FLEXIBLE CIRCUIT ELECTRODE ARRAY WITH AT LEAST ONE TACK OPENING
    23.
    发明授权
    FLEXIBLE CIRCUIT ELECTRODE ARRAY WITH AT LEAST ONE TACK OPENING 有权
    ELEKTRODENANORDNUNG EINER FLEXIBLEN SCHALTUNG MIT MINDESTENS EINERNAGELÖFFNUNG

    公开(公告)号:EP2046442B1

    公开(公告)日:2017-01-25

    申请号:EP07809828.2

    申请日:2007-06-21

    IPC分类号: A61N1/05

    摘要: The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces at least one tack opening; wherein said polymer base layer, said metal traces and said polymer top layer are thermoformed in a three dimensional shape. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on said polymer base layer; patterning said metal to form metal traces; depositing a polymer top layer on said polymer base layer and said metal traces; preparing at least one tack opening; and heating said flexible circuit electrode array in a mold to form a three dimensional shape in said flexible circuit electrode array.

    摘要翻译: 本发明提供一种适用于神经刺激的柔性电路电极阵列,包括:聚合物基层; 沉积在所述聚合物基层上的金属痕迹,包括适于刺激神经组织的电极; 沉积在所述聚合物基层上的聚合物顶层和所述金属迹线至少一个粘性开口; 其中所述聚合物基底层,所述金属迹线和所述聚合物顶层被热成型为三维形状。 本发明还提供一种制造柔性电路电极阵列的方法,包括沉积聚合物基层; 在所述聚合物基层上沉积金属; 图案化所述金属以形成金属痕迹; 在所述聚合物基底层和所述金属迹线上沉积聚合物顶层; 准备至少一个打开口; 并在模具中加热所述柔性电路电极阵列,以在所述柔性电路电极阵列中形成三维形状。

    AUTOMATIC FITTING FOR A VISUAL PROSTHESIS
    28.
    发明公开
    AUTOMATIC FITTING FOR A VISUAL PROSTHESIS 有权
    自动阀为Visual假体

    公开(公告)号:EP2077892A1

    公开(公告)日:2009-07-15

    申请号:EP06801749.0

    申请日:2006-08-16

    IPC分类号: A61N1/36

    CPC分类号: A61N1/0543 A61N1/36046

    摘要: The invention is a method of automatically adjusting an electrode array to the neural characteristics of an individual patient. By recording neural response to a predetermined input stimulus, one can alter that input stimulus to the needs of an individual patient. A minimum input stimulus is applied to a patient, followed by recording neural response in the vicinity of the input stimulus. By alternating stimulation and recording at gradually increasing levels, one can determine the minimum input that creates a neural response, thereby identifying the threshold stimulation level. One can further determine a maximum level by increasing stimulus until a predetermined maximum neural response is obtained.