von Licht in einem Mikroskop, mit einer photosensitiven Anordnung (1) mit mindestens einer photosensitiven Fläche, wobei in einem Strahlengang vor der photosensitiven Anordnung (1) ein Mittel zur Fokussierung eines spektral aufgespaltenen Lichts auf die photosensitive Anordnung (1) angeordnet ist, ist im Hinblick auf eine besonders hohe Detektionsgeschwindigkeit derart ausgestaltet und weitergebildet, dass das Mittel eine Mikrolinsen-Anordnung (2) mit mindestens einer Mikrolinse aufweist. Des Weiteren sind ein Spektrometer und ein Mikroskop mit einem derartigen Detektor angegeben.