Abstract:
An exhaust gas purification catalyst includes: a first catalyst unit that consists of a hydrogen generating catalyst including a noble metal and an oxide that contains lanthanum, zirconium and an additional element such as neodymium; a second catalyst unit that consists of an oxygen storage/release material and a perovskite oxide disposed in contact with the oxygen storage/release material and represented by the general formula La x M1 1-x M2O 3-´ , where La is lanthanum, M1 is at least one element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M2 is at least one element selected from the group consisting of iron (Fe), cobalt (Co) and manganese (Mn), x satisfies 0
Abstract translation:一种废气净化催化剂,包括:第一催化剂单元,其由包含贵金属的氢生成催化剂和包含镧,锆和诸如钕的附加元素的氧化物组成; 第二催化剂单元,其由氧存储/释放材料和与所述氧存储/释放材料接触放置且由通式La x M1 1-x M 2 O 3-'表示的钙钛矿氧化物组成,其中La是镧,M1 是选自钡(Ba),锶(Sr)和钙(Ca)中的至少一种元素,M2是选自铁(Fe),钴(Co)和锰( Mn),x满足0
Abstract:
Composites of mixed metal oxides for an exhaust gas purifying catalyst comprise the following co-precipitated materials by weight of the composite: zirconia in an amount in the range of 55-99%; titania in an amount in the range of 1-25%; a promoter and/or a stabilizer in an amount in the range of 0-20%. These composites are effective as supports for platinum group metals (PGMs), in particular rhodium.
Abstract:
Catalyst systems and methods for making and using the same. A method for making a catalyst support includes forming a mixture of a support material and a fluoride donor. The mixture is added to a fluidized bed reactor. The mixture is fluidized to form a fluidized bed while maintaining a ratio of a pressure drop across a distributor plate to a pressure drop across the fluidized bed of greater than about 7%. The mixture is calcined to decompose the fluoride donor, forming a fluorinated support.
Abstract:
The present invention provides an exhaust gas treatment system comprising an oxidation catalyst and an SCR catalyst, wherein the oxidation catalyst comprises an inert ceramic or metal honeycomb body and a catalytically active coating comprising a platinum group metal supported on a refractory support oxide and lanthanum wherein lanthanum is present in an amount of at least 13% by weight calculated as La2O3 and based on the weight of the refractory support material.
Abstract translation:本发明提供了一种包含氧化催化剂和SCR催化剂的废气处理系统,其中氧化催化剂包括惰性陶瓷或金属蜂窝体和催化活性涂层,其包含负载在耐火载体氧化物上的铂族金属和镧,其中镧 以至少13重量%的量存在,以La 2 O 3计,并基于耐火载体材料的重量。
Abstract:
An exhaust gas purification catalyst includes: a first catalyst unit that consists of a hydrogen generating catalyst including a noble metal and an oxide that contains lanthanum, zirconium and an additional element such as neodymium; a second catalyst unit that consists of an oxygen storage/release material and a perovskite oxide disposed in contact with the oxygen storage/release material and represented by the general formula La x M1 1-x M2O 3-δ , where La is lanthanum, M1 is at least one element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M2 is at least one element selected from the group consisting of iron (Fe), cobalt (Co) and manganese (Mn), x satisfies 0
Abstract:
Preparation of a catalyst suitable for use in Fischer-Tropsch Synthesis reactions using a two step process in which the steps may be performed in either order. In step a), impregnate an iron carboxylate metal organic framework selected from a group consisting of iron-1,3,5-benzenetricarboxylate (Fe-(BTC), Basolite™ F-300 and/or MIL-100 (Fe)), iron-1,4 benzenedicarboxylate (MIL-101(Fe)), iron fumarate (MIL-88 A (Fe)), iron-1,4 benzenedicarboxylate (MIL-53 (Fe)), iron-1,4 benzenedicarboxylate (MIL-68 (Fe)) or iron azobenzenetetracarboxylate (MIL-127 (Fe)) with a solution of a promoter element selected from alkali metals and alkaline earth metals. In step b) thermally decompose the iron carboxylate metal organic framework under an inert gaseous atmosphere to yield a catalyst that is a porous carbon matrix having embedded therein a plurality of discrete aliquots of iron carbide. If desired, add a step intermediate between steps a) and b) or preceding step b) wherein the metal organic framework is impregnated with an oxygenated solvent solution of a polymerizable additional carbon source and the polymerizable additional carbon source is thereafter polymerized.
Abstract:
The invention is to provide a support which can give a zeolite-based hydrocracking catalyst having a stable catalyst life and showing high cracking activity over a long period, and to provide a hydrocracking catalyst employing the support and a method for hydrocracking of hydrocarbon oil containing aromatics using the catalyst. The invention relates to a support for hydrocracking catalyst of hydrocarbon oil, which comprises a modified zeolite obtained by incorporating titanium into a faujasite-type zeolite, wherein the modified zeolite satisfies the followings (a) to (e), and to a hydrocracking catalyst employing the support and a method for hydrocracking of hydrocarbon oil containing aromatics using the catalyst. (a) The modified zeolite has a titanium content of 1-17% by mass in terms of metal oxide amount, (b) the modified zeolite contains aluminum and silicon in an Al/Si atomic ratio of 0.14-0.35, and (c) the modified zeolite has a lattice constant of 24.36-24.48 Å, (d) a degree of crystallinity of 30-95%, and (e) a specific surface area of 500-850 m 2 /g.