摘要:
The object of the present invention is to provide a manufacturing method of carbonaceous material for a negative electrode of lithium ion capacitors, wherein the carbonaceous material is obtained from plant-derived char as a source, potassium and iron are sufficiently removed, and an average particle diameter thereof is small; and a carbonaceous material for a negative electrode of lithium ion capacitors. The object can be solved by a method for manufacturing a carbonaceous material having an average diameter of 3 to 30µm, for a negative electrode of lithium ion capacitors comprising the steps of: (1) heating plant-derived char having an average particle diameter of 100 to 10000µm at 500°C to 1250°C under an inert gas atmosphere containing a halogen compound to demineralize in a gas-phase, (2) pulverizing a carbon precursor obtained by the demineralization in a gas-phase, (3) calcining the pulverized carbon precursor at less than 1100°C under a non-oxidizing gas atmosphere.
摘要:
[Means for Realizing Subject] According to the invention, DLC powder, which is hard carbon powder, is produced by plasma CVD using a hydrocarbon gas as a material gas, in a first step, i.e. a DLC powder producing processing step. Then, in a second step, i.e. a DLC-to-OLC converting processing step, the DLC powder is heated in a vacuum or in an inert gas atmosphere to thereby convert the DLC powder into OLC. Like this, according to the invention, since a hydrocarbon gas can be used as a starting material to manufacture OLC, OLC can be manufactured at a significantly low cost.
摘要:
The invention is directed to a carbon material dispersion, including: a fluorinated carbon material having a fluorinated surface formed by bringing a treatment gas with a fluorine concentration of 0.01 to 100 vol.-% into contact with a carbon material under conditions at 150 to 600 °C; and a dispersion medium in which the fluorinated carbon material is dispersed.
摘要:
Coke is manufactured by blending two or more kinds of coal to form a coal blend and by carbonizing the coal blend. Interfacial tension among coal kinds is used as a control index for determining the blending ratio of each coal when forming the coal blend. It is possible to increase the strength of coke without increasing the material cost of a coal blend.
摘要:
The present invention provides a method for preparing a carbon microparticle from an organic raw material having lignin as a main constituent, and a carbon microparticle obtained thereby. An aqueous solution with 5% total concentration of lignin and sodium hydroxide (the proportion in mass is 1:0.5) is spray-dried to prepare a complex microparticle. This is heat-processed under nitrogen atmosphere at 600°C for one hour and let to cool. Thereafter, this is washed with water and further dried to prepare a hollow carbon microparticle such as those shown in Fig. 2 (b) . The prepared carbon microparticle is light-weight and has an equivalent specific surface area to commercially available activated charcoal.
摘要:
The group of inventions pertains to the field of producing high-strength carbon fibres, which can be primarily manufactured from an organic starting material (precursor). A method for stabilizing a carbon-containing fibre (precursor) is claimed, in which the fibre is placed into a gaseous medium and subjected to treatment with microwave radiation as the gaseous medium is heated. More specifically, the fibre is placed into a working chamber filled with a gaseous medium, the latter is heated by heating the chamber (for example, the walls thereof) while the fibre is treated with microwave radiation. According to a second aspect of the invention, a method for producing a carbon fibre is claimed, comprising, as a minimum, fibre stabilizing and carbonizing stages, in which the precursor is stabilized by means of the above-described method by subjecting the fibre to microwave radiation as the medium in which the fibre is immersed is heated. After the fibre has been carbonized, it is possible, as an alternative, for said fibre to be additionally coated with graphite. If necessary, the stabilized fibre can also be carbonized and/or coated with graphite by the complex treatment thereof with microwave radiation as the medium in which the fibre has been placed for carbonizing/coating with graphite is heated. As a result, the time taken to stabilize the precursor fibres is reduced, thereby affording a reduction in the energy consumption and an increase in the productivity of the process for producing carbon fibre.
摘要:
An electrode (4) for use in a voltammetric pH sensor comprises carbon powder especially carbonnanotubes, modified with a chemically sensitive redox-active compound, especially 4-nitrobenzylamine, 1, 2-naphtoquinone, and phenanthrenequinone (RN=84-11-7) immoblised on a substrate, e. g. graphite electrode.
摘要:
The disclosure describes a method of forming a carbon-carbon composite component including depositing an initial carbon material into a porous preform using chemical vapor deposition (CVD) or chemical vapor infiltration (CVI) to form a rigidized porous preform, infusing the rigidized porous preform with an isotropic resin, pyrolyzing the infused isotropic resin to form an isotropic carbon within pores of the rigidized porous preform, and encapsulating the isotropic carbon with a graphitizable carbon to form the carbon-carbon composite component.
摘要:
Provided are an insulated ultrafine powder obtained by adding liquid metal alkoxide to a methanol-containing organic solvent in which a conductive ultrafine powder comprising a carbon material is dispersed and further adding water thereto and a method for producing the same. Also, provided are an insulated ultrafine powder obtained by adding liquid metal alkoxide to a methanol-containing organic solvent in which a conductive ultrafine powder comprising a carbon material is dispersed, further adding a coupling agent having an alkoxide group and then adding water thereto and a method for producing the same. Further, provided is a high dielectric constant resin composite material obtained by blending the insulated ultrafine powder of the present invention with a resin in a volume ratio (insulated ultrafine powder/resin) falling in a range of 5/95 to 50/50.