Abstract:
An optical system and method comprising a diffraction grating which consists of diffracting elements spaced from one another by unequal distances. Correction of residual defocusing in the image produced by such a grating is accomplished by translating it along its surface. As one embodiment, a monochromator is constructed in which a self-focusing grating scans the value in wavelength which is transmitted between fixed slits by rotation of the grating about an axis fixed in space. Combined with a translation of the grating along its surface, such a monochromator produces a symmetrical image exactly in focus at the exit slit for all scanned wavelengths.
Abstract:
An optical device for the spectral analysis of a light source comprises
a) a spectrograph assembly (1,2,31,32) including a dispersive element (32), and b) a classical collimator (3), the device being characterised in that the spectrograph assembly (1,2,31,32) supplies a complete intermediate spectrum at the object focus of the classical collimator and the classical collimator (3) reforms, at its image focus, an image of the dispersive element (32). The spectrograph assembly (1,2,31,32) is preferably a Czerny-Turner or other type of spectrograph comprising an entry slit (31), two juxtaposed concave mirrors (1,2) of the same focal length and a dispersive element (32) placed strictly in the common focal plane of the two mirrors (1,2). Most preferably, the classical collimator (3) is the first mirror of a second, similar spectrograph assembly (3,4,34). The device is most advantageous in that it is readily useable for both simultaneous and sequential spectroscopy.
Abstract:
A spectral detector includes a grating panel including a first grating pattern having a first period, a second grating pattern having a second period that is different from the first period, and a light exit surface through light exits the grating panel, and an optical measurement panel arranged to face the light exit surface of the grating panel, and configured to measure a change in intensity of first light passing through the first grating pattern according to a propagation distance of the first light, and to measure a change in intensity of second light passing through the second grating pattern according to a propagation distance of the second light.
Abstract:
An optoelectronic module includes a light guide arranged to receive light, such as ambient light or light reflected by an object. The light guide has a diffractive grating that includes multiple sections, each of which is tuned to a respective wavelength or narrow band of wavelengths. The module further includes multiple photosensitive elements, each of which is arranged to receive light diffracted by a respective one of the sections of the diffractive grating. The module can be integrated, for example, as part of a spectrometer or other apparatus for optically determining characteristics of an object.
Abstract:
A detection system for a two-dimensional (2D) array is provided. The detection system comprises an electromagnetic radiation source, a phase difference generator, a detection surface having a plurality of sample fields that can receive samples, and an imaging spectrometer configured to discriminate between two or more spatially separated points.
Abstract:
An optoelectronic module includes a light guide arranged to receive light, such as ambient light or light reflected by an object. The light guide has a diffractive grating that includes multiple sections, each of which is tuned to a respective wavelength or narrow band of wavelengths. The module further includes multiple photosensitive elements, each of which is arranged to receive light diffracted by a respective one of the sections of the diffractive grating. The module can be integrated, for example, as part of a spectrometer or other apparatus for optically determining characteristics of an object.
Abstract:
A system and method for analyzing biological samples, such as dried human blood serum, to determine a disease state such as colorectal cancer (CRC). Using dried samples may hold potential for enhancing localized concentration and/or segmentation of sample components. The method may comprise illuminating at least one location of a biological sample to generate a plurality of interacted photons, collecting the interacted photons and generating at least one Raman data set representative of the biological sample. A system may comprise an illumination source to illuminate at least one location of a biological sample and generate at least one plurality of interacted photons, at least one mirror for directing the interacted photons to a detector. The detector may be configured to generate at least one Raman data set representative of the biological sample. The system and method may utilize a FAST device for multipoint analysis or may be configured to analyze a sample using a line scanning configuration.