Abstract:
Creep control is performed, in response to an accelerator-off operation, to control a second motor to cause a predetermined creep torque Tcr to be output from the second motor to a driveshaft. First creep cut-off control is performed, in response to a brake-on operation during the creep control, to control the second motor to cause a torque reduced from the creep torque Tcr at a high rate by a predetermined high variation ΔThi to be output from the second motor to the driveshaft (S210). Subsequent to the first creep cut-off control, second creep cut-off control is performed to control the second motor to cause a torque reduced at a low rate by a predetermined low variation ΔTlow smaller than the predetermined high variation ΔThi to be output from the second motor to the driveshaft (S230).
Abstract:
Provided is a safety braking apparatus applied to an automated vehicle. The safety braking apparatus is for preventing minor collisions by sensing other vehicles or objects when the automated vehicle moves at a low speed when a driver does not step on an acceleration pedal. The safety braking apparatus includes an actuator for forcedly pulling a brake pedal to stop the automated vehicle, and a control circuit for controlling the actuator. The control circuit includes circuit units for sensing velocity and sensing objects, which are sequentially controlled by using a plurality of relay devices, and thus, the control circuit may be additionally mounted in the automated vehicle without changing a program of other electronic control devices such as an electronic control unit (ECU). Therefore, the safety braking apparatus may be applied to existing vehicles.
Abstract:
Ausführungsbeispiele beziehen sich auf eine Schaltung, ein Verfahren und ein Computerprogramm zur Steuerung eines Kriechmodus. Die Schaltung (10) zu Steuerung eines Kriechmodus in einem Fahrzeug sieht vor, dass der Kriechmodus durch Vorwählen einer Rückfahrtrichtung aktivierbar ist.
Abstract:
The invention relates to a method for controlling the start-up of a vehicle comprising an engine start-stop system, said method including the actuation (52) of the start-up of the vehicle. The invention is characterised in that the method also comprises the following steps: an autonomous engine state is indicated (62) in response to the simultaneous occurrence of (i) the injection of fuel into the combustion chambers of the heat engine and (ii) a heat engine speed above a pre-defined threshold S1, said threshold S1 being equal to an engine speed that cannot be achieved without combustion in the combustion chambers during the start-up of the vehicle; and, in response to the aforementioned autonomous engine state indication, the closing of a clutch is controlled (66) according to a pre-defined motor speed set value in order to slave the motor speed to said pre-defined set value.
Abstract:
A vehicle speed VSP enters a creep-cutoff-prohibiting speed region lower than V1 with a forward creep torque being outputted (t1), and then this state continues for a time duration set corresponding to a timer value NTM1 (t2). At this time, a creep cutoff is prohibited by setting a creep-cutoff-prohibition flag NFLAG at "1". A braking force becomes larger than or equal to a creep-cutoff-permitting braking-force value to satisfy a creep-cutoff permitting condition related to the braking force (t3) while a creep-cutoff permitting condition related to the vehicle speed has been satisfied because of almost zero of the vehicle speed VSP. In response thereto, the creep-cutoff permitting flag FLAG is set at 1 at t4. However, the creep toque continues to be outputted also after t4 without the creep cutoff, so that a torque reduction accompanied with strangeness feeling can be prevented from occurring due to an execution of the creep cutoff at t4.
Abstract:
A vehicle moves unintentionally in a downwardly-reverse direction with a forward creep torque being outputted as shown by a time variation of vehicle speed VSP, and a braking is applied at timing t3 in order to prevent this downward movement. In this case, the downward movement in the reverse direction is detected by sensing a relation of VSP
Abstract:
Es wird ein Hybridantrieb für ein Fahrzeug, mit einem Verbrennungsmotor (VM) und zumindest einer elektrischen Maschine (EM) sowie einem Getriebe (1) in Planetenbauweise vorgeschlagen, wobei als verschleißfreies Anfahrelement zumindest ein Retarder (2) vorgesehen ist, der mit dem Getriebe (1) verbunden ist.
Abstract:
A control apparatus for a hybrid vehicle that is capable of suppressing overheating of the second clutch is taught herein. Control is switched between engine-used slip drive control and motor drive control on a basis of a vehicle load such as weight or a road incline gradient. Control methods for hybrid vehicles are also disclosed.
Abstract:
An automatic transmission control apparatus is provided with a brake switch, a brake fluid pressure detecting section, a range position detecting section, a neutral control section and a prohibiting section. The brake switch is configured to output an on-signal when a brake pedal is depressed and otherwise output an off-signal. The brake fluid pressure detecting section is configured to detect a brake fluid pressure corresponding to a brake pedal depression force. The range position detecting section is configured to detect if a traveling range of an automatic transmission is selected. The neutral control section is configured to start a neutral control that puts the automatic transmission into a neutral state when the brake fluid pressure detected by the brake fluid detecting section exceeds a start threshold value while the range position detecting section detects that the traveling range is selected, and to end the neutral control when the brake fluid pressure falls below an end threshold value while the neutral control is being executed, with the start and end threshold values being set to values that are higher than the brake fluid pressure occurring when the brake switch starts outputting the on-signal. The prohibiting section is configured to prohibit the neutral control from being subsequently started again, after the neutral control has been started by the neutral control section, regardless of the brake fluid pressure detected by the brake fluid pressure detecting section until the brake switch outputs the off-signal.