摘要:
Disclosed are several embodiments of a micro-electro-mechanical systems (MEMS) mirror and a mirror scanner employing the same. An optical scanning unit employing such mirror scanner and an image forming apparatus including the optical scanning unit are also disclosed. The MEMS mirror may include a movable unit, which may in turn include a mirror portion and a magnet frame portion. The mirror portion may have mirror surfaces on the face surface(s) thereof. The magnet frame portion may include an opening into which a magnet is received. The MEMS mirror may also include a first fixing end and a second fixing end, to which the moving unit may be elastically supported by one or more elastic members that allows oscillating or pivoting movement of the moving unit.
摘要:
Provided is a two-axis micro-electro mechanical system (MEMS) device. The MEMS device includes a moving plate, a stage, a driving coil, a pair of magnets, and a yoke magnetic body. The moving plate is supported coaxially on a first axis to move pivotably about the first axis that is disposed perpendicularly to a second axis. The stage is supported coaxially on the second axis in an inner region of the moving plate. The driving coil includes a coaxial coil portion arranged along the first axis of the driving plate and divided at a center by the stage, and a first connecting coil portion and a second connecting coil portion. The magnets of the pair are respectively disposed. The yoke magnetic body is disposed between the pair of magnets in a region above or below the magnets and is formed of a material capable of being magnetized by the magnets in order to suddenly change a magnetic flux density according to a distance between the pair of magnets. The MEMS device provides reliable driving about the two axes and doubles the rotation force.
摘要:
A vibration type MEMS switch and a method of fabricating the vibration type MEMS switch. The vibration type MEMS switch includes a vibrating body supplied with an alternating current voltage of a predetermined frequency to vibrate in a predetermined direction; and a stationary contact point spaced apart from the vibrating body along a vibration direction of the vibrating body. When a direct current voltage with a predetermined magnitude is applied to the stationary contact point, a vibration margin of the vibrating body is increased, the vibrating body contacts the stationary contact point and the vibration type MEMS switch is turned on. A first substrate is bonded to a second substrate to isolate the vibrating body in a sealed vacuum space. The vibration type MEMS switch is turned on and/off by a resonance.
摘要:
A multilayered wafer with a thick sacrificial layer, which is obtained by forming a sacrificial layer of oxidized porous silicon or porous silicon and growing an epitaxial polysilicon layer on the sacrificial layer, and a fabrication method thereof are provided. The multilayered wafer with a thick sacrificial layer adopts a porous silicon layer or an oxidized porous silicon layer as a sacrificial layer such that a sufficient gap can be obtained between a substrate and a suspension structure upon the manufacture of the suspension structure of a semiconductor actuator or a semiconductor inertia sensor. Also, in a fabrication method of the wafer according to the present invention, a p + -type or n + -type wafer doped at a high concentration is prepared for, and then a thick porous silicon layer can be obtained simply by anodic-bonding the surface of the wafer. Also, when polysilicon is grown on a porous silicon layer by an epitaxial process, it is grown faster than when single crystal silicon is grown.
摘要:
Disclosed are several embodiments of a micro-electro-mechanical systems (MEMS) mirror and a mirror scanner employing the same. An optical scanning unit employing such mirror scanner and an image forming apparatus including the optical scanning unit are also disclosed. The MEMS mirror may include a movable unit, which may in turn include a mirror portion and a magnet frame portion. The mirror portion may have mirror surfaces on the face surface(s) thereof. The magnet frame portion may include an opening into which a magnet is received. The MEMS mirror may also include a first fixing end and a second fixing end, to which the moving unit may be elastically supported by one or more elastic members that allows oscillating or pivoting movement of the moving unit.
摘要:
A MEMS switch including a substrate at least one fixed electrode formed on top of the substrate and at least one restoring electrode formed on top of the substrate and formed at a lateral surface of the fixed electrode. At least one signal line is formed on top of the substrate and has a switching contact part. A movable electrode is distantly connected from the top of the substrate at a predetermined space via an elastic connector on the substrate and at least one contact member formed on a bottom surface of the movable electrode or on a bottom surface of the elastic connector for attachment to or detachment from the switching contact part. At least one pivot boss is formed on either the bottom surface of the movable electrode or on the top of the substrate.
摘要:
A vibration type MEMS switch and a method of fabricating the vibration type MEMS switch. The vibration type MEMS switch includes a vibrating body supplied with an alternating current voltage of a predetermined frequency to vibrate in a predetermined direction; and a stationary contact point spaced apart from the vibrating body along a vibration direction of the vibrating body. When a direct current voltage with a predetermined magnitude is applied to the stationary contact point, a vibration margin of the vibrating body is increased, the vibrating body contacts the stationary contact point and the vibration type MEMS switch is turned on. A first substrate is bonded to a second substrate to isolate the vibrating body in a sealed vacuum space. The vibration type MEMS switch is turned on and/off by a resonance.