Abstract:
A method for finding L internal reference vectors for classification of L chromosomes or portions of chromosomes of a cell, the L chromosomes or portions of chromosomes being painted with K different fluorophores or combinations thereof, wherein K basic chromosomes or portions of chromosomes of the L chromosomes or portions of chromosomes are each painted with only one of the K different fluorophores, whereas the other L-K of the L chromosomes or portions of chromosomes are each painted with a different combination of the K different fluorophores, the method comprising the steps of (a) using a multi-band collection device for measuring a first vector for each pixel of each of the L chromosomes or portions of chromosomes; (b) identifying pixels belonging to each of the K basic chromosomes or portions of chromosomes and defining the pixels as basic pixels, so as to obtain K basic classes of basic pixels; (c) using at least one basic pixel from each of the K basic classes for obtaining K basic vectors, the K basic vectors being K internal reference vectors; (d) using the K basic vectors for identifying pixels belonging to the other L-K chromosomes or portions of chromosomes; and (e) using the pixels belonging to the other L-K chromosomes or portions of chromosomes for calculating the other L-K internal reference vectors, thereby finding all of the L internal reference vectors. A method for classification of L chromosomes or portions of chromosomes of a cell similarly painted using the above method for finding L internal reference vectors, and using the L reference vectors for classification of each of the pixels into one of L classification classes. And, images presenting color chromosomes.
Abstract:
A method of in situ analysis of a biological sample comprising the steps of (a) staining the biological sample with N stains of which a first stain is selected from the group consisting of a first immunohistochemical stain, a first histological stain and a first DNA ploidy stain, and a second stain is selected from the group consisting of a second immunohistochemical stain, a second histological stain and a second DNA ploidy stain, with provisions that N is an integer greater than three and further that (i) if the first stain is the first immunohistochemical stain then the second stain is either the second histological stain or the second DNA ploidy stain; (ii) if the first stain is the first histological stain then the second stain is either the second immunohistochemical stain or the second DNA ploidy stain; whereas (iii) if the first stain is the first DNA ploidy stain then the second stain is either the second immunohistochemical stain or the second histological stain; and (b) using a spectral data collection device for collecting spectral data from the biological sample, the spectral data collection device and the N stains are selected such that a spectral component associated with each of the N stains is collectable.
Abstract:
A method for cancer cell detection including the steps of (a) staining an analyzed sample with at least first and second dyes, the dyes being selected such that the first dye better adheres to normal cells whereas the second dye better adheres to cancer cells; (b) spectrally imaging the sample through an optical device being optically connected to an imaging spectrometer thereby obtaining a spectrum of each pixel of the sample; (c) based on the spectra, evaluating concentrations of the first and second dyes for each of the pixels; and (d) based on the concentrations detecting the presence of cancer cells in the sample.
Abstract:
A method for remote scenes classification comprising the steps of (a) preparing a reference template for classification of the remote scenes via (i) classifying a set of reference scenes via a conventional classification technique for obtaining a set of preclassified reference scenes; (ii) using a first spectral imager for measuring a spectral cube of the preclassified reference scenes; (iii) employing a principal component analysis for extracting the spectral cube for decorrelated spectral data characterizing the reference scenes; and (iv) using at least a part of the decorrelated spectral data for the preparation of the reference template for remote scenes classification; (b) using a second spectral imager for measuring a spectral cube of analyzed remote scenes, such that a spectrum of each pixel in the remote scenes is obtained; (c) employing a decorrelation statistical method for extracting decorrelated spectral data characterizing the pixels; and (d) comparing at least a part of the decorrelated spectral data extracted from the pixels of the remote scenes with the reference template.
Abstract:
A method and an apparatus of analyzing an optical image of a scene to determine the spectral intensity of each pixel thereof, comprising: collecting incident light from the scene; passing the light through an interferometer which outputs modulated light corresponding to a predetermined set of linear combinations of the spectral intensity of the light emitted from each pixel; focusing the light outputted from the interferometer on a two dimensional detector array; and processing the output of the detector array to determine the spectral intensity of each pixel thereof; the interferometer being of the low-finesse translating Fabry-Perot type in which the optical path difference is varied to modulate the light by translating an element of the interferometer, such that at each instant each detector sees a different point of the scene.
Abstract:
A method of classification of pixels into groups of pixels according to their association with a single fluorophore or a combination of fluorophores selected from a plurality of fluorophores, each of the fluorophores having characterizing excitation and emission spectra and specifying excitation and emission peaks, the method comprising the steps of (a) providing a plurality of pairs of wide-band excitation filters (114) and wide-band emission filters (116); (b) exciting fluorophores of each of the pixels with light filtered through one of the wide-band excitation filters, and recording emitted light intensity (122) as retrieved after passing through its paired emission filter; (c) repeating step (b) for all of the plurality of pairs of filters, such that each of the pixels is representable by a vector of a plurality of dimensions, the number of dimensions being equal to the number of the plurality of pairs of filters; (d) using an algorithm for evaluating the presence of each of the plurality of fluorophores in each of the pixels, thereby classifying each of the pixels into a group of pixels according to its association with a single fluorophore or combination of fluorophores.
Abstract:
A spectral imaging method for simultaneous detection of multiple fluorophores aimed at detecting and analyzing fluorescent in situ hybridizations employing numerous chromosome paints and/or loci specific probes each labeled with a different fluorophore or a combination of fluorophores for color karyotyping, and at multicolor chromosome banding, wherein each chromosome acquires a specifying banding pattern, which pattern is established using groups of chromosome fragments labeled with various fluorophores or combinations of fluorophores.
Abstract:
A spectral imaging system comprises: a sequential optical system providing a temporal sequence of output light beams describing the scene; a color imager receiving the output light beams and responsively generating, for each output light beam, an image signal that is spatially resolved into a plurality of color channels. The system can also comprise an image processor that collectively process the image signals to construct a spectral image of the scene.